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Abstract

Disease surveillance systems are a cornerstone of public health tracking and prevention. This 

review addresses the use, promise, perils, and ethics of social media and internet-based data 

collection for public health surveillance. Our review highlights untapped opportunities for 

integrating digital surveillance in public health, and current applications that could be improved 

through better integration, validation and clarity on rules surrounding ethical considerations. 

Promising developments include hybrid systems that couple traditional surveillance data with data 

from search queries, social media posts, and crowdsourcing. In the future, it will be important to 

identify opportunities for public and private partnerships, train public health experts in data 

science, reduce biases related to digital data (gathered from internet use, wearable devices, etc.), 

and address privacy. We are on the precipice of an unprecedented opportunity to track, predict, and 

prevent global disease burdens in the population using digital data.
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INTRODUCTION

Disease surveillance in the community setting is a cornerstone of public health tracking and 

prevention. The World Health Organization defines public health surveillance as “the 

continuous, systematic collection, analysis, and interpretation of health-related data needed 

for the planning, implementation, and evaluation of public health practice”(4). Public health 

surveillance acts as a sentinel for identifying trends in disease and emerging public health 

concerns and can help to identify potential points of intervention. Furthermore, surveillance 

data can provide benchmarks for evaluating intervention measures for curbing disease 

spread in populations and allow health experts set priorities and policies.

Surveillance has undergone numerous changes over the years (26) and will likely continue to 

evolve. Recent changes in disease surveillance systems are a result of technological 
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advances for data collection related to access to the internet and improved computational 

power. Digital disease surveillance can be defined as the use of internet-based data in the 

explicit development or application of systems aimed at nowcasting or forecasting of disease 

incidence or prevalence (78). In recent years, internet-based search tools and social media 

have created exciting new prospects for expanding disease surveillance by capturing real 

time data and trends for health outcomes. Figure 1 highlights some of the key developments 

related to digital public health surveillance, including the introduction of Google Flu Trends.

Data collected via the internet and social-media sites has been typically used as a 

complementary source of surveillance data for existing outpatient, hospital, and laboratory-

based systems. This complement can be extremely useful due to traditional surveillance 

systems reliance on individuals seeking care, and therefore underestimate the total disease 

burden from a lack of representativeness (105). One example of the complementary 

approach is the inclusion of electronic health records and historical influenza like illness 

data in models built on Google search terms, which increased accuracy over Google search 

trend data alone (119; 120).

However, some digital surveillance arises solely from digital data without necessarily 

complementing traditional public health surveillance systems. For example, Google searches 

for “diarrhea”, “food poisoning” and other related terms were shown to coincide 

independently with a peanut butter associated outbreak of Salmonella enterica (19). While 

this example of digital data surveillance was never directly integrated with traditional 

passive public health surveillance, it is possible to link these types of data with traditional 

food-borne illness surveillance data. Examples where the link with traditional public health 

surveillance is less clear, but may still provide important public health surveillance 

information, include the internet collection of data on public attitudes towards vaccination 

(93), health behaviors such as tracking diet success (43), and smoking cessation (10).

Digital surveillance has been conducted for multiple health events using various sources of 

search query data, including dengue virus incidence using Google search queries (8), queries 

from Baidu (a large Chinese search engine similar to Google) (67), and vaccine effectiveness 

using Google search queries.(98) Online restaurant reservation and review logs have been 

used to identify foodborne disease and influenza like illness outbreaks (54; 75). While there 

are a variety of new applications in digital public health surveillance, the most utilized has 

been within the area of influenza surveillance and tracking.

There are several digital surveillance systems that have been used for influenza, including 

Google Flu Trends, Influenzanet, and FluNearYou. These systems broadly aim to provide 

timely reports of influenza incidence in local areas (24; 29; 102). While these influenza 

examples and other digital health surveillance demonstrate promise for expanding 

surveillance through digital means, there are also some key trade-offs, such as concerns 

related to accuracy, privacy and navigating public/private partnerships for connecting 

technology companies with government surveillance efforts.

This review will address the use, promise, potential perils, and ethics of the use of social 

media and internet-based data collection for public health surveillance. Within this review, 
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we present a range of examples with a larger focus on influenza, given the high utility of 

surveillance for this critical public health concern. We also discuss next steps and potential 

for future application of surveillance through digital sources.

DIGITAL HEALTH SURVEILLANCE

Public health surveillance is the “systematic and continuous collection, analysis, and 

interpretation of data, closely integrated with the timely and coherent dissemination of the 

results and assessment to those who have the right to know so that action can be taken” (82). 

Digital public health surveillance, which we will refer to as digital surveillance hereafter, is 

the inclusion of digital data, particularly from social media or other internet-based sources, 

for this same purpose. Others have further distinguished digital surveillance as data collected 

outside the public health system (90). Moreover, digital health surveillance data is often 

linked to a non-health data source (e.g. pulling health data from a twitter user who posts on a 

range of topics which may also include mentions of their health related information), unlike 

more traditional public health surveillance systems.

