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ABSTRACT

We explore the floating-point arithmetic implemented in the NVIDIA tensor cores,
which are hardware accelerators for mixed-precision matrix multiplication
available on the Volta, Turing, and Ampere microarchitectures. Using Volta V100,
Turing T4, and Ampere A100 graphics cards, we determine what precision is used
for the intermediate results, whether subnormal numbers are supported, what
rounding mode is used, in which order the operations underlying the matrix
multiplication are performed, and whether partial sums are normalized. These
aspects are not documented by NVIDIA, and we gain insight by running carefully
designed numerical experiments on these hardware units. Knowing the answers to
these questions is important if one wishes to: (1) accurately simulate NVIDIA
tensor cores on conventional hardware; (2) understand the differences between
results produced by code that utilizes tensor cores and code that uses only IEEE
754-compliant arithmetic operations; and (3) build custom hardware whose
behavior matches that of NVIDIA tensor cores. As part of this work we provide a
test suite that can be easily adapted to test newer versions of the NVIDIA

tensor cores as well as similar accelerators from other vendors, as they become
available. Moreover, we identify a non-monotonicity issue affecting floating
point multi-operand adders if the intermediate results are not normalized after
each step.

Subjects Algorithms and Analysis of Algorithms, Computer Architecture, Scientific Computing
and Simulation

Keywords NVIDIA V100 GPU, NVIDIA T4 GPU, Tensor core, Dot product, Matrix
multiply-accumulate, Floating-point arithmetic, Half precision, Binary16, IEEE 754 arithmetic,
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INTRODUCTION

One hundred and sixteen of the computers in the November 2020 TOP500 list
(https://www.top500.0rg/lists/top500/2020/11/) are equipped with NVIDIA graphics
processing units (GPUs) based on the Volta, Turing, and Ampere microarchitectures.

A prominent feature of these GPUs is the tensor cores, which are specialized hardware
accelerators for performing a matrix multiply-accumulate operation. Here, in particular,
we focus on the tensor cores available on the NVIDIA V100 (Volta microarchitecture), T4
(Turing architecture), and A100 (Ampere architecture) GPUs, which implement the
operation

How to cite this article Fasi M, Higham NJ, Mikaitis M, Pranesh S. 2021. Numerical behavior of NVIDIA tensor cores. Peer] Comput. Sci.
7:¢330 DOI 10.7717/peerj-cs.330


https://www.top500.org/lists/top500/2020/11/
http://dx.doi.org/10.7717/peerj-cs.330
mailto:mantas.�mikaitis@�manchester.�ac.�uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.330
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

! The binaryl6 and binary32 formats are
sometimes referred to as fp16 (or FP16)
and fp32 (or FP32), respectively.

Table 1 Processing units or architectures equipped with mixed-precision matrix multiply-
accumulate accelerators. The notation m x k x n refers to the matrix multiply-accumulate operation
in (1) where C and D are m X n matrices, and A and B have size m x k and k X n, respectively.

Year Device Matrix dimensions  Input format Output References
of release format
2016 Google TPU v2 128 x 128 x 128 bfloatl6 binary32  Google (2020)
2017 Google TPU v3 128 x 128 x 128 bfloat16 binary32  Google (2020)
2017 NVIDIA V100 4x4x4 binary16 binary32  NVIDIA (2017)
2018 NVIDIA T4 4x4x4 binaryl16 binary32  NVIDIA (2018)
2019 Arm v8.6-A 2x4x2 bfloat16 binary32  Arm Ltd (2020)
2020 NVIDIA A100 8§ x8x4 bfloat16 binary32  NVIDIA (2020b)
8 x8x4 binaryl16 binary32
4x8x4 TensorFloat-32  binary32
4x2x2 binary64 binary64
D = C + A X B,
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X - X X X X + X X X X % X X X X (1)
X X X X X X X X X X X X X X X X
binary16 or binary16 or bin;ry16 binary16
binary32 binary32

where A, B, C, and D are 4 x 4 matrices and “binaryxy” denotes the xy-bit format from the
IEEE Standard 754 for floating-point arithmetic (IEEE, 2019). The entries of A and B must
be in binaryl6 format, whereas those of C and D can be either binary16 or binary32
floating-point numbers depending on the accumulation mode. The newer A100 (Ampere
microarchitecture) GPUs support a wider range of matrix dimensions, as well as an
additional floating-point format, as shown in Table 1. The element d;; in (1) can be seen as
the sum of ¢;; and the dot product between the ith row of A and the jth column of B, so that,
for instance

diy = anby + anby + aisbsy + apsbs + . (2)

Unfortunately, NVIDIA provides very little information about the numerical features of
these units, and many questions naturally arise. The white paper that describes the Volta
microarchitecture (NVIDIA, 2017, p. 15) states that’

Tensor Cores operate on FP16 input data with FP32 accumulation. The FP16 multiply
results in a full precision product that is then accumulated using FP32 addition with the
other intermediate products for a 4 x 4 x 4 matrix multiply.

The official documentation (NVIDIA, 2020a) adds only a few more details:

Element-wise multiplication of matrix A and B is performed with at least single precision.
When .ctype or .dtype is .f32, accumulation of the intermediate values is performed with
at least single precision. When both .ctype and .dtype are specified as .f16, the accumulation
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is performed with at least half precision. The accumulation order, rounding and handling of
subnormal inputs is unspecified.

From a numerical point of view, many essential aspects of tensor cores are not specified.
This lack of key information makes it challenging to simulate tensor cores on conventional
IEEE 754-compliant systems and to build hardware that can reproduce their behavior.
Moreover, it can lead to unexpected differences between the results computed on NVIDIA
devices with tensor cores enabled or disabled.

We now briefly recall some key aspects of IEEE-compliant floating-point systems and
the definitions and main properties of normalization and subnormal numbers, which
are two important concepts in this work. A binary floating-point number x has the form
(—=1)° x m x 2° ~ P where s is the sign bit, p is the precision, m € [0, 2P — 1] is the integer
significand, and e € [enin, €max)> With enin = 1 — enay is the integer exponent. In order
for x to have a unique representation, the number system is normalized so that the most
significant bit of m—the implicit bit in IEEE 754 parlance—is always set to 1 if |x| > 2.
Therefore, all floating-point numbers with m > 2# ~ ! are normalized. Numbers below
the smallest normalized number 2°" in absolute value are called subnormal numbers,
and are such that e = ey, and 0 < m < 27 ~ ', Subnormal numbers provide a means to
represent values in the subnormal range, that is, between 0 and the minimum normalized
number. They have lower precision than normalized values (from p — 1 bits to as low
as 1 bit), and require special treatment to be implemented in software and hardware.
Therefore it is not uncommon for hardware manufacturers not to support them, in order
to avoid performance or chip area overheads.

In implementing floating-point operations the result of an operation must be
normalized (if possible) by shifting the significand left or right until it falls within the
interval [2# ~ !, 2? — 1] and adjusting the exponent accordingly. More details can be found
in Muller et al. (2018, Sec. 7.3).

The IEEE 754 standard for floating-point arithmetic provides a somewhat relaxed set of
requirements for reduction operations such as dot product and multi-operand addition
(IEEE, 2019, Sec. 9.4): the order in which the partial sums should be evaluated is not
prescribed, and the use of a higher-precision internal format is allowed. In particular, the
standard does not specify: (1) whether this internal format should be normalized, as it
would be if the multi-operand addition were implemented using IEEE 754 elementary
arithmetic operations, (2) which rounding mode should be used, and (3) when the
rounding should happen. These loose requirements can potentially cause the results
computed with a given multi-operand addition unit to be significantly different from those
obtained using other hardware implementations or a software implementation based on
IEEE 754-compliant elementary arithmetic operations.

With matrix multiplication being ubiquitous in artificial intelligence, accelerators for
mixed-precision matrix multiply-accumulate operations are becoming widely available, as
Table 1 shows. Hardware vendors often design these units focusing on performance rather
than numerical reliability, and this may lead to the implementation of unconventional,
non-IEEE-compliant arithmetics. Some of the hardware units in Table 1, for instance, use
bfloat16, a 16-bit format that allocates 8 bits to the significand (including the implicit bit)
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and 8 bits to the exponent and does not support subnormal numbers (Intel Corporation,
2018; Intel Corporation, 2020). It is worth noting that Volta is the first NVIDIA
microarchitecture supporting tensor cores—the older Pascal GPUs, such as the P100,
which are not reported in Table 1, supported binaryl6 arithmetic but did not include
tensor cores. The NVIDIA Ampere A100 GPUs introduce a new 19-bit format called
TensorFloat-32, which was designed to have the same dynamic range as binary32 (8 bits)
and the same precision as binary16 (11 fraction bits, including the implicit bit) (NVIDIA,
2020b). In order to better understand the differences between the results computed
using different systems, it is necessary to develop techniques to probe the numerical
features of these units.

The situation is reminiscent of that before the widespread adoption of the IEEE
754-1985 standard, when different floating-point arithmetics had different properties.
To address the issue, Kahan (1981) developed a program called paranoia that analyzes
and diagnoses a floating-point arithmetic, which was subsequently translated into C by
Karpinski (1985). We follow a similar route: using idiosyncrasies of floating-point
arithmetic, we design tests to better understand the numerical behavior of tensor cores,
extending the testing approach recently introduced by Hickmann ¢ Bradford (2019). Our
aim is to explore the following questions.

e Are subnormal inputs supported or are they flushed to zero? Can tensor cores produce
subnormal numbers?

o Are the multiplications in (2) exact and the additions performed in binary32 arithmetic,
resulting in four rounding errors for each element of D? In what order are the four
additions in (2) performed?

e What rounding mode is used in (2)?

o Is the result of each floating-point operation in (2) normalized, or do tensor cores only
normalize the final sum? What rounding mode is used for the normalization?

The answers to these questions are of wide interest because these accelerators, despite
being introduced to accelerate the training of deep neural networks (NVIDIA, 2017, p. 12), are
increasingly being used in general-purpose scientific computing, where their fast low
precision arithmetic can be exploited in mixed-precision algorithms (Abdelfattah et al., 2020),
for example in iterative refinement for linear systems (Haidar et al., 2018a, 2018b, 2020).

The results discussed here were produced by running our test suite, which is freely
available on GitHub (https://github.com/mfasi/tensor-cores-numerical-behavior). The file
tc_test_numerics.cu can be compiled following the instructions in the README.md
file, so as to produce an executable that will run all the tests we describe in the following
sections and produce a report. We run the test suite on an NVIDIA Tesla V100 SXM2
16GB GPU (Volta microarchitecture), an NVIDIA Tesla T4 16GB GPU (Turing
microarchitecture), and an NVIDIA Ampere A100-PCIA 40GB GPU. We used version
10.1 of the CUDA library on the machines equipped with the Volta and Turing cards, and
version 11.1 on the machines equipped with the A100 GPU, as GPUs based on the Ampere
microarchitecture require at least version 11 of the CUDA library in order to utilize the
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latest numerical features such as the TensorFloat-32 numerical type. Some graphic cards
designed for intensive graphic processing workloads such as video gaming, computer-
aided design, or computer-generated imagery, also include tensor cores: all the GPUs in
the GeForce 20 and Quadro RTX series are based on the Turing microarchitecture, and
those in the recently announced GeForce 30 series are based on the Ampere
microarchitecture. We do not consider this wealth of different graphic cards here, as our
focus is on the NVIDIA hardware that is present in the supercomputers in the TOP500
list and targets scientific computing applications. We stress, however, that the ideas we
employ are very general and can be exploited to understand the numerical features of any
hardware accelerator based on operations of the form (2).