Since the early 1990s, digital health surveillance has evolved closely in tandem with the 

internet itself. Early systems such as ProMED mail, an expert-moderated list of email 

messages related to the spread of emerging infectious diseases, helped galvanize interest in 

the internet-based public health through the promise of early widespread outbreak 

notification (69). Beginning in the early 2000s, digital surveillance efforts have largely 

encompassed three major types of web-based activity: 1) aggregate trends derived from 

searches (e.g. Google search trends, Wikipedia page views), 2) social media postings (e.g. 

Facebook posts, tweets), and 3) participatory surveillance efforts (e.g. FluNearYou, 

Influenzanet). It is important to note that each of these use activities rely on differing online 

interactions for input. Some require individuals to be actively seeking health information 

online, thereby providing relevant public health surveillance data indirectly. Conversely, 

individuals may opt, passively or purposefully, to share health-relevant information on social 

media for a variety of reasons. Distinguishing between these different data types of 

interaction with digital sources of surveillance data, may be important because active versus 

passive information provides different levels of confidence in the specificity of the data - i.e., 

there are many reasons to visit the Wikipedia page on influenza, but a tweet describing one’s 

symptoms may be a more accurate reflection of actual illness. Additionally, the population 

captured by these approaches likely differs, as certain types of individuals may be more 

likely to engage in providing participatory data on their health or tweet about symptoms to 

get input about their health from others, versus a simple query to search the web about 

symptoms or a disease.

Digital data has primarily been processed to either “forecast” or “nowcast” infectious 

disease outbreaks. Nowcasting is short-term prediction that attempts to track the present 

state of incidence in near real-time, whereas forecasting aims to predict the future. The way 

in which the data are prepared for these purposes often requires substantial pre-processing of 

raw data. To use aggregate trend data from searches, data need to be filtered by keywords 

that correspond with disease incidence. The selection of search terms to build these 

prediction algorithms requires careful consideration, since the choice of words can have a 
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significant impact on the accuracy of the surveillance predictions (31). With social media 

data, natural language processing and image analysis applied to posts may be used to further 

extract features of users posts. Due to the volume and types of data in digital sources, 

surveillance projects often utilize machine learning algorithms (8; 85; 89). Machine learning 

is a broad term that refers to approaches that adapt to patterns in data without explicitly 

programming of the prediction task (74). Some examples of algorithms include decision 

trees, neural networks, and support vector machines. Digital surveillance systems generally 

use supervised learning, where data patterns are compared to a user-specified outcome. 

Supervised machine learning has seen success in with problems of prediction, particularly 

with image analysis, including classification of skin lesions (40), identification of early 

indicators of breast cancer (111), and detection of diabetic retinopathy (51). However, more 

data with more advanced prediction algorithms does not necessarily imply improvements to 

prediction (28). Merely the use of digital surveillance and associated tools, like machine 

learning, do not necessarily mean these systems will be better than traditional surveillance 

(72).

Examples of Digital Surveillance.

There are many ways in which digital surveillance can be used to monitor trends and detect 

disease outbreaks, including through enhancing other data sources, identifying geographic 

spread, and optimizing existing surveillance systems. An example of digital surveillance 

being used to enhance other data sources is the incorporation of Google data as a “virtual 

provider” to enhance accuracy of an existing influenza like illness surveillance system based 

on a network of outpatient providers (97), using tweets to identify restaurants potentially 

responsible for food borne infections and subsequently target inspections (53), and using 

Google to nowcast a plague outbreak in Madagascar, ground-truthed against healthcare-

based statistics.(16) Digital data has also been used to identify geographical spread of 

infectious diseases; in particular Twitter geolocation data has been used along with air traffic 

data to track the spread of Chikungunya virus,(86) and incorporated into mechanistic models 

of the flu to forecast peak time and intensity.(123) Further, digital data has optimized 

traditional surveillance through various means. For influenza surveillance, digital data has 

been directly integrated with existing surveillance systems on influenza-like illness (1; 6; 

97). Possible cases of foodborne illness have been identified through tweets with natural 

language processing and users were provided information on how to report foodborne 

illnesses (52; 53). Lastly, digital data has also aided identification of foodborne outbreak 

point sources through tweets (53), Google search and location logs (89), and Yelp reviews 

(76). Other examples of digital data use for surveillance abound, including mosquito-borne 

infectious diseases (8; 24; 25; 86; 113), foodborne infectious diseases (35; 52; 76; 89), and 

attitudes/behaviors, including those related to vaccination (10; 43).

Search Query Examples.

The most prominent examples of digital surveillance have been related to efforts for tracking 

influenza, where initial strategies focused on search query data. An early example of this 

approach was demonstrating the correlation between Google ad click rates and influenza 

incidence in Canada (41), and Yahoo search trends correlation with influenza incidence (81). 

Inspired by these approaches, Google Flu Trends was a publicly-available platform 
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communicating predicted influenza incidence from a model based on Google search query 

volumes. CDC’s weekly influenza-likeillness reports typically contain 1–2 week lag (17), so 

the goal of Google Flu Trends was to predict influenza approximately 1 week ahead of 

CDC. Google Flu Trends used a linear regression model of 45 unique search queries highly 

correlated with the influenza time series, manually pruned for feature relevance (e.g., terms 

related to basketball, which seasonally correlate with flu, were manually removed) (47). 