Finally, we remark that the binary16 arithmetic implemented in the NVIDIA CUDA
cores is not fully IEEE 754 compliant, as round-to-nearest is the only rounding mode
implemented for elementary arithmetic operations (NVIDIA, 2020c)—we use this
observation in “Support for Subnormal Numbers”.

PREVIOUS WORK

From a hardware perspective, instruction-level details, register configuration, and memory
layout of the tensor cores in the NVIDIA Volta (Jia et al., 2018b; Yan, Wang ¢» Chu, 2020)
and Turing (Yan, Wang & Chu, 20205 Jia et al., 2018a) GPUs have been extensively
described. Another study by Basso, Dos Santos ¢ Rech (2020) explores the reliability of
tensor cores in terms of rate of hardware errors in matrix multiplications. The main
finding is that low-precision operations and usage of tensor cores increase the amount of
correct data produced by the GPU, despite increasing the impact of numerical errors due
to the use of lower-precision data. In order to quantify the accuracy of tensor cores,
Blanchard et al. (2020) provide a rounding error analysis of what they call a block fused
multiply-add (FMA), a generalization of the multiply-accumulate operation in (1) in
which the matrix sizes, the precisions of the arguments, and the internal precision of the
accumulator are taken as parameters.

Markidis et al. (2018) discuss various aspects of tensor cores and propose a technique,
called precision refinement, to enhance the accuracy of mixed-precision matrix
multiplication. Improving the accuracy of tensor-core-based matrix multiplications was
turther explored by Mukunoki et al. (2020).

None of the these sources, however, examines to what extent tensor cores conform
to the IEEE 754 standard or investigates how tensor cores compare with a matrix
multiply-accumulate operation based on dot products implemented in software.
Hickmann ¢ Bradford (2019) explore some details of the numerical behavior of tensor
cores with the main goal of inferring the hardware-level design of these units. Our work
follows a similar approach and complements their findings by supplying further insights
into the subject. We show that the additions in (2) are performed starting from the
operand that is largest in magnitude, that at least 2 extra bits are used for carries, and that
(2) may be non-monotonic for certain sets of inputs. Furthermore, we consider the second
and third generation of the tensor cores, which equip the Turing T4 and Ampere A100
GPUs, respectively, and conclude that their internal accumulator has an extra bottom bit
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Table 2 Summary of the subsections of “Results”.

Section

Devices used and description of tests performed on them

NVIDIA Volta Tensor Cores

Support for subnormal numbers

Accuracy of the dot products

Tests performed on the NVIDIA V100 (Volta) GPU

Support for subnormal numbers (on the inputs, outputs and the computation of subnormals from
the normalized inputs)

Accuracy of the inner products performed as part of matrix multiply-accumulate (accuracy of scalar
multiplies, accuracy of addition, and number of rounding errors introduced)

Rounding modes in tensor core computations  Tests for determining what rounding modes are used in the inner products and the final rounding

Features of the accumulator

NVIDIA Turing tensor cores
NVIDIA Ampere tensor cores

Tests that explore the number of extra bits in the alignment step of floating-point addition inside
the inner product (extra bits at the bottom of the internal significand)

A test to find out whether the normalization is performed only at the end or after each addition in
the computation of the inner products

A similar test for the normalization in subtraction

Tests for determining the number of extra bits for carries in floating-point addition (extra bits at the
top of the internal significand)

A test to check the monotonicity of the inner products
All tests from “NVIDIA Volta Tensor Cores” rerun on the NVIDIA T4 (Turing) GPU
All tests from “NVIDIA Volta Tensor Cores” rerun on the NVIDIA A100 (Ampere) GPU

compared with the tensor cores on V100 GPUs. Finally we make our test suite freely
available, in order to guarantee reproducibility and facilitate testing other matrix multiply-
accumulate units, such as the third generation tensor cores in the latest NVIDIA A100
GPUs (NVIDIA, 2020b).

RESULTS

In this section we describe our testing methodology and give the results obtained on the
three NVIDIA graphics cards we considered. Table 2 summarizes the tests we performed
and indicates the subsections in which they are described. Our methodology is to find
test cases that demonstrate specific numerical behaviors and, by making the (quite
reasonable) assumption that the hardware has a consistent behavior across the input space,
conclude that the discovered features should be true for all possible inputs.