After Google Flu Trends’s release in 2008, it was found to highly correlate with traditional 

surveillancesystems in several countries and reliably predict influenza-like illness incidence 

one to two weeks in advance for the 2007–2008 and 2008–2009 seasons (47; 61; 115). 

However, failure to detect the 2009 A/H1N1 pandemic led to an initial update to the model 

fit that correctly predicted the pandemic in retrospect (31). Despite the update, both the 

original and the updated Google Flu Trends vastly overestimated the peak intensity for the 

2012–2013 influenza season (77). Ultimately these failures led to the removal of the public 

facing site (although Google still makes its Google Flu Trends data available to researchers 

who request it directly (2)). Current efforts to predict infectious diseases using Google 

typically rely on aggregate search volume data available through Google Trends (time series 

of relative volumes of specific search terms) and Google Correlate (correlations in Google 

Trends for different terms, and comparative Google Trends between US states).

Another example in the influenza digital surveillance field was CDC’s “Forecast the 

Influenza Season Collaborative Challenge” (a.k.a. FluSight), an annual competition in which 

teams of researchers compete to develop the most accurate weekly regional-level influenza-

like illness predictions, with a requirement that teams use some form of digital data - 

whether it is search query, social media, or other internet-based data (6; 12). Teams were 

also allowed to incorporate traditional data sources for influenza surveillance, such as 

ILINet, which provides data on outpatient reports of influenza-like illness rates in a timely 

manner (17) This effort spurred broad interest in influenza modeling using digital data, with 

more teams competing every year (12; 13; 71). A major contribution of the FluSight 

competition has been the development of useful targets for prediction; in the first season 

these were timing of season onset, peak week, peak intensity, and duration (12). Compared 

to purely statistical targets such as correlation or mean squared error with the observed 

trend, which are frequently used (27; 118), these targets provide information about the 

public health impact of a given model.(12; 27). A detailed summary of the performance of 

different FluSight predictive approaches was recently published (85). Performance of 

algorithms was assessed by onset of the influenza season, peak of the influenza season, and 

forecast incidence at 1-, 2-, 3-, and 4-weeks in advance. All models were compared to the 

predictions based on the historical average of past seasons. Most models outperformed the 

historical average approach. As theory regarding ensemble approaches would suggest (36; 

106), an ensemble of all submitted FluSight models outperformed each of the individual 

models (85). Similar competitions to FluSight have since been developed for other diseases, 

such as dengue (21), chikungunya (33) and Ebola (109).

Social Media Examples.

In addition to search queries, social media data have formed a vital part of digital 

surveillance efforts, with Twitter being a highly used platform. This is facilitated by 
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Twitter’s relatively open data policy, allowing public access to a 1% random sample of raw 

tweets (3). For this reason, Twitter has bec ome a “model organism” for digital research data 

(104). Six of nine teams in the first season of FluSight used Twitter alone or in addition to 

other digital sources.(12) The most typical use of Twitter data involves content 

identification, either through keyword search or natural language processing, to identify 

tweets related to health conditions, such as the flu. Epidemic levels are then modeled as a 

function of tweet frequencies.(87) However, an additional benefit of Twitter data is the 

availability of geolocated tweets, which can be used to model disease spread as a function of 

human geographic movement, potentially offering greater accuracy (86). While Twitter is by 

far the most frequently used platform in digital surveillance, many others have been used as 

well. For example, Facebook “like” patterns have been shown to correlatestrongly with a 

wide range of health conditions and behaviors (48), and Instagram timelines have been used 

to identify adverse drug reactions (32).

Crowd Sourced Data.

Besides social media and search query data, large-scale, crowd-sourced participatory 

surveillance systems such as Flu Near You (102) and Influenzanet (63) represent major 

innovations in the digital sphere. These systems recruit users through online and traditional 

media to participate in repeated web-based surveys including detailed symptom reports, and 

report on observed disease distribution through online maps and newsletters (116). For 

example, Influenzanet was established in 2009 and includes 10 European countries 

(although it was built on the Dutch and Belgian platform, de Grote Griepmeting, launched in 

2003–2004) (50). The standardized web survey in Influenzanet collects detailed flu 

symptom data chosen to allow multiple influenza-like illness case definitions adopted by 

different European health agencies. FluNearYou is a similar system in the United States 

(102), and Dengue-na Web extended this model to monitoring dengue in Salvador de Bahia, 

Brazil (116). In addition to providing prevalence estimates based on standardized case 

definitions, a major advantage of participatory surveillance systems is that they provide 

individual-level demographic and risk factor data, allowing investigators to define the 

variables of interest and ultimately address research questions of interest (23; 38). Over 

traditional surveillance systems, clear advantages of these crow sourced approaches, include 

lower cost and greater flexibility, as they allow integration of additional questions and 

varying case definitions.(50)

Hybrid Digital/Traditional public health data.