NVIDIA Volta tensor cores

Tensor cores can be accessed using the cuBLAS library, or the native hardware assembly
instructions HMMA . 884 (Jia et al., 2018a, 2018b) and HMMA . 1688 (Yan, Wang ¢

Chu, 20205 Jia et al., 2018a). In our experiments, we opted for the warp-level C++ function
wmma : :mma_sync (), which performs a 16 x 16 x 16 matrix multiply-accumulate
operation. This is the lowest level interface to access the tensor cores in the NVIDIA
CUDA programing environment. In order to use only a single tensor core, we set all but
the top left 4 x 4 blocks to 0. We ensure that our experiments do use the tensor cores
by running our test suite with the NVIDIA profiler nvprof, which shows the utilization
levels of different hardware components on the GPU, and by observing that the assembly
code produced by the nvcc compiler contains HMMA instructions. At the software level,
tensor cores can be used in either binaryl6 or binary32 mode, which defines the
number format of D in (1).
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Table 3 Parameters of various floating-point formats: number of digits of precision including the
implicit bit (p), boundary of the exponent range (eyi, and e..,), machine epsilon (¢), and
smallest positive representable normal (fi,;,) and subnormal (s.,;,) numbers. The formats from the
IEEE 754 standard (IEEE, 2019) are binary16, binary32, and binary64.

binary16 bfloat16 TensorFloat-32 binary32 binary64
p 11 8 11 24 53
Crnax 15 127 127 127 1,023
emin ~14 -126 -126 -126 ~1,022
e 510 57 510 523 552
foin 514 5-126 5-126 5-126 51022
S )24 133 5 - 136 o9 51074

The experiments in this section were run on an NVIDIA Tesla V100 SXM2 16GB
(Volta microarchitecture) GPU.

Support for subnormal numbers
We start by investigating the support for subnormal numbers, as this knowledge will
dictate what range of input values we are allowed to use in subsequent tests.

Table 3 compares precision, exponent range, machine epsilon, and magnitude of
smallest representable subnormal and normal number for various floating-point number
formats, including those supported by the three generations of tensor cores. By looking at
the data in the table, we can make two important observations. First, conversion from
binary16 to binary32 does not result in subnormal numbers. Second, the product of two
binaryl6 numbers requires at most 22 bits for the significand, 6 bits for the exponent and
one for the sign, and thus can be represented exactly in binary32.

As for tensor cores, there are multiple questions regarding the support of subnormal
numbers.

1. Can tensor cores take binary16 subnormal numbers as inputs for A and B in (2) without
flushing them to zero, use them in computation, and return binaryl6 or binary32
normal or subnormal results?

2. Can tensor cores take binary32 subnormal numbers as inputs for C in (2) without
flushing them to zero, use them in computation, and return subnormal binary32 results?

3. Can tensor cores compute subnormal numbers from normal numbers and return them?

The first question can easily be addressed by considering (2) and setting a;; = 274,
by, =2° (arbitrarily chosen), and the remaining elements to zero. The tensor cores return
the subnormal result a;; b;; = 2~%* in both binaryl6 and binary32 mode, thereby
answering the first question in the affirmative.

An analogous idea can be used to clarify the second point: setting c;; to the smallest

positive binary32 subnormal 27+ 271

and all the elements of A and B to zero yields d;; =
which confirms that the subnormal number ¢;; is not altered by the dot product in (2).
We note, however, that whether support for binary32 subnormals is needed is

questionable. The absolute value of the smallest nonzero value that can be produced

from the multiplication of two binary16 numbers is 2~*%, thus ¢;, would not contribute to
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the sum if it were a binary32 subnormal: in binary32 arithmetic with round-to-nearest,
one has that 27** + x > 27*® only if x > 27** . 27** = 277, which is normal in binary32.
For the third question, we can obtain subnormal numbers as outputs in several ways.
For instance, we can set a,; to 2~'*, the smallest normal number in binaryl6, and by, to 27,
and confirm that tensor cores return the binaryl6 subnormal 27'° in both binary16 and
binary32 modes. Another possibility is to set a;; = 27" b, =1,and ¢;; = —27"°, which
produces the subnormal binaryl6 number dy; = 27'°. As mentioned above, it is not possible
to obtain subnormal binary32 numbers from binary16 inputs in (2). In summary, these
experiments demonstrate that there is full support for subnormal inputs in tensor cores.
One might wonder whether tensor cores natively support subnormals or some degree of
software interaction is present. The NVIDIA profiler confirms that the experiments
discussed in this section make use of the tensor cores, but we implemented an additional
test to further reinforce the evidence that subnormals are supported in hardware.
In “Rounding Modes in Tensor Core Computations” we show that tensor cores use
round-towards-zero. We can use the fact that CUDA cores provide only round-to-nearest
for binaryl6 computations to show that subnormals are in fact manipulated with tensor
cores. In order to do so, we set a;; and a;, to 1, by; to the binary16 subnormal 273427 by,
to 2 and the other elements of A and B to 0. Since the addition in (2) is done in binary32
arithmetic, the smallest value that can be exactly added to b,; = 2 is 2722 In this case,
byy=2"% +27%* =2.272 will either be round down to 0, if round-towards-zero is being
used, or rounded up to 27%?, if the summation is carried out using the CUDA cores, which
support only round-to-nearest. This computation returned the value 2, meaning that b;;
was rounded down—a further indication that subnormals are natively supported by
tensor cores.