Given the complicated biases present in internet and social media data (covered below), 

digital data are often best used to supplement rather than replace non-digital public health 

surveillance data sources. Indeed, the greatest potential use for digital data has been 

described as the development of hybrid systems (65; 101; 115). Outside of the FluSight 

competition (12), a few authors have attempted to formally integrate web-based surveillance 

with more traditional sources. Santillana et al. (95) combined Google, Twitter, and 

FluNearYou data with influenza-like illness percentages from a private healthcare insurer, 

showing improvement over Google Flu Trends in terms of root mean square error and 

forecasting horizon (4-weeks), but do not report on more public health-relevant performance 

metrics (e.g., start week, peak week, peak percentage, and duration). Incorporation of 
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humidity (a known weather-related determinant of influenza transmission) data with Google 

Flu Trends data into mechanistic models has shown promising results (60; 99; 100). Other 

sources of “big data” can complement as well. Cloud-based electronic health record data is 

increasingly available in near real-time; a study combining electronic health record 

influenza-like illness estimates with Google search data reduced the root mean squared error 

of predicting the flu intensity 4 weeks in advance of the CDC relative to HealthMap (119). 

Another example is the use of air travel volume data combined with Twitter geolocation data 

to predict the spread of Chikungunya virus(86).

VALIDITY AND BIASES OF SOCIAL MEDIA AND INTERNET DATA

Two key distinctions for digital surveillance with regards to bias are that (a) digital data are 

not owned by the public, and (b) except for participatory surveillance, the data are capturing 

public awareness rather than actual occurrence of disease. An early example of these issues 

is the inaccurate predictions by Google Flu Trends that sparked criticism from researchers 

and led to the removal of the publicly available Google Flu Trends site in 2015 (2). Google 

Flu Trends was unable to detect the influenza A/H1N1 pandemic in 2009, and greatly 

overestimated the peak intensity of the 2012–2013 season (77). Proposed explanations for 

divergent predictions include changes in search behaviors over time - since the 2009 H1N1 

pandemic occurred in the spring / summer, the terms used in influenza-related internet 

searches may have deviated from the terms more commonly used in the winter (31). For the 

2012–2013 season, media coverage is believed to have caused exaggerated public awareness 

of influenza, leading to a higher volume of searches and inflating predictions (22). The 

inaccurate predictions by Google Flu Trends in multiple seasons raised awareness of 

potential biases inherent in digital surveillance (65), including changes to search algorithms 

(stability), non-independence of data sources (posting and searching can be influenced by 

others), confounding (of search terms), representativeness (access to internet), and lack of 

case validation (no clinical ascertainment). We highlight each of these potential sources of 

bias and present some ideas for mitigating them.

Stability of Digital Data Sources.

Search engine companies make frequent changes to query algorithms without notifying the 

public. An almost automatic result of this is that predictive models degrade in accuracy over 

time. Therefore, relying on these sets of data over time can lead to a bias, referred to as 

“concept drift” (114). Forecasting is especially challenging - across multiple infectious 

diseases, prediction accuracy degrades rapidly with forecast horizon, typically only 

extending reasonably to 2–4 weeks (110). Models with excellent nowcasting skill can have 

zero forecasting value (83), since digital data may only indicate public awareness and 

coincide with outbreak peaks (86). However, even with nowcasting, degradation is 

cumulative. Priedhorsky et al. (83) found that an influenza model trained on Wikipedia 

traffic showed “staleness” after four months, meaning models were no longer effective and 

needed to be retrained. This problem was largely unaided by adding more data over a longer 

period. Such “staleness” does not just cause noisy predictions but can create erroneous 

spikes.(83) Further, a website can be deactivated at any time or change owners and therefore, 

the persistence of data is not guaranteed. The concerns related to disappearing or changing 
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data on websites, and algorithm changes, makes the process of replication of digital 

surveillance highly tenuous.

Non-Independent Digital Data.

Internet data are fundamentally non-independent and contain self-perpetuating feedback 

loops of multiple kinds. When predictors are trained on such data, their sensitivity/

specificity and predictive values can be expected to change over time, leading to erroneous 

conclusions. Recommendation systems generate suggestions based in part on the popularity 

of a particular search term, creating dependence between observations. In social media, 

“trending” topics are self-perpetuating and can be manipulated (104). Media attention on an 

epidemic causes spikes in topic frequency not related to disease rates. For instance, CDC 

conducted a press conference in April of 2013 regarding the H7N9 “bird flu” pandemic, 

which led to a spike in flu-related tweets not corresponding to incidence.(18)

Digital Search Confounding.

Confounding of search terms is also present in correlation-based feature selection, 

particularly when relying on simple terms without sophisticated filtering. For example, terms 

related to basketball correlate strongly with influenza due to seasonal overlap (47; 83), and 

Google trends for the word “cholera” revealed a cholera “epidemic” in the US in 2007 

related to Oprah Winfrey selecting Love in the Time of Cholera for her book of the month 

club (101). Prediction accuracy has also been observed to drop off precipitously during 

holidays (121). These examples illustrate the necessity of semantic filtering, which was 

performed by hand in the initial Google Flu Trends algorithm (47), but is possible to 

automate the process (83). Related to confounding, there may be social desirability biases 

related to the use of certain search terms. If individuals are concerned that their searches are 

being tracked or can be identified through their computer searches, they may be less likely to 

use terms that relate to certain diseases and conditions that may be stigmatized. This bias 

may reduce the accuracy of digital data surveillance for certain conditions.

Digital Representativeness.

Representativeness is a key characteristic of an ideal surveillance system. Well-known 

sampling biases exist in internet and social media use. Heavily discussed is the so-called 

“digital divide” – the fact that socioeconomic inequality exists in internet access and usage 

(37), and that internet access is substantially less dense in developing countries (49). While 

roughly 22% of the US adult population uses Twitter, there is overrepresentation of 

individuals of higher SES, ages 30–44, and those living in urban areas (80), reflecting a 

notable underrepresentation of groups at highest risk for infectious disease morbidity and 

mortality. Participatory surveillance systems, though they may mitigate the confounding and 

non-independence discussed above, suffer similar representativeness issues, with individuals 

needing to sign up and manually provide their information. For example, Influenzanet shows 

underrepresentation of males and the youngest and oldest age groups, as well as a higher 

influenza vaccination rate among older participants compared to the same age group in the 

target population (50). As expected, the population participating in Influenzanet may be 

healthier and more advantaged, showing lower prevalence of asthma and diabetes and higher 

income and education, which are predictors of lower influenza risk (63). To our knowledge, 
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no study has specifically aimed to explore the effect of underrepresentation of those most 

susceptible to flu, the very young and old, on population-level flu estimates based on 

internet data. One promise of big data is the potential for highly granular predictions in 

terms of geography; hence, some Twitter-based studies rely on geolocation data. However, 

geolocation of tweets is turned off by default, with roughly 1–2% of users turning it on, 

likely introducing additional sampling biases (66). In particular, geolocation users have 

measurable differences in language use and are more likely to be men over 40 (79). To our 

knowledge, no investigation has examined the relationship between use of geolocation tags 

and disease, but it might reasonably correlate negatively with influenza risk (particularly by 

age) and with HIV risk behaviors, many of which are stigmatized or illegal (103).

Digital Validation.

Much of traditional public health surveillance relies on validation through clinical case 

ascertainment, which is not possible with digital surveillance (perhaps except in cases where 

participatory surveillance is required). To properly evaluate the performance of digital 

surveillance, appropriate evaluation metrics are needed. A suitable comparator data source 

for the surveillance system must be chosen, since prediction will also replicate any biases 

present in the ground truth data. Using influenza as an example, diagnosed case reports 

(which are used in most studies of the flu) underestimate prevalence, especially among 

persons with lower access to regular health care. CDC influenza-like illness percentages are 

the most common ground truth data used for the digital flu surveillance; these are based on 

weekly reports from approximately 2,200 outpatient providers throughout the US reflecting 

the total number of patients meeting the CDC’s syndromic case definition (7). Because some 

providers may exhibit delays in case reporting, influenza-like illness reports are often 

revised weeks or months after their initial release, which has been shown to negatively 

impact forecasting ability (85). Also, influenza-like illness reports reflect incidence in the 

general population, which may not accurately reflect the impact of the flu on those who are 

most physiologically vulnerable, such as the very young and old. In order to better capture 

such impacts, digital surveillance efforts should also consider incorporating other routine 

indicators, such as age-stratified influenza-like illness, and influenza-related hospitalization 

and mortality (14; 60).

Possible solutions to biases.

There are several potential solutions to the biases described above. Addressing both concept 

drift and non-independence have been explored previously. Concept drift and resulting 

model staleness can likely be addressed by including a plan to dynamically retrain models to 

account for always-changing online behavior and disease dynamics. For example, Santillana 

et al. (96) were able to dramatically improve Google Flu Trends’s accuracy by automatically 

updating the model when weekly CDC estimates were released, highlighting that language 

used in searches changes over time and so should independent contributions of search terms 

used to estimate flu trends. Future work could examine precisely how frequently models 

need to be recalibrated.

Non-independence of data is a more challenging problem, since self-perpetuating public 

awareness potentially impacts all forms of health-related online behavior, but can be 
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addressed at least in part by improving text classification accuracy. For example, 

Broniatowski et al. (18) used a multi-stage filtering approach to distinguish media-related 

“chatter” from tweets that are true markers of influenza incidence that doubled the accuracy 

in predicting the weekly direction of change in incidence (ie, up or down).

Solutions to sampling bias and non-representativeness have been less well explored. A 

classical approach is to use weighting to adjust samples to be population representative, 

either through post-stratification weights, inverse probability weights, or raking (122). These 

are standard practices in national surveys with known sampling probabilities, but may also 

be reasonable to apply in a convenience sample such as a selection of Google search queries 

or tweets. Wang et al. (112) used data from a series of daily voter intention polls conducted 

on the Xbox gaming platform, a sample not unlike social media or search query data, to 

predict successfully the 2012 US presidential election using post-stratification weights based 

on simple demographics like age, sex, race, and political party affiliation. Although these 

variables are not often available from Google or Twitter data, they may be straightforward to 

learn from the available data - reasonably accurate models exist to predict demographics on 

Twitter from names alone (117). Though population rates of internet usage have been 

increasing for all groups, it is worthwhile to note that sampling bias is not necessarily 

mitigated by high usage rates overall-ironically, as innovations spread through social 

networks, holdouts can represent a more and more unusual group (88).