Accuracy of the dot products
Our second goal is to test the accuracy of the dot product (2) with the tensor cores.
The first step is to check that the products of two binary16 values are computed exactly,
which implies that the products must be kept in some wider intermediate format and
accumulated without being rounded back to binaryl16. Specifically we want to test that
ay;biy, for i = 1,..., 4, is computed exactly. This can be achieved by ensuring that the four
multiplications produce floating-point numbers that are not representable in binary16 and
checking that these are preserved and returned as binary32 entries of D.
In order to demonstrate this, we set the first row of A and the first column of B to
1 -27""and ¢;; to 0. The exact value of each partial productis (1 -27"") .- (1-27"")=1-
27'% + 272, which, depending on the rounding mode, would be rounded to either 1 — 27
or 1 — 27'", if the products were stored in binaryl6. As tensor cores produce the exact
binary32 answer d;; =4 - (1 - 27'° + 272%), we conclude that partial products are held exactly.
Another question is whether the precision of the 5-operand addition in (2) changes in
any way when binaryl16 is used to store the elements of the matrices C and D in (1).
The test is to set a;; = by = app =1 — 271, byy = 271, and the remaining elements to 0.
In this test, the first product a;;b;; = 1 — 27'° + 27 requires precision higher than
binary16 to be represented, whereas the second evaluates to a;,b,; = 27"~ 2722 The sum
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of these two products is a,;by; + aby; = 1 — 27'° + 27, which is representable in
binary16 but would not be computed exactly by a binary16 accumulator, since storing the
first product requires higher precision. Indeed we found that tensor cores output the exact
value, confirming that the partial products are still held exactly even when C and D are
in binary16 format.

A third question concerns the number of rounding errors in the 5-operand adder that
accumulates the partial products. The dot product in (2) contains four additions, three
to sum up the exact partial products and a fourth to add the binary32 argument ¢;;.
Our expectation is that the additions are done in binary32 rather than exactly, as indicated
by NVIDIA (2017, 2020a). In order to confirm this, we can set the first row of A to 1,
thereby reducing (2) to

diy = by + by + b3y + by +a, (3)

and then run 5 different cases with one of the addends in (3) set to 1 and the rest set to 27%*,
In this test, an exact addition would return 1 + 27>%, whereas inexact binary32 arithmetic
would cause 4 round-off errors when adding 2% 10 1, causing the number 1 to be
returned. All permutations return d;; = 1, leading to the following conclusions.

o In the worst case each element of D includes four rounding errors, which conforms to
the block FMA model used by Blanchard et al. (2020, Sec. 2.1).

o The partial products in (2) are not accumulated in a fixed order, but always starting from
the largest value in magnitude. This sorting is necessary in order to know which
arguments require to be shifted right in the significand alignment step of a standard
floating-point addition algorithm (Muller et al., 2018, Sec. 7.3), (Tenca, 2009), and is
most likely done in hardware. This is in line with the literature on hardware dot
products (Kim ¢ Kim, 2009; Tao et al., 2013; Sohn & Swartzlander, 2016; Kaul et al.,
2019), where either sorting or a search for the maximum exponent is performed.
Furthermore, this experiment demonstrates that none of the additions are performed
before aligning the significands relative to the largest exponent: if evaluated before
the arguments are shifted right relative to the largest magnitude arguments’
exponent (by having multiple alignment stages), any other sum would evaluate to
2724 4+ 2724 = 2723 4 value that then could be added exactly to the total sum as the least

significand bits would not be lost in the alignment.

In summary, each entry of D in (1) can have up to four rounding errors, and the 5-
operand additions that compute each element are performed starting from the largest
summand in absolute value.

Rounding modes in tensor core computations

If binary32 mode is used, only the four additions in (2) can be subject to rounding errors.
The IEEE 754 standard defines four rounding modes for elementary arithmetic
operations (IEEE, 2019, Sec. 4.3): round-to-nearest with even-on-ties, round-towards-zero,
round-towards-minus-infinity, and round-towards-plus-infinity. In this section we use the
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Figure 1 Demonstration of the possible IEEE 754 rounding modes for different positions of the
exact value x; x; and x, are the two floating-point numbers closest to x, and x,, is the half-way
point between them. The dotted arrows surrounding x show the direction in which various rounding
modes would round it. (A) Negative axis, x on the left of the middle point; (B) positive axis, x on the right
of the middle point; (C) negative axis, x on the right of the middle point; (D) positive axis, x on the left of
the middle point. Full-size K&l DOT: 10.7717/peerj-cs.330/fig-1

notation defined by Muller et al. (2018, Sec. 2.2.1) and denote these four rounding
operators by RN, RZ, RD, and RU, respectively.

As round-to-nearest is the default rounding mode in the IEEE 754 standard, we start
by testing whether this is the rounding mode used by the tensor cores. This can be verified
by setting any two partial products to values such that one of them would be rounded
up only if round-to-nearest or round-towards-plus-infinity were used. If the result is
rounded down we can conclude that the tensor cores implement either round-towards-zero
or round-towards-minus-infinity, but neither round-to-nearest nor round-towards-plus-
infinity (Fig. 1B). One such test is to set in (3) by; = 2, by; = 272 + 27 and the remaining
entries in the first column of B to 0. Note that in binary32 arithmetic RN(2+x) > 2 if
x> 2272 =27 whereas the smallest positive y such that RZ(2+y) > 2is 2 - 27 = 272,
The choice by; = % - 2722 is such that x < by < y, thus RN(by+b,;) = RU(by +by;) =2 + 2722
while RZ(b,1+b,1) = RD(by;+b,1) = 2. Running this experiment on tensor cores returns
c11 = 2, suggesting that either round-towards-zero or round-towards-minus-infinity is used
for the additions in (2).

We can discriminate between these two rounding modes by repeating the same
experiment on the negative semiaxis (Fig. 1 A), which can be achieved by changing the sign
of the nonzero elements in B. This experiment produces ¢;; = —2, and assuming that
the rounding mode does not depend on the input, we conclude that the additions in (2)
are performed in round-towards-zero. We note that this rounding mode is known to be
the cheapest option to implement (Santoro, Bewick ¢» Horowitz, 1989, Sec. 6.1) and is
usually chosen for that reason.