ETHICAL CONSIDERATIONS FOR DIGITAL DATA SURVEILLANCE

The primary ethical challenge of public health is appropriately balancing risks and harms to 

individuals, while protecting and promoting population health (42; 57). This challenge 

remains for digital surveillance as the primary ethical issue (56; 90), but the non-health 

purpose of the data raises ethical concerns in a different light. To frame our discussion of 

ethics of digital surveillance, we focus on the following five principles; beneficence, non-

maleficence, respect for autonomy, equity, and efficiency. These principles have been 

previously used to frame ethical considerations in public health (70) and to examine the 

ethics of public health surveillance more generally (62). More broadly, consideration of 

these five principles can help in the decision of public health actions and the ethics of that 

decision (e.g. harm minimization or precautionary principle)

Beneficence.

The concept of beneficence is the principle that public health surveillance should improve 

the health of the target population (70). While digital surveillance has the potential to 

improve infectious disease surveillance systems, part of this principle is clearly defining the 

target population of the surveillance system. As such, careful consideration should be 

directed at identifying who is and who is not captured by digital surveillance systems. 

Identification of blind spots is necessary to ensure that public health surveillance works 

towards improving the health of the target population it purports. Digital surveillance is 

promising since members of the target population that do not come into contact with more 

traditional medical-based surveillance systems can be captured. Additionally, these systems 

can capture events that may be missed by traditional surveillance. One example is foodborne 
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illness, where only a fraction of cases are captured by traditional surveillance (75). Under 

this view, the additional coverage of digital surveillance, while still a biased sample, can 

improve the overall coverage of the target population relative to traditional epidemiologic 

surveillance approaches alone.

Beneficence also charges us with considering how health would be improved under a digital 

surveillance system. Merely monitoring a health outcome does not necessarily improve 

population health. Improving population health depends on effective communication and 

interventions. Previous work has made the argument that digital surveillance allows for 

earlier outbreak response (25; 86; 91; 92; 107), but few have actually described interventions 

that resulted from the earlier detection via digital surveillance and its effectiveness. In part 

due to forecast windows offered by existing models (2–4 weeks in advance) offer 

insufficient time to plan meaningful responses, such as adjustments to hospital surge 

capacity and vaccine manufacturing (110).

Non-maleficence.

The concept of non-maleficence is defined by actions that reduce the potential harms and 

burdens of collecting data and promote the benefits of doing so - to the greatest degree 

possible. Several threats to non-maleficence include; use of non-health data and 

stigmatization of risk factors, violation of privacy, and mistrust in public health information 

and intentions. Digital surveillance primarily relies on systems not primarily built for 

explicit collection of health-related data but a substantial amount of non-health data is also 

often collected during queries. If these non-health data are subsequently labelled as “risk 

factors,” it may attach stigma to certain behaviors or groups that are a proxy for the true 

underlying risk factors. There are many examples of stigma manifestation that occurred 

before the internet-including the HIV epidemic - with groups being stigmatized based on 

sexual orientation, country of origin, and race/ethnicity (46; 94). Collection of non-health 

data for digital surveillance and the speed of nowcasting sets up similar misattribution of 

risk and stigma. What is communicated from digital surveillance and how it is presented to 

the public should be considered thoughtfully and cautiously.

A core tenet of public health is building and maintaining public trust. A major barrier to 

public trust is false detections and missed outbreaks by surveillance systems. False 

detections can erode public trust in these surveillance systems, lead to misuse of limited 

resources, and result in poor risk communication to the public (15; 39). False detections and 

missed outbreaks can occur for any surveillance system but the use of non-health data, 

black-box machine learning algorithms, and rapidly declining performance, open up more 

possibilities for false detections to occur. Furthermore, mistrust may result from social 

media sites themselves through data breaches or sites using public health outbreak detection 

to market products to users. Lastly, users may knowingly publicly share information but may 

not expect its continual collection and analysis. While aggregate data may alleviate some 

concerns over violations of privacy, the same cannot be said of individual-specific internet 

data. Therefore, digital surveillance data may warrant the same privacy protections as data 

from more traditional surveillance systems. Public and private data use must be implemented 

cautiously and the possibility for misuse should be examined.

Aiello et al. Page 11

Annu Rev Public Health. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Autonomy.

The concept of respect for autonomy involves recognizing the right to self-determination of 

individuals and minimizing subsequent violations. A fundamental concern is informed 

consent within surveillance systems (62), which is also often cited as a major ethical concern 

of digital surveillance (55; 101). Informed consent is forgone in surveillance systems to 

improve the accuracy, with various justifications making the lack of informed consent more 

acceptable (62). In particular, the anonymization or aggregation of data help to justify the 

lack of informed consent for medical institution data (73). For digital surveillance, 

monitoring of aggregate search trends or page views is similarly defensible. Issues of 

informed consent for digital surveillance on individual-level data lead to unique 

complications. Three distinguishing features of digital epidemiology with regards to 

informed consent are: 1) data is not sourced from formal medical institutions, 2) data come 

from proprietary online platforms, and 3) data are not limited to health but often include 

personal attributes (73).