When tensor cores are used in binaryl6 mode, the result computed in the format of
the internal accumulator of the 5-operand adder has to be rounded to binary16 before being
returned. In order to test the rounding mode used by this operation, we set a;; = a;, = 2%,
by, = 27%, by, = 272 and the rest of elements of A and B as well as ¢;; to 0. The exact
result of the dot product in this case is 27>° + 27>, which is not representable in binary16, and
therefore will cause rounding errors in the result. Note that 272 + 272 = 3. 2724, therefore
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RN(Q2 %+27%°) = RU(2 *+27%%) = 272* while RZ(2"**+27%%) = RD(2 +27%°) = 0. The fact
that tensor cores return 2 2* confirms that round-towards-zero is not used, thereby
suggesting that this conversion is performed in software rather than inside the tensor cores,
which use round-towards-zero as we have determined above.

Figures 1C and 1D show how round-towards-minus-infinity and round-towards-plus-
infinity could alternatively be determined by choosing x such that |x| < |x,,|.

Features of the accumulator

We now discuss some tests that allowed to determine various features of the internal
accumulator of the 5-operand adder calculating (2). The quotes from NVIDIA that we
provided in “Introduction” indicate that the internal accumulation is done in binary32
format; here we show that the internal format used by the accumulator has higher
precision and that the partial sums are not normalized.

Extra bits in the alignment of significands

In order to compute the sum of two floating-point values, the floating-point adder matches
the exponents of the two summands by shifting the significand of the number that has
the smaller exponent to the right. In general this operation causes loss of information, as
the least significant bits of the shifted significand are typically discarded, but it is customary
to retain a few of these digits to guard the computation against numerical cancelation

and to obtain correct rounding in round-to-nearest, round-towards-plus-infinity, and
round-towards-minus-infinity. As tensor cores use truncation in the additions, we know that
they do not require any such guard digits for rounding, and we can easily show that in fact
they do not implement guard digits at all. If in (3) we set b;; = 1 and ¢;; = — 1 + 274,
the tensor cores return d,; = 2>, which represents a relative error of 221,

Normalization in addition

When two floating-point values are added, the significand of the result may become
larger than 2 (with m > 2P — 1, where m is an integer significand as in our definitions
in “Introduction”), in which case a normalization step (shifting the significand right by
one place and increasing the exponent by one) is required (Muller et al., 2018, Sec. 7.3).
In an IEEE 754-compliant arithmetic, the result of each partial sum in (2) would be
normalized, as floating-point adders always normalize the result in order to produce a
normalized floating-point number. But tensor cores compute the whole expression (2)
in hardware rather than by means of IEEE 754 elementary arithmetic operations,

and it is natural to ask whether each partial result in (2) is normalized or only the final
answer is. We can verify this by adding values chosen so to produce different results with and

27%* and the elements of the

without normalization of the partial sums. In (3) weset¢;; =1 —
first column of B to 27>%,

Recalling that the values are accumulated on the summand of largest magnitude, we
start by examining what would happen if each partial result were normalized. The exact

value of the partial sum s = ¢;; + 27>* is 1, and the normalization step would shift the
significand by one bit to the right. At this point the three remaining addends would be

smaller than the least significant bit of the partial sum, thus adding them to s separately

Fasi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.330 11/19


http://dx.doi.org/10.7717/peerj-cs.330
https://peerj.com/computer-science/

PeerJ Computer Science

would have no effect with round-towards-zero. If the partial results were not normalized,
on the other hand, the sum of ¢;, and 27** would be held with one extra bit, and the
remaining addends could be added to it. Running this test on tensor cores shows that only
the final result of the dot product is normalized. This has probably been done in order to
simplify the implementation; a similar choice was made for example in the hardware
accelerator for performing vector inner product described by Kim & Kim (2009).

Normalization in subtraction

As the products in (2) can be positive as well as negative, some of the partial sums can
in fact be subtractions. The significand of the difference of two floating-point numbers
may be smaller than 1, in which case the result has to be normalized by shifting the
significand left and decreasing the exponents accordingly until the result becomes a
normal number. We can show that tensor cores do not perform this kind of normalization
as follows. If in (3) we set ¢;; = — 1 + 272%, and two of the elements of the first column
of Bto 1 and —27%*, we have that d;; evaluates to 0 if the partial sums are normalized.
Instead, running this experiment on tensor cores yields d;; = 27>, which can be explained
as follows. When the sum is evaluated as (1 + ¢;;) — 27>%, then the lack of guard digit
implies that 1 + ¢;; evaluates to 27*%, and if the partial results were normalized the tensor
cores would return 27>* — 27%*, which can be represented exactly in binary32 format’s
272 4 1) + ¢, the first sum
would return 1 due to the lack of guard digit, and the lack of normalization would not

precision. If, on the other hand, the sum were evaluated as (-

have any effect in this case. We can conclude that the result of the subtraction is not
normalized, as long as we assume that the summands in (3) are accumulated on the largest
in magnitude in a fixed order.

Extra bits for carry out

Another question concerns the number of extra bits required due to lack of normalization.
If only the final result is normalized, then accumulating k addends requires [log,k|

bits for the carry-out bits (Ercegovac ¢ Lang, 2004, Sec. 3.1), and the hardware for
accumulating the 5 values in (2) would internally require [log,5| = 3 extra carry-out bits at
the top of the significand. We can prove that the internal accumulator of the 5-operand
adder in tensor cores has at least two extra bits as follows. In (3) we take ¢;; = 1 + 272 +
277, which sets the two least significant bits of the significand to 1, and assign to the
first column of B a permutation of the values 1, 1, 1, and 2723 'We consider all four possible
permutations of these values in the first column of B, as we assume that the addends apart
from the largest in magnitude are not sorted. The main idea is to show that if 1 is added
to ¢, three times, then the last two bits of ¢;; are not dropped as they would be if the
accumulation were performed using IEEE 754 floating-point arithmetic, as the significand
of ¢;1 + 3 > 4 would have to be shifted by two places to the right in order to be normalized.
Then, when 277’ is added at the end, the carry propagates into the third bit from the
bottom and therefore is not lost in the final normalization step. If there are 2 extra bits,
then all the four possible orderings of the first column of B will return the exact result 4 +
27>, Running these tests on tensor cores, we found that all four combinations returned the
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exact result, thereby proving that the significand of the internal accumulator has at least 2
extra bits for carries.

This technique cannot be used to incontrovertibly show that the 5-operand adder has a
third extra bit for carries. On the one hand, all inputs to the multi-operand adder
must have the most significant bit of the fraction (the implicit bit) set to 1, in order to
produce carry that requires all three extra bits, on the other, the result of one of the four
products of the form a; by, in (2) must have the least significant bit of the fraction set to 1.
As the product of two binaryl6 numbers can have at most 22 significant digits, no
combination of input can produce a partial product with the required characteristics.

It is possible, however, to show the presence of the third bit if we assume that the
alignment of the significand is always performed so that the most significant bit of
the largest summand in the 5-operand adder occupies the left-most position. Since
we know that there are two extra bits and no normalization, we can show that there is
also a third bit by showing that there is no overflow when each of the four additions in (3)
causes carry out.

We can set, for example, ¢;; =1+ 27 + 272+ 272, by =1, byy =1+2 by =1+271 +
2% and by; =1+ 271 + 272 + 277 and observe that the tensor core returns d;; = 8.

If only two extra bits were present, on the other hand, overflow would occur and the adder
would incorrectly return d;; = 0. In summary, we can conclude that the internal significand of
the tensor cores is most likely 27 bits wide in Volta cards and 28 bits wide in Turing

and Ampere cards (see “NVIDIA Turing tensor cores” and “NVIDIA Ampere tensor cores”).

It is worth noting at this point that if (1) there is no normalization, (2) the additions
in (2) start with the largest value in magnitude, and (3) all of the significands of the
addends are shifted right relative to the exponent of the largest value in magnitude, then
the order in which the remaining addends are accumulated will not impact the final result.

In the test case above, by replacing one of the 27>° by 1 we can also confirm, using the
methods developed in “Rounding Modes in Tensor Core Computations”, that the
rounding mode in the final normalization step (internal accumulator conversion to
binary32 answer) is round-towards-zero.

Monotonicity of dot product

The observation in the previous section raises one final question regarding the monotonicity
of the sums in (2). The accumulation is monotonic if in floating-point arithmetic the sum x;
+ ++ + x,, is no larger than y; + - + v, if x; < y; forall 1 <i < n.

We can show that the lack of normalization causes the dot product in tensor cores—and
most likely in any other similar architectures in which partial sums are not normalized
(Kim ¢ Kim, 2009; Tao et al., 2013; Sohn & Swartzlander, 2016; Kaul et al., 2019)—to
behave non-monotonically. Let us consider (3) and set all the elements in the first column
of Bto 27** and then ¢;; to 1 — 27** and 1 in turn. When ¢;; = 1 — 27, the difference
in exponents guarantees that the values in B are large enough to be added to c¢;;.

This causes the result to become larger than 1, requiring a normalization that returns
1-2"2*+3.272*=1+272, On the other hand, when ¢11 = 1, none of the summands in (3)

is large enough to be added to ¢y, as the elements in the first column of B are all zeroed out
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during the significand alignment step of each addition. This happens because the exponent
of 1 is larger than that of 1 — 27°* In summary we have

dy=cn+27 #4272 4272 427 =142 wheney =1-27%,
dy=cn+27 4274272 27 =1 whenc, = 1.

These two sets of inputs demonstrate that tensor cores can produce non-monotonic
behavior.

NVIDIA Turing tensor cores

NVIDIA Turing T4 GPUs are equipped with the second generation of tensor cores, which

adds an integer matrix multiply-accumulate operation. It is not documented whether

the binary16/binary32 tensor core arithmetic in Turing chips differs from that in Volta

cards, therefore it is of interest to run the test suite we designed on one of the Turing cards.
We ran all the above experiments on an NVIDIA Tesla T4 16GB (Turing

microarchitecture) GPU, and noticed that some of the results were different from

those obtained on a V100 GPU. We found that this is due to the presence of an additional

extra bit of precision at the bottom of the significand of the internal accumulator of

the 5-operand adder. This has an impact over several of the tests above: the operation 1 + 27>*

+ 27, for example, can now be performed exactly because of the presence of the extra bit.

The results obtained on the V100 GPU can be replicated by means of a suitable change

of the constants that are chosen depending on the number of extra bits in the accumulator.

For instance, in the test for the order of operations in “Accuracy of the Dot Products”,

the constant 27>* should be replaced by 27>°, which is the value of the next bit to the right.

Using this approach, we found that all the conclusions we drew about the tensor cores

in V100 GPUs remain valid for the second version of tensor cores in the T4 GPUs, with the

only exception of the extra bit at the bottom of the internal storage of the 5-operand adder.
If we denote the fixed-point format with I integer bits and F fraction bits by {LF}, the

significand of the internal format of the 5-operand adder of a V100 GPU has format {3.23}

(or {4.23} if 3 extra bits for carries are present as discussed in “Features of the Accumulator”),

whereas that of a T4 GPU has format {3.24} (or {4.24}). The final normalization and

rounding produce a number whose significand has format {1.23}, which is the format of the

significand of a binary32 floating-point number.

NVIDIA Ampere tensor cores

As shown in Table 1, the Ampere microarchitecture offers four different variants of
tensor core operations (input/output format): binary16/binary32, bfloat16/binary32,
TensorFloat-32/binary32, and binary64/binary64. In this section we summarize, for each
of these four configurations, the results obtained by running our test suite on the A100
GPUs. We refer to the 4-element dot product in (2), even though some of the tensor core
operations available on A100 GPUs use input vectors of dimension two or eight, as can
be seen in Table 1. In our tests we only use the first few elements of each input vector, so
(2) is relevant even when dealing with operations that would require some of the input
vectors to have eight elements, as we tacitly assume that all the remaining entries are set to 0.
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In binary16/binary32 mode, we found no differences between the Ampere and Turing
tensor cores, as all the tests in our suite produce the same results on the two GPUs.
Therefore we moved to the other three modes, which are new as they were introduced with
the NVIDIA Ampere architecture.

We started by adapting our test suite to the bfloat16/binary32 mode. The main
difference in this configuration is that the subnormals in bfloat16 are a subset of the
subnormals in binary32, whereas all binaryl6 subnormals were normalized values in
binary32. For this reason, in binary16/binary32 mode, we could only observe that binary32
subnormals in the input are preserved in the output. In this mode, however, binary32
subnormal outputs may in principle be produced during the computation from normal
inputs, and we can verify that this is indeed the case with the following experiment. If in (2)
we set a;; = 2725, by, = 27! (normalized bfloat16 values), and the remaining coefficients
to zero, the tensor cores correctly produce the subnormal binary32 result d;; = 27'%.
To summarize, this precision configuration presents the same numerical behavior as the
binary16/binary32 configuration in the T4 GPU tensor cores, and an additional test
for subnormals confirmed full support for bfloat16 subnormal input and binary32
subnormal output.

Next we looked at the A100 with tensor cores configured in TensorFloat-32/binary32
mode. TensorFloat-32 can represent more subnormal values than bfloat16 due to extra 3 bits
in the significand (Table 3), and this was taken into account in our tests. The rest of the
test suite was run with the same input used for the binary16/binary32 configuration, since
the significands are of the same width, and produced the same results. Our conclusion is that
the TensorFloat-32/binary32 mode exhibits the same features as the binary16/binary32
configuration in the T4 GPU.

The last configuration of the Ampere tensor cores is binary64/binary64. We found that
the numerical behavior of this mode differs significantly from that of the other three
configurations that are available on these graphic cards. In the multi-operand addition in
(2), in particular, we observed that round-to-nearest with ties to even is used, and that the
normalization is performed after each addition rather than only once at the end of the
computation. As the result of each addition is normalized, no extra bits for carries are
required, and the monotonicity issue discussed in “Features of the accumulator” does not
occur for this rounding mode. We also note that since accumulation is performed in
binary64, there would be no advantage in holding the binary64 products exactly.
Moreover, the additions in (2) are not always performed starting from the largest addend,
as was the case with the other modes. In summary, our results suggest that in binary64/
binary64 mode the Ampere tensor cores have the same numerical features that a matrix
multiply-accumulate operation implemented using IEEE 754-compliant arithmetic
operations would have.

CONCLUSIONS

Our experiments indicate that the tensor cores in the NVIDIA V100 architecture have the
following numerical features. The first two of these (except the rounding mode for the
second one) are stated in the NVIDIA documentation and are confirmed by our
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experiments, while the rest are not documented by NVIDIA and have been revealed by our
tests.

1. The binary16 products in (2) are computed exactly, and the results are kept in full
precision and not rounded to binary16 after the multiplication.

. The additions in (2) are performed using binary32 arithmetic with round-towards-zero.
. Subnormal numbers in binaryl6 and binary32 are supported.

. The five summands in (2) are accumulated starting with the largest in absolute value.

G = LN

. Only the final result of (2) is normalized; the partial sums are not, and the accumulator
has an internal significand that is 27 bits wide to accommodate for carries of the
5-term addition.

6. The dot products in tensor cores are non-monotonic: in some cases, increasing the
magnitude of the inputs to (2) reduces the magnitude of the final result, when the
summands in (2) are all nonnegative or all nonpositive,

The same properties were found in the second generation tensor cores which equip the
NVIDIA T4 GPUs, the main difference being one extra bit of precision in the significand of
the internal accumulator of the binary32 5-operand adder. In the third generation of
tensor cores, available on the NVIDIA A100 GPUs, all features were the same as in the T4,
with the exception of the binary64/binary64 tensor cores, which we found are implemented
to behave as if implemented in IEEE 754-compliant arithmetic.

The test suite that we have developed as part of this work can be used to test various
properties of the floating-point arithmetic of future versions of tensor cores as well as
similar accelerators. We aim to keep extending our test suite by adding new test cases for
standard non-mixed-precision binary32 or binary64 dot product or matrix multiply units,
as well as for integer arithmetic. The NVIDIA Turing and Ampere tensor cores, for
instance, added support for 4- and 8-bit integer modes (NVIDIA, 2018, 2020b), and
rounding issues become relevant when these are used to implement fixed-point arithmetic.
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