In the clinical setting, there is often a legal mandate to report certain diseases, medical 

professionals have their own long-standing code of ethics, and data are collected explicitly 

for health purposes. Health data from medical institutions are covered under the Health 

Insurance Portability and Accountability Act. While a patient at a medical institution may 

reasonably believe that their medical data will be used by health departments to monitor 

public health, the same is not true for social media. Social media users may not expect their 

data to be used towards monitoring public health trends, since there is no legal mandate for 

public health reporting of social media data, there are no standard ethics for social media 

creators, and data are primarily non-health related. Recently, social media sites and other 

internet platforms have been under scrutiny regarding privacy concerns (30). While the user 

agreements (the ‘Terms and Conditions’) cover consent from a legal aspect, the “informed” 

part has been a concern due to the complexity of the language used and the volume of 

conditions. While efforts like the European Union General Data Protection Regulation 

(GDPR) seeks to give internet users greater autonomy over their personal data collected by 

social media companies and reduce the complexity of user-agreements (5), we remain in a 

tumultuous time regarding privacy and consent to online data collection. Since digital data 

consists of largely non-health data, it becomes less clear that informed consent can be 

broken for individual-level health data.

As public health surveillance continues to rely on these methods, we need to consider and 

openly discuss the lack of informed consent, and whether there is sufficient justification to 

warrant digital surveillance without it. Whether the lack of informed consent for digital 

surveillance is justified depends on the specific scenario and the corresponding risk to public 

health. With GDPR giving users more control over their data, informed consent could be 

obtained by directly requesting individuals to share their social media with public health 

authorities (90). This approach has the additional benefit of avoiding the issue of social 

media companies retracting access to data. However, this approach has its own ethical 

concerns (44).

Aiello et al. Page 12

Annu Rev Public Health. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equity.

Individuals in the target population should have equal opportunity to receive a given public 

health intervention and a just distribution of benefits. As stated for beneficence, digital 

surveillance offers the opportunity to identify problems of individuals not in contact with the 

medical system and thereby may increase opportunities for enhancing equity in who is 

included in surveillance data. However, as described above in biases, there still remains 

segments of the population that do not have access to the internet or digital technology, 

leaving open the potential for loss of equity in digital surveillance. Con sidering the 

limitations in representativeness (and potentially, heterogeneous predictive power (58)) of 

most internet data sources, it is unlikely that surveillance data and associated interventions 

will be justly distributed without taking explicit account of these biases.

Efficiency.

The concept of efficiency is related to the cost-benefit of a surveillance system. For digital 

surveillance to produce benefits, it needs to overcome the biases previously discussed and 

provide improved tracking of health issues. For these systems to be cost-efficient, they 

require automated programs to manage and analyze the data. These automated systems may 

require substantial start-up cost and require regular maintenance to prevent algorithms from 

becoming stale. Since the data collected by these private companies is proprietary and there 

is no legal mandate for data provisions to public health, underlying algorithms by the 

companies require continuous update, and access could be discontinued at any time without 

warning (55). If access is revoked, the resources spent on creating the digital surveillance 

system become poorly spent. Furthermore, proprietary algorithms to detect outbreaks can 

also be revoked at any time and may not be reproducible (31; 64; 90; 108). An alternative 

that avoids platforms revoking access is to build legal mandates to allow for access, or allow 

users control over their data and to ask them for permission to share their data with public 

health professionals (90). Legal mandates for data provision may violate the autonomy of 

these companies. Some digital surveillance systems use a variation of the later approach, like 

FluNearYou and Influenzanet, where users directly provide their data through web-based 

surveys.

In summary, the use of internet-based data collection offers new opportunities but raises 

several ethical new concerns compared to traditional public health surveillance. These issues 

should continue to be addressed and require communication with the public. As a starting 

point Mettelstadt et al. (73) have provided conditions to consider and several case-studies 

related to the ethics of digital surveillance.

DISCUSSION

Digital public health surveillance affords the opportunity to revolutionize existing public 

health surveillance infrastructure. While some public health officials report monitoring 

digital data sources such as Google Flu Trends for contextual information (22), our review 

indicates that public health, in any official capacity, has yet to embrace and build upon 

existing opportunities that have arisen because of new digital data sources. While a variety 

of conditions examined in public health surveillance have been explored to some degree 
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using digital data sources, the biggest focus has been on influenza. Moreover, road maps 

describing how public/private partnerships could advance and work together towards 

creating sustainable, efficient, and ethical digital surveillance systems have yet to be fully 

developed. In addition, clear standards by which digital public health surveillance can be 

compared to traditional surveillance systems have yet to be established, making it difficult to 

assess whether these sources truly amplify the benefits of traditional public health for 

disease tracking and prevention. While we cover applied uses related to search queries, 

social media posts, and crowdsourcing, another potentially promising area that has yet to be 

explored is the use of data from existing digital health collection platforms based on 

smartphones and wearable devices, such as Apple HealthKit. These sources could offer 

highly precise information related to both infectious and non-infectious conditions and risk 

factors at a broad scale, but with many of the biases and representation mentioned above.

Ultimately, digital surveillance systems will need to be developed in ways that avoid the 

numerous potential pitfalls associated with biases and ethical considerations described in 

this review. As with all surveillance systems, experts will need to determine whether digital 

surveillance is necessary and ethically justifiable. In future applications, digital surveillance 

is likely to have the largest public health impact when integrated with traditional 

surveillance systems, like traditional laboratory data, case reports, and electronic health 

records (101). While digital surveillance offers the ability to build novel surveillance 

systems where no existing surveillance system exists, appropriate and accurately measured 

training data sets are needed.

In the future, it will be important to identify the most beneficial ways to use digital data 

sources through hybrid or completely new independent systems. The prospect of a new 

system, solely driven by digital technology, seems unlikely at present, but the continued 

advancement of machine learning, and related technologies for managing and deriving 

meaning from large sets of data, may bring this idea closer to reality in the future. A 

challenge will be in the training of public health experts in computer science, big data, and 

machine learning, to harness novel sources of digital data and support innovation in digital 

surveillance while reducing possible harms. In conclusion, we are on the precipice of an 

unprecedented opportunity to track, predict, and prevent global disease burdens in the 

population using digital data, and it is of great importance that public health institutions 

receive the training and resources to provide the right input and help to build new systems to 

move traditional public health surveillance into the future.
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Figure 1: 
Major events in digital public health surveillance. Abbreviations: GFT: Google Flu Trends, 

GDT: Google Dengue Trends. ProMED-mail (69), de Grote Griepmeting (63), Web page 

views used for flu surveillance (59), Google ad click rate used for surveillance (41), 

HealthMap (20), H1N1 missed by GFT (31), FluNearYou (102), GFT overestimates (77), 

FluSight (6), GFT and GDT no longer available (2).
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Table 1:

Glossary of terms

Public health 
surveillance

“Systematic and continuous collection, analysis, and interpretation of data, closely integrated with the timely and 

coherent dissemination of results and assessment to those who have the right to know so that action can be taken”*

Digital public health 
surveillance

Public health surveillance with the inclusion of digital data, particularly from social media or other internet-based 
sources.

Nowcast Short-term forecasting meant to provide near real-time information.

Cloud-based Adjective describing data that is stored, processed, or analyzed on-demand via remote servers hosted made available 
through the Internet.

Machine learning
Algorithmic approaches that adapt to patterns in data without explicitly programming the prediction task.

†

Supervised machine 
learning

Machine learning algorithms where the outcome variable for prediction is explicitly observed and focus is on 

accurate predictions of that outcome.
†

Search Query-based 
digital surveillance

Digital public health surveillance systems that use aggregate search query data to monitor disease trends. Examples 
include Google Flu Trends and Google Dengue Trends.

Social Media-based 
digital surveillance

Digital public health surveillance systems that use social media posts to monitor disease trends. Social media-based 
surveillance requires pre-processing of the data, such as keyword searches or natural language processing.

Crowd-based digital 
surveillance

Digital public health surveillance systems where participants voluntarily provide health-relevant information 
through potentially repeated web-based surveys to monitor disease trends. Examples include Flu Near You and 
Influenzanet.

Hybrid digital 
surveillance

Integration of digital surveillance data with traditional public health surveillance data, or multiple sources of digital 
along with traditional public health surveillance data to monitor disease trends.

Google Flu Trends Publicly available site that used aggregate Google search trend data to forecast influenza-like illness incidence. 
After failure to predict the 2009 pandemic and overestimating the peak intensity of 2012–2013 influenza season, the 

publicly available site was removed.
‡

Flu Near You Crowd-sourced participatory surveillance system to track influenza-like illness in the United States via weekly 

surveys completed by participants.
#

FluSight The United States Centers for Disease Control and Prevention’s “Forecast the Influenza Season Collaborative 
Challenge”. An annual competition in which researchers compete to develop the most accurate weekly influenza-

like illness predictions with some form of digital data.
**

*
Porta M. 2008. A Dictionary of Epidemiology. Oxford University Press. 320 pp

†
Mooney SJ, Pejaver V. 2018. Big Data in Public Health: Terminology, Machine Learning, and Privacy. Annu. Rev. Public Health 39:95–112

‡
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. 2009. Detecting influenza epidemics using search engine query data. 

Nature 457:1012–4

The Next Chapter for Flu Trends. https://ai.googleblog.com/2015/08/the-next-chapter-for-flu-trends.html

#
Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, et al. 2015. Flu Near You: Crowdsourced Symptom Reporting Spanning 2 

Influenza Seasons. Am. J. Public Health 105:2124–30

**
Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC-H, et al. 2016. Results from the Centers for Disease Control and Prevention’s predict the 

2013–2014 Influenza Season Challenge. BMC Infect. Dis. 16:357

Annu Rev Public Health. Author manuscript; available in PMC 2021 April 02.

https://ai.googleblog.com/2015/08/the-next-chapter-for-flu-trends.html

	Abstract
	INTRODUCTION
	DIGITAL HEALTH SURVEILLANCE
	Examples of Digital Surveillance.
	Search Query Examples.
	Social Media Examples.
	Crowd Sourced Data.
	Hybrid Digital/Traditional public health data.

	VALIDITY AND BIASES OF SOCIAL MEDIA AND INTERNET DATA
	Stability of Digital Data Sources.
	Non-Independent Digital Data.
	Digital Search Confounding.
	Digital Representativeness.
	Digital Validation.
	Possible solutions to biases.

	ETHICAL CONSIDERATIONS FOR DIGITAL DATA SURVEILLANCE
	Beneficence.
	Non-maleficence.
	Autonomy.
	Equity.
	Efficiency.

	DISCUSSION
	References
	Figure 1:
	Table 1:

