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ABSTRACT
Gastrointestinal (GI) diseases are common illnesses that affect the GI tract.
Diagnosing these GI diseases is quite expensive, complicated, and challenging.
A computer-aided diagnosis (CADx) system based on deep learning (DL) techniques
could considerably lower the examination cost processes and increase the speed
and quality of diagnosis. Therefore, this article proposes a CADx system called
Gastro-CADx to classify several GI diseases using DL techniques. Gastro-CADx
involves three progressive stages. Initially, four different CNNs are used as feature
extractors to extract spatial features. Most of the related work based on DL
approaches extracted spatial features only. However, in the following phase of
Gastro-CADx, features extracted in the first stage are applied to the discrete wavelet
transform (DWT) and the discrete cosine transform (DCT). DCT and DWT are used
to extract temporal-frequency and spatial-frequency features. Additionally, a feature
reduction procedure is performed in this stage. Finally, in the third stage of the
Gastro-CADx, several combinations of features are fused in a concatenated manner
to inspect the effect of feature combination on the output results of the CADx
and select the best-fused feature set. Two datasets referred to as Dataset I and II are
utilized to evaluate the performance of Gastro-CADx. Results indicated that
Gastro-CADx has achieved an accuracy of 97.3% and 99.7% for Dataset I and II
respectively. The results were compared with recent related works. The comparison
showed that the proposed approach is capable of classifying GI diseases with
higher accuracy compared to other work. Thus, it can be used to reduce medical
complications, death-rates, in addition to the cost of treatment. It can also
help gastroenterologists in producing more accurate diagnosis while lowering
inspection time.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning
Keywords Gastrointestinal (GI) diseases, Deep learning, Convolution neural network,
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INTRODUCTION
Gastrointestinal (GI) disease is considered one of the supreme common diseases that
usually infect people, causing complicated health conditions (Du et al., 2019). Based on the
degree of injury, GI can approximately split into the precancerous lesion, primary GI
cancer and progressive GI cancer, and benign GI diseases (Sharif et al., 2019). Among
benign GI diseases are ulcers, gastritis, and bleedings which will not depreciate into cancers
in short term. In contrast, precancerous GI injury could depreciate into primary GI cancer
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or even progressive GI cancer, in case it was not accurately diagnosed and treated in time
(Du et al., 2019). Annually almost 0.7 million patients are diagnosed with gastric cancer.
Since 2017, 135,430 new GI diseases arose in America. A global survey indicated that
since 2017, 765,000 deaths occurred due to stomach cancer, 525,000 deaths are due to
colon cancer. The poorest situations can be detected in the developing countries (e.g., the
Asian countries and the Middle East) (Ali et al., 2019; Khan et al., 2020a). Moreover, among
people diseased with GI diseases, 20% of them are from China, 18% from Brazil, 12%
from Russia, 20% of EU, and 21% of the US (Sharif et al., 2019). The early diagnosis of GI is
essential to reduce medical complications, cost of treatment, and lower death rates.

The traditional clinical method used for GI diagnosis is the intestinal biopsy of the GI
tract. These biopsy samples are analyzed by medical experts using microscopes to examine
the possibility of any cancerous or abnormal cells’ existence. The drawbacks of such a
method are being invasive and the necessity of a high degree of proficiency (Ali et al.,
2019). In contrast, endoscopic imaging is a lower invasive technique for visualizing the GI
tract (Kainuma et al., 2015). The endoscopic process assists the doctor in the recognition
and diagnosis of gastric anomalies in their initial stages. Timely detection and diagnosis
of chronic medical conditions can be healed with appropriate treatments. Hence, the
imaging procedure can be very beneficial for a considerable decrease in medical
complications, the cost of treatment, and death-rates, especially, the deaths that happen
due to several GI cancers, which could be treated if cancer was discovered in its
pre-malignant phase (Hamashima et al., 2015). Although there are numerous advantages
in endoscopy, it brings along with it particular trade-offs; for example, the huge number of
video frames produced during the screening process of the GI tract. On average, the
entire process can take from 45 min to 8 h depending on the aimed GI region and the
expertise of the gastroenterologist (Ali et al., 2019). The number of generated frames can
reach up to 60,000 images. Most of these frames are redundant and not valuable and
only a few images might have some abnormal lesions (Khan et al., 2020b). All these
redundant images can be removed by examining each frame of the endoscopic video.
Therefore, the manual examination of diseases through such a huge number of images
is very challenging as it needs an extensive amount of time to observe the complete
number of frames. Besides, at times the anomalous frames can be simply unnoticed by the
gastroenterologist which can cause misdiagnosis. Therefore, such medical experts
request automated schemes, that can automatically determine possible malignancies by
analyzing the entire endoscopic images (Aoki et al., 2019).

Computer-aided diagnosis (CADx) are systems utilized for automatic diagnosis of
several diseases within various parts of the human body like the brain (Attallah, Sharkas &
Gadelkarim, 2019, 2020), breast (Ragab, Sharkas & Attallah, 2019), lung (Attallah,
Ragab & Sharkas, 2020), etc. Along with these diseases, CADx has been commonly used to
diagnose GI disease in the intense by analyzing endoscopic images (Khan et al., 2020b).
Such CADx has several advantages from which the patients, gastroenterologists, and
medical students can benefit. These include; the reduction in the examination time of the
whole endoscopic frames. Besides, the decrease in the cost of treatment as the lesion
will be detected in an early phase. Moreover, CADx will improve the accuracy of the
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diagnosis of GI diseases compared to manual examination. Also the inspection time from
endoscopic images is to be decreased. Furthermore, it may be used for training medical
staff and students without the necessity of an expert (Ali et al., 2019).

In a CADx scheme, the diagnosis is carried out using each frame depending on the
significant features taken out from the image. Thus, feature extraction is the key step in an
accurate diagnosis of medical conditions (Attallah, 2020) like GI diseases (Khan et al.,
2020b; Ali et al., 2019; Khan et al., 2019). Several features are calculated using handcrafted
techniques in the literature like color-based, texture-based, and some others (Khan
et al., 2020b; Ali et al., 2019). Karargyris & Bourbakis (2011) utilized geometric and texture
features extracted from SUSAN edge detector and Gabor filter extraction methods to
detect small bowel polyps and ulcers. On the other hand, Li & Meng (2012a) used the
uniform local binary pattern (LBP) and discrete wavelet transform (DWT). They
employed an SVM classifier to detect abnormal tissues. In the same way, the authors in
Li & Meng (2012b) detected tumors in the intestine using DWT and LBP. Instead, Yuan &
Meng (2014) fuzed the saliency map with the Bag of Features (BoF) technique to
identify polyps in endoscopic images. Initially, the authors employed the BoF method to
describe the local features by using a scale-invariant feature transform (SIFT) feature
vectors using k-means clustering. Next, the saliency map histogrammethod was utilized to
extract salience features. Lastly, both features are combined and utilized to learn an
SVM classifier. Later the same authors (Yuan, Li & Meng, 2015) added the complete LBP
(CLBP), LBP, uniform LBP (ULBP), and histogram of oriented gradients (HoG) features
along with SIFT features to extract additional distinctive texture features. Alternatively,
color-based features were extracted in (Ghosh, Fattah & Wahid, 2018; Deeba et al., 2018)
for bleeding detection.

Recently, the advancement of deep learning (DL) methods has delivered new
opportunities to improve the analysis of endoscopic images. CNNs are the most type of
networks used in endoscopy (Alaskar et al., 2019). These networks can be used as classifiers
or/and feature extractors. Feature extraction methods based on DL techniques have
been extensively utilized in the literature (Ghatwary, Zolgharni & Ye, 2019; Kim, Cho &
Cho, 2019; Lee et al., 2019). The authors of Khan et al. (2020a) proposed a CADx system
to detect ulcers and bleeding GI diseases. Their system extracted deep features from
two different layers of VGG-16 CNN. Afterward, these features were fused, and then
significant features were selected using an evolutionary search method called PSO. These
features were then used to train the SVM classifier. Igarashi et al. (2020) proposed a
CADx framework to classify several GI diseases using AlexNet. First, AlexNet extracted
spatial features and then classified them into 14 different diseases. The authors of Alaskar
et al. (2019) proposed a DL-based CADx that utilized AlexNet and GoogleNet for ulcer
detection from low contrast endoscopic videos (WEV). Features extracted from these
networks were classified using the fully connected layer of each network separately.
AlexNet was also used in (Fan et al., 2018) to detect both erosions and ulcers that are
observed in the intestine. He et al. (2018) introduced a framework based on two cascaded
CNNs. The first network is VGG-16 CNN which was used for edge detection,
whereas the second is the Inception CNN which was used for classification. Similarly,
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Khan et al. (2020b) used two CNNs, the first one is Recurrent CNN for segmentation,
whereas, the second was ResNet and was used for classification. The authors in Yuan &
Meng (2017) suggested the use of an image manifold with stacked sparse auto-encoder
to recognize polyps in endoscopic images. Instead, the authors in Pei et al. (2017)
proposed a CADx system to recognize and assess the small bowel using features
extracted from long short-term memory (LSTM).

Other research articles suggested the fusion of handcrafted features and DL features.
Sharif et al. (2019) proposed a CADx system for classifying GI infections. The authors
extracted deep features from VGG-16 and VGG-19 CNNs and fused these features with
some geometric features. These fused features were then used as input to a K-nearest
neighbors (KNN) classifier. Another system was presented in Ghatwary, Ye & Zolgharni
(2019) to detect esophageal cancer. The system fuzed Gabor features and Faster
Region-Based CNN (Faster R-CNN). On the other hand, Billah, Waheed & Rahman
(2017) fuzed the color wavelet features and CNN features for detecting polyps. The
combined features were used later to fed an SVM classifier. The authors in Nadeem et al.
(2018) combined features extracted from textural analysis methods such as Haralick and
LBP along with VGG-16 CNN DL features. The authors used logistic regression for
classification. The authors of Majid et al. (2020) introduced a framework that combined
the DCT, DWT, color-based statistical features, and VGG16 DL features for the
recognition of several GI diseases. The authors used a genetic algorithm (GA) to select
features using the KNN fitness function. Finally, the selected features were used to train an
ensemble classifier. A summary of recent related work along with their limitations is
shown in Table 1.

The main aim of this work is to construct a CADx called Gastro-CADx that is capable of
accurately diagnosing more GI diseases than the proposed by others. Though there are
various approaches to GI detection and classification in the literature, there exist some
weaknesses among these methods which are summarized in table. Gastro-CADx tries to
overcome the limitations found in related studies discussed in Table 1 through three
cascaded stages. First of all, the majority of the current methods studied the detection and
classification of a few types of GI anomalies, disease, or anatomical landmark. But, our
proposed Gastro-CADx is an automatic highly accurate system to classify several GI
diseases and anatomical landmarks. Some of the related studies are based on small dataset
or used only one dataset to test the efficiency of their classification model, while
Gastro-CADx is validated using two large datasets of several GI diseases. The few articles
that classified several GI diseases achieved low accuracy, not reliable, or used only one type
of CNN, whereas, Gastro-CADx is an accurate and reliable system that used more four
CNNs. This article in the first stage, Gastro-CADx studies several CNN based methods
for feature extraction from spatial domain instead of using one or two networks to benefit
from the advantages of several types of CNNs. The previous studies were either based
only on an end-to-end deep learning which has very high computational cost, used
only spatial features extracted from CNNs or only handcrafted feature extractions, but
Gastro-CADx is not based only on spatial features, but temporal-frequency and
spatial-frequency features using handcrafted feature extraction methods as well not only
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Table 1 A summary of recent related studies.

Article Purpose Class Method Accuracy (%) Limitation

Khan et al. (2020b) Ulcer, polyp, bleeding
detection

4 RCNN, ResNet101,
and SVM

99.13 � Used only spatial features.

� Low segmentation accuracy
for the ulcer regions.

� Fail for the segmentation of
polyp and bleeding regions.

Khan et al. (2020a) Ulcer, and bleeding
detection

3 VGG-16, PSO, and
SVM

98.4 � Limited classes

� Used only spatial features.

� High computational cost

Igarashi et al. (2020) Classify several GI
diseases

14 AlexNet 96.5 � Used only spatial features.

� The training or test data
included chosen images of
gastric cancer lesions, which
could cause a selection bias.

� Has high computational cost

� Cannot be used in real-time
examinations

Alaskar et al. (2019) Ulcer detection 2 AlexNet & Google
Net

97.143 � Limited classes.

� Used only spatial features

Owais et al. (2019) Classification of
multiple
GI diseases

37 ResNet-18 and
LSTM

89.95 � High computational cost.

� Used individual type of
features

� Low accuracy

Fan et al. (2018) Ulcer and Erosion
detection

2 AlexNet 95.16
95.34

� Limited classes.

� Used only spatial features.

� Used only one type of CNN
features

� The CADx was applied
separately for ulcer and
Erosion detection

He et al. (2018) Hookworm detection 2 VGG-16 and
Inception

88.5 � Limited classes.

� Used only spatial features

� Low accuracy

Yuan & Meng (2017) Polyps detection 2 Stacked sparse
auto-encoder with
image manifold

98 � Limited classes.

� Used only spatial features

Pei et al. (2017) Bowel detection and
assessment

2 LSTM and PCA 88.8 � Limited classes.

� Used only temporal features.

� Used only one type of CNN
features

� Low accuracy

� Small dataset

(Continued)
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end-to-end based DL. This appears clearly in the second stage of Gastro-CADx. It extracts
handcrafted features based on textural analysis from the temporal-frequency and
spatial-temporal domains using the DL features extracted in the first stage. This reduces
the high computational cost of end-to-end DL techniques. Previous related studies
indicated that CNN representations have improved the performance and the abstract
level for the automatic detection and classification of GI diseases (Majid et al., 2020;
Khan et al., 2020b; Yuan & Meng, 2017). Nevertheless, the fusion of CNN features
with handcrafted variables could enhance diagnostic accuracy (Majid et al., 2020;

Table 1 (continued).

Article Purpose Class Method Accuracy (%) Limitation

Sharif et al. (2019) Ulcer, and bleeding
detection

3 VGG-16, VGG-19,
geometric
features, KNN

99.42 � Limited classes.

� Small dataset.

� Used spatial and geometric
features only

Ghatwary, Ye & Zolgharni (2019) Esophageal cancer
detection

2 Gabor Filter. faster
R-CNN, and SVM

95 � Limited classes.

� Used only one type of CNN
features

� Used spatial and textural
based -Gabor features only.

� High computational cost

Billah, Waheed & Rahman (2017) Polyps detection 2 Color based DWT,
CNN, and SVM

98.65 � Limited classes.

� Used only one type of CNN
features

� Used spatial and color based
–DWT only

� Small dataset

Nadeem et al. (2018) Classification of several
GI diseases

8 VGG-19, Haralick
and LBP texture
analysis, and
logistic regression

83 � Low accuracy

� Used only one type of CNN
features

� Used spatial features based
on CNN and textural
analysis only

Majid et al. (2020) Bleeding, esophagitis,
polyp, and ulcerative-
colitis classification

5 DCT, color based
statistical features,
DWT, VGG-16,
GA, and E

96.5 � High computational cost.

� Used only one type of CNN
DL features

Nguyen et al. (2020) Classifying images to
normal and abnormal

2 DenseNet,
Inception, and
VGG-16

70.7 � Classify images to either
normal or abnormal.

� Did not classify several GI
diseases.

� Low accuracy

Owais et al. (2020) Classification of
multiple
GI diseases

37 DenseNet and
LSTM

95.75 � High computational cost.

� Used individual type of
features
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Shi et al., 2018). Therefore, in the third stage, a fusion process is introduced which
combines the second stage features to benefit from the spatial, temporal- frequency, and
spatial-frequency features. This stage can confirm the capacity of every feature abstraction
method to mine significant information that might be disregarded from the other method.
It can also reduce the computational cost compared to end-to-end DL methods.

The previous contributions are summarized to:

� Proposing an automatic and accurate CADx system called Gastro-CADx based on
three stages to classify several GI diseases and anatomical landmarks.

� The system is not based only on spatial features, but temporal-frequency and
spatial-frequency features using handcrafted feature extraction methods as well.

� In the first stage, Gastro-CADx studies several CNN based methods for feature
extraction from spatial domain instead of using one or two networks to benefit from the
advantages of several types of CNNs.

� In the second stage, Gatro-CADx extracts handcrafted features based on textural
analysis from the temporal-frequency and spatial-temporal domains using the DL
features extracted in the first stage.

� Also, in the second stage, Gastro-CADx tries to minimize the problem of computational
time using only reduced dimensions of features.

� In the third stage, a fusion process is introduced which combines the second stage
features to benefit from the spatial, temporal-frequency, and spatial-frequency features.

� The third stage can confirm the capacity of every feature abstraction method to mine
significant information that might be disregarded from the other method.

� Gastro-CADx is validated using two large datasets of several GI diseases.

� Creating an accurate automatic diagnostic system that is reliable compared to related
CADx systems.

MATERIALS AND METHODS
Dataset description
This article employs two datasets to evaluate the performance of Gastro-CADx.
The first dataset used in this article is called Kvasir (Pogorelov et al., 2017), and denoted as
Dataset I. It consists of 4,000 images containing eight different GI classes. Three classes
demonstrating anatomical landmarks, three demonstrating pathological states, and two
associated with lesion-removal. The three anatomical landmark categories are pylorus,
z-line, and cecum. The three diseased states are esophagitis, polyps, and ulcerative colitis.
The two classes associated with lesion removal are dyed lifted polyps and dyed resection
margins. The images are of different sizes from 720 × 576 up to 1,920 × 1,072 pixels.
Some of these images include a green region illustrating the location and shape of the
endoscope within the intestine. This information may be significant for later investigations
(thus included) but must be wielded with care for the detection of the endoscopic findings.
Figure 1 shows different image samples of different GI diseases.
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The second dataset is called HyperKvasir (Borgli et al., 2020) and named Dataset II.
The images and videos of this dataset were acquired using standard endoscopy equipment
from Olympus (Olympus Europe, Hamburg, Germany) and Pentax (Pentax Medical
Europe, Hamburg, Germany) at a Norwegian hospital from 2008 to 2016. The dataset
consists of 10,662 labeled images and 23 classes. These classes are unbalanced; therefore,
we chose only 10 balanced classes to construct Gastro-CADx. Four classes demonstrating
anatomical landmarks, three demonstrating pathological states, one demonstrating
quality of mucosal views, and two associated with lesion-removal. The three anatomical
landmark categories are pylorus, z-line, pylorus, and cecum. The three pathological states
are esophagitis, polyps, and ulcerative colitis. The two classes associated with lesion
removal are dyed lifted polyps and dyed resection margins. The one demonstrating the
quality of mucosal views is bowel quality. Figure 2 shows samples of images included in
the dataset.

Deep convolutional neural networks architectures
The popular type of DL approaches that is generally utilized for solving image-related
classification problems in the health informatics field is the convolutional neural network
(CNN) (Jin et al., 2020). In this article, four CNNs are utilized including; AlexNet,
ResNet-50, DarkNet-19, and DenseNet-201 constructions. As it can be noticed from
Table 1 that most related studies used AlexNet, ResNet and VGG CNNs. We did not use
VGG as it has very high computational cost and number of parameters. Also, the features
extracted from this network is of very huge size (Bi et al., 2020; Ertosun & Rubin, 2015;
Su et al., 2020). Although, AlexNet is one of the oldest architectures, but it is still being used
due to its acceptable performance. This is because it has efficient computation ability and

Figure 1 Image samples of KASVIR dataset: (A) Dyed-Lifted-Polyp, (B) Dyed-Resection-Margin,
(C) Esophagitis, (D) Normal-z-line, (E and F) Normal-Cecum, Polyps, (G) Normal-Pylorus, and
(H) Ulcerative-Colitis. Image credit: Michael Riegler. Full-size DOI: 10.7717/peerj-cs.423/fig-1
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performs well with color images like these used in this article well (Wang, Xu & Han, 2019).
We employed more recent CNNs like DarkNet and DenseNet architectures. To our
own knowledge darknet was not used in the literature, whereas, only few articles used
DenseNet for classifying GI diseases but has several drawbacks in their proposed methods.
Therefore, we used these two new CNNs architectures to test their performance and ability
to classify multiple GI diseases from endoscopic images.

The size of the input and output layers of the four networks employed used in the
proposed method is shown in Table 2.

AlexNet
The structure of AlexNet CNN was presented in 2012 by Krizhevsky, Sutskever & Hinton
(2012). This construction won the ImageNet Large-Scale Visual Recognition Challenge
in 2012. The structure of AlexNet includes 23 layers corresponding to 5 convolutional
layers, 5 rectified linear unit (ReLu) layers, 2 normalization layers, 3 pooling layers,
3 fc layers, a probabilistic layer using softmax units, and a classification layer ending in
1,000 neurons for 1,000 categories (Attallah, Sharkas & Gadelkarim, 2020).

DarkNet-19
DarkNet was first introduced in 2017 by Redmon & Farhadi (2017). DarkNet-19 is a CNN
that is utilized as the spine of YOLO-V2. It commonly employs 3 × 3 filters and pairs

Figure 2 Image samples of Hyperkvasir dataset. (A) Bowel quality, (B) Normal Cecum, (C) Dyed-Lifted-Polyp, (D) Dyed-Resection-Margin,
(E) Esophagitis, (F) Polyps, (G) Polyrous, (H) Retroflex stomach, (I) Ulcerative-Colitis, and (J) Normal-z-line.

Full-size DOI: 10.7717/peerj-cs.423/fig-2

Table 2 A summary of the four CNNs architectures.

CNN Structure Number of layers Size of input Size of output

AlexNet 23 227 × 227 4,096

ResNet-50 50 224 × 224 2,048

DarkNet-19 19 256 × 256 8 and 10

DenseNet-201 201 224 × 224 1,920
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the number of channels after each pooling stage. DarkNet-19 utilizes global average
pooling to perform classifications in addition to 1 × 1 filters to reduce the feature
demonstration between 3 × 3 convolutions. Batch Normalization is applied to regularize
the classification model batch, make the training process more stable, and accelerate
convergence. Darknet-19 consists of 19 convolutional layers and 5 max-pooling layers.

ResNet-50
ResNet architecture was first introduced in 2016. The essential constructing block of
the ResNet is the residual block which was suggested by He et al. (2016). The residual block
offers shortcuts associations within the convolution layers, which can assist the network
to step some convolution layers at a time. In other words, the residual block recommends
two choices, it may attain a set of functions on the input, or it can permit this stage.
Therefore, ResNet construction is supposed to be more effective than other CNNs such as
AlexNet and GoogleNet as stated in Attallah, Sharkas & Gadelkarim (2020). In this study,
ResNet-50 is used which consists of 49 convolutional layers and one fc layer.

DenseNet-201
The latest research has revealed that CNNs can be significantly deeper, more accurate, and
effective to learn when they consist of smaller connections between layers near the
input and those adjacent to the output. This finding motivated Huang et al. (2017) to
propose the Dense Convolutional Network (DenseNet). DenseNet joins every layer to each
other layer in a feed-forward manner. While conventional CNNs with M layers have
M connections—one amid every layer and its succeeding layer, DenseNet hasM(M + 1)/2
straight connections. For every layer, the feature-maps of all previous layers are utilized as
inputs, and its feature-maps are utilized as inputs into all following layers. DenseNet
has numerous benefits such as their ability to lessen the vanishing-gradient issue, reinforce
feature dissemination, boost feature reprocesses, and considerably decrease the number of
parameters. In this article, DenseNet-201 is used which has 201 layers deep.

Proposed Gastro-CADx
An efficient hybrid CADx system called Gastro-CADx is proposed to classify several GI
classes from endoscopic images. Gastro-CADx involves three steps including, the image
preprocessing step, followed by feature extraction, reduction and fusion step, and finally a
classification step. Initially, several augmentation processes are utilized to raise the number
of images in the datasets. Also, images are resized. In the feature extraction, reduction,
and fusion step, three stages are performed to construct Gastro-CADx. In the first stage,
valuable deep features are extracted from four CNNs including (ResNet-50, AlexNet,
DenseNet-201, and DarkNet-19). In the second stage, two handcrafted features are used to
extract features from the spatial DL features extracted in the first stage. These handcrafted
features are textural analysis based features representing temporal-frequency and
spatial-frequency features. The dimension of these extracted features is reduced in this
stage. Afterward, is the third stage of the Gastro-CADx, where several reduced features are
fuzed in a concatenated manner. Finally, is the classification step in which machine
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learning classifiers are used to identify several GI classes. Figure 3 represents the block
diagram of Gastro-CADx.

Image preprocessing step
The endoscopic images of both datasets are resized according to the size of the input layer
of each CNN (Attallah, Ragab & Sharkas, 2020) shown in Table 2. Subsequently, these
frames are augmented. The augmentation process is essential to raise the number of
images (Attallah, Sharkas & Gadelkarim, 2020; Ragab & Attallah, 2020). This technique is
performed because most likely the models which are learned with an insufficient
quantity of frames may over-fit (Ravì et al., 2016; Attallah, Sharkas & Gadelkarim, 2020).
The augmentation techniques utilized in this article to produce new endoscopic images from
the training data are flipping, translation, transformation, and rotating (Talo et al., 2019;
Attallah, Ragab & Sharkas, 2020). Each frame is flipped and translated in x and y directions
with pixel range (−30, 30) (Attallah, Ragab & Sharkas, 2020). Furthermore, each endoscopic
image is rotated with an angle range (0–180) degrees (Ragab & Attallah, 2020).

Feature extraction, reduction, and fusion step

Gastro-CADx is based on three stages. The first stage is the DL feature extraction stage.
The second is the handcrafted feature extraction and the reduction stage. Finally is the
third stage known as the fusion stage.

Deep learning feature extraction stage (First stage of Gastro-CADx)

Pre-trained CNNs trained using the endoscopic frames are used to accomplish feature
extraction or classification processes. During the feature mining process, valuable DL
features are mined from the CNNs. Instead of utilizing the CNNs for classification, DL

Figure 3 The block diagram of the proposed Gastro-CADx.
Full-size DOI: 10.7717/peerj-cs.423/fig-3
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variables are pulled out from the fully connected layer called “fc7” as in Attallah, Ragab &
Sharkas (2020), the “global average pooling 2D layer” (fifth pooling layer), and the last
average pooling layer of the AlexNet, ResNet-50, DarkNet, and DenseNet constructions as
in (Ragab & Attallah, 2020). The DL features size are 4,096, 2,048, 8 or 10, and 1,920 for
AlexNet, ResNet-50, DarkNet-19, and DenseNet-201 respectively.

Handcrafted feature extraction and reduction stage (Second stage of gastro-CADx)Hand-

crafted feature extraction

In this stage, time-frequency and spatial-frequency features based on textural analysis are
determined from the DL features extracted in the previous stage. The textural features
include the coefficients of the discrete wavelet transform (DWT) and the discrete cosine
transform (DCT). Each feature method is discussed below. We employed DWT and DCT
as they are popular feature extraction method based on textural analysis. One of the
main benefit of DCT is its capability to spatially alter to characteristics of an image for
instance discontinuities and changing frequency manner (Bennet, Arul Ganaprakasam &
Arputharaj, 2014). It offers time-frequency representation of an image. Also, DCT has
several advantages, first of all it prevents complicated calculation and presents simplicity of
execution in practical purposes. Furthermore, DCT is capable of effectively managing
the phase removing problem and demonstrates a powerful energy compaction estate
(Imtiaz & Fattah, 2010; Rashidi, Fallah & Towhidkhah, 2012). DWT and DCT are the
utmost common approach to extract textural features in the medical image processing
area (Lahmiri & Boukadoum, 2013; Srivastava & Purwar, 2017; Mishra et al., 2017;
Anthimopoulos et al., 2014; Benhassine, Boukaache & Boudjehem, 2020). Textural analysis
based methods are useful in extracting texture features from images which is equivalent
to simulating human visual learning procedure. It is widely used in medical image processing
(Attallah, 2021; Lahmiri & Boukadoum, 2013; Anwar et al., 2020; Castellano et al., 2004).

� Discrete wavelet transform (DWT) is a widely used feature extraction method. DWT
examines both signals and images (Lahmiri & Boukadoum, 2013; Srivastava &
Purwar, 2017). It offers a temporal-frequency representation of an image or signal
through decomposing them with the help of a group of orthogonal basis functions
(Ortho-normal). Images are of two dimensions; therefore 2-D DWT is used to
decompose the image (Attallah, Sharkas & Gadelkarim, 2019). One dimensional DWT
is employed on each DL feature set distinctly which results in four groups of coefficients
(Ragab & Attallah, 2020). The four groups generated after the 1-D DWT are known
as three detail coefficients, CD1, and approximation coefficients, CA1. Detail coefficients
consist of the diagonal, vertical, and horizontal coefficients, correspondingly.

� Discrete Cosine Transform (DCT) is frequently used to transform images into basic
frequency components. It displays data as a sum of cosine functions oscillating at
different frequencies (Aydoğdu & Ekinci, 2020). Generally, the DCT is applied to the
imaged features to attain the DCT coefficients. The DCT coefficients are separated into
three sets, known as low frequencies called (DC coefficients), middle frequencies, and
high frequencies called (AC coefficients). High frequencies characterize noise and
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small deviations (details). Whereas, low frequencies are associated with the brightness
conditions. On the other hand, middle frequencies coefficients comprise valuable
information and build the basic assembly of the image. The dimension of the DCT
coefficient matrix is identical to the input DL featue (Dabbaghchian, Ghaemmaghami &
Aghagolzadeh, 2010).Feature reduction

Feature reduction is an important procedure that is commonly used in the medical field to
lower the huge dimension of the feature space. This reduction will correspondingly lead to
a reduction in the complexity of the classification procedure (Ragab & Attallah, 2020),
the training time of the model, and avoid overfitting (Attallah et al., 2017a; 2017b).
For this reason, DWT and DCT have been employed as feature reduction procedures as
well as feature extractors instead of directly using the large dimension of DL features
generated in the previous step. Therefore, a 1-level of DWT is applied to each DL
features. The coefficients generated are are the approximation coefficients CA1, and detail
coefficients CD1 of the first decomposition level of DWT. These coefficients have half the
dimension of the original DL feature dimension which enters the DWT process. By this
way the dimension of feature space is reduced. The CA and CD coefficients are used
separately to train the SVM classifiers of the next step of Gastro-CADx.

The DCT, on its own, does not reduce the data dimension; however, it shrinks
most of the image information in a small number of coefficients (Dabbaghchian,
Ghaemmaghami & Aghagolzadeh, 2010). Another reduction stage is usually executed to
reduce the data dimension, where some of the coefficients are chosen to develop feature
vectors. In this article, 500 DCT coefficients are generated using the zigzag procedure.
After this reduction procedure, these coefficients are used separately to train the SVM
classifiers of the next step of Gastro-CADx.

Feature fusion (Third stage of gastro-CADx)

The feature vectors generated for each of the DCT and DWT coefficients are then fuzed in
a concatenated manner to form different combinations of fuzed features sets which are
then used to classify the SVM classifiers in the next step of Gastro-CADx. For DWT,
initially, the CA coefficients extracted from the DL features for every two networks are
fuzed. Then, the CA coefficients extracted from the DL features of every three networks are
fuzed. Next, all CA coefficients extracted from DL features of the four networks are
merged. The same procedure is done for the CD coefficients. For the DCT, firstly the
coefficients extracted from the DL features for every two networks are fuzed. Then, the
coefficients extracted from the DL features of every three networks are fuzed. Finally, the
DCT coefficients extracted from DL features of the four CNNs are merged

Classification step
In this step, the classification procedure is performed using two scenarios either by an
end-to-end DL (Attallah, Ragab & Sharkas, 2020), techniques or by using the features
extracted from the three stages of Gastro-CADx. The scenarios resemble four experiments.
The first scenario represents the use of the four CNNs including AlexNet, ResNet-50,
DarkNet-19, and DenseNet-201 as classifiers (end to end DL process). Each pre-trained
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CNN is created and learned distinctly and then used as a classifier. The first scenario
represents experiment I. In the second scenario, the first stage of Gastro-CADx is
executed which corresponds to experiment II, where the pre-trained CNNs are applied
to images, and then the DL features are extracted from each network individually.
These DL features are used to learn distinct SVM classifiers. These features represent
spatial information only and of a huge dimension. Therefore, in the second stage of
Gastro-CADx which corresponds to experiment III, the DWT and the DCT feature
extraction methods are applied to DL features generated from each CNN of the first stage
of Gastro-CADx to extract temporal-frequency and spatial-frequency information.
These features are utilized to train SVM classifiers individually. The problem of
dimensionality reduction is considered as well in the second stage of Gastro-CADx,
where a reduced set of coefficients are generated using the DWT and DCT methods.
These coefficients represent feature vectors that are used separately to learn three SVM
classifiers. Finally, in the third stage of Gastro-CADx, the reduced features are fuzed to
form different combinations of fuzed features. These different combinations are used to
construct several distinct SVM classifiers The aim of this stage is to examine the influence
of feature fusion on the classification accuracy and select the combination which has the
highest impact on the performance of the Gastro-CADx. This stage corresponds to
experiment IV. Figure 4 summarizes the four experiments of Gastro-CADx.

Note that the SVM classifier was chosen as it is known to be a powerful classifier. It is
considered to be one of the best methods in pattern classification and image classification
(Thai, Hai & Thuy, 2012). It performs well with large dimension space and of multi-class

Figure 4 A summary of the four experiments of Gastro-CADx.
Full-size DOI: 10.7717/peerj-cs.423/fig-4
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problems. As it uses kernel function which maps the feature space into new domain
that can easily separate between classes of a dataset. Therefore, it is commonly used with
the huge dimension of DL features extracted from CNNs (Ragab et al., 2019; Jadoon et al.,
2017; Zhang et al., 2020; Das et al., 2020; Xue et al., 2016; Leng et al., 2016; Wu et al.,
2018; Sampaio et al., 2011) achieving outperforming results. Also, as you can see in Table 1,
that SVM is the commonly used in the literature It can be observed that articles that
used SVM achieved the highest performance as Khan et al. (2020b) which achieved an
accuracy of 99.13%, (Khan et al., 2020a) achieving an accuracy of 98.4%, (Ghatwary, Ye &
Zolgharni, 2019) obtaining an accuracy of 95%, (Billah, Waheed & Rahman, 2017)
achieving an accuracy of 98.65%

EXPERIMENTAL SETUP
Several parameters are attuned after fine-tuning the fc layer of the CNNs. The number of
epochs and the initial learning rate for the four CNNs are 10 and 10−4 respectively as in
(Attallah, Sharkas & Gadelkarim, 2020). The mini-batch size and validation frequency
are 10 and 3. The weight decay and momentum are set to 5 × 10−4 and 0.9 respectively. The
optimization algorithm used is the Stochastic Gradient Descent with Momentum (SGDM).
To measure the capacity of the Gastro-CADx to classify several GI diseases, 5-fold
cross-validation is engaged. This means that the GI datasets are divided into 80–20% for
training and validation. The SVM classifiers are taught with 4 folds and verified by the
remaining fold. Thus, the models are taught five times and the testing accuracy is
calculated for each time then averaged. The kernel functions used for the SVM classifier are
linear, quadratic, and cubic.

EVALUATION PERFORMANCE
The presented Gastro-CADx framework is evaluated with numerous measures for
instance; F1-score, precision, accuracy, sensitivity, and specificity. The formulas which are
utilized in calculating such metrics are displayed below in Eqs. (1)–(5) (Attallah, Ragab &
Sharkas, 2020).

Accuracy ¼ TPþ TN
TNþ FPþ FNþ TP

(1)

Sensitivity ¼ TP
TPþ FN

(2)

Specificity ¼ TN
TNþ FP

(3)

Precision ¼ TP
TPþ FP

(4)

F1� Score ¼ 2� TP
2� TPð Þ þ FPþ FN

(5)

where; is the total sum of GI images that are well classified to the GI class which they
actually belongs to is known as TP, TN is the sum of GI images that do not belong to the GI
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class intended to be classified, and truly do not belong to. For each class of GI, FP is
the sum of all images that are classified as this GI class but they do not truly belong to. For
each class of GI, FN is the entire sum of GI images that are not classified as this GI class.

RESULTS
The results of four experiments of Gastro-CADx are presented in this section. Experiment
I is an end to end DL process where the four CNN are employed to perform classification.
In experiment II (first stage of Gastro-CADx), DL features are extracted from the
four CNNs and used to train distinct SVM classifiers. Experiment III (second stage of
Gastro-CADx) represents the use of the second stage of feature extraction and
reduction methods which employs DCT and DWT to extract temporal-frequency and
spatial-frequency information from the images. In this experiment, reduced coefficients
generated from DWT and DCT methods are employed to train SVM classifiers. In
experiment IV, different combinations of fuzed features are generated and utilized to
inspect the effect of feature combination on Gastro-CADx performance.

Experiment I results
The results of the end-to-end DL procedure employed for classification are illustrated in
Tables 3 and 4 for Dataset I and Dataset II respectively. Table 3 shows that the highest
accuracy of 91.66% is achieved by ResNet-50 followed by an accuracy of 90.08%, 89.83%,
88.32% attained by DarkNet-19, DenseNet-201, and AlexNet respectively for Dataset I.
Table 4 demonstrates that the peak accuracy of 94.75% is achieved by ResNet-50 followed
by an accuracy of 93.26%, 91.93%,91.66% attained by DarkNet-19, DenseNet-201, and
AlexNet respectively for Dataset II.

Experiment II results
This experiment represents the first stage of Gastro-CADx. The results of this experiment
are shown in Figs. 5 and 6 for Dataset I and Dataset II respectively. Figure 5 indicates the

Table 3 The classification accuracy for the four CNNs used in Gastro-CADx using Dataset I.

CNN Accuracy (%)

AlexNet 88.32

ResNet-50 91.66

DarkNet-19 90.08

DenseNet-201 89.83

Table 4 The classification accuracy for the four CNNs used in Gastro-CADx using Dataset II.

CNN Accuracy (%)

AlexNet 91.66

ResNet-50 94.75

DarkNet-19 93.26

DenseNet-201 91.93
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maximum accuracies of 94.4% and 94.3% are attained by DarkNet-19 using linear and
quadratic SVM classifiers using Dataset I. Subsequently, ResNet-50 features achieve an
accuracy of 93.5%, 93.4%, and 93.4% using linear, quadratic, and cubic SVM classifiers
respectively. Following, AlexNet and DenseNet-201 features obtain an accuracy of 92.9%,
93%, 92.7%, and 91%, 91.5%, 91.7% for using linear, quadratic, and cubic SVM classifiers
respectively. Figure 6 shows the peak accuracies of 96.9%, 96.8%, 96.7% are achieved
by ResNet-50 using linear, quadratic, and cubic SVM classifiers constructed with
Dataset II. Next, DarkNet features attain an accuracy of 96.4%, 96%, and 95.2% using
linear, quadratic, and cubic SVM classifiers respectively. Following, AlexNet and
DenseNet-201 features obtain an accuracy of 95.5%, 95.7%, 95.3% and 94.7%, 94.6%,
94.6% for using linear, quadratic, and cubic SVM classifiers respectively.

Experiment III results
This experiment represents the second stage of Gastro-CADx. The results of this
experiment are shown in Figs. 7–10 for Dataset I and Figs. 11–14 for Dataset II. Figure 7
shows the classification accuracy for the three SVM classifiers constructed with CA and
CD coefficients of DWT, besides the 500 DCT coefficients extracted from the ResNet-50
CNN using Dataset I. The figure indicates that the peak accuracy of 93.6% is achieved
using the 500 DCT coefficients with linear SVM. Almost the same accuracy of 93.5% is
attained using the CA coefficients of DWT.

Figure 8 demonstrates the classification accuracy for the three SVM classifiers built with
CA and CD coefficients of DWT, in addition to the 500 DCT coefficients extracted from
AlexNet CNN using Dataset I. The figure specifies that the highest accuracy of 93.3% is
accomplished using the CD coefficients of DWT with a quadratic SVM classifier. A slightly
lower accuracy of 92.9% is attained using the CA coefficients of DWT.

Figure 5 Experiment II—Accuracy of each DL features extracted from the four CNNs of Gastro-
CADx constructed using Dataset I. Full-size DOI: 10.7717/peerj-cs.423/fig-5
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Figure 9 displays the classification accuracy for the three SVM classifiers constructed
with CA and CD coefficients of DWT, as well as the 500, DCT coefficients extracted
from DenseNet CNN using Dataset I. The figure identifies that the highest accuracy of
91.1% is accomplished using the CA coefficients of DWT with a cubic SVM classifier.
A lower accuracy of 90.6% is reached using the CA coefficients of DWT with a linear
SVM classifier.

Figure 6 Experiment II—Accuracy of each DL features extracted from the four CNNs of Gastro-
CADx constructed using Dataset II. Full-size DOI: 10.7717/peerj-cs.423/fig-6

Figure 7 Experiment III—Accuracy of each DCT and DWT features extracted from the ResNet-50
CNN of Gastro-CADx constructed using Dataset I. Full-size DOI: 10.7717/peerj-cs.423/fig-7
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Figure 10 shows the classification accuracy for the three SVM classifiers created with the
CA and CD coefficients of DWT, besides the DCT coefficients extracted from DarkNet-19
CNN using Dataset I. Note that, since the number of DL features extracted from
DarkNet-19 was only 8 (which is already a small dimension of features), all the DCT
coefficients are used in this experiment without the need of the zigzag scanning procedure.
The figure indicates that the highest accuracy of 94.7% is accomplished using the DCT
coefficients with linear SVM.

Figure 8 Experiment III—Accuracy of each DCT and DWT features extracted from the AlexNet
CNN of Gastro-CADx constructed using Dataset I. Full-size DOI: 10.7717/peerj-cs.423/fig-8

Figure 9 Experiment III—Accuracy of each DCT and DWT features extracted from the DenseNet-
201 CNN of Gastro-CADx constructed using Dataset I. Full-size DOI: 10.7717/peerj-cs.423/fig-9
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Figure 11 shows the classification accuracy for the three SVM classifiers constructed
with CA and CD coefficients of DWT, besides the 500 DCT coefficients extracted from the
ResNet-50 CNN using Dataset II. The figure indicates that the peak accuracy of 96.9%
is achieved using the CA coefficients with linear, cubic, and quadratic SVM. Almost the
same accuracy of 96.8% is attained using the CD coefficients of DWT with linear, cubic,
and quadratic SVM and the 500 DCT coefficient with linear SVM.

Figure 10 Experiment III—Accuracy of each DCT and DWT features extracted from the DarkNet
CNN of Gastro-CADx constructed using Dataset I. Full-size DOI: 10.7717/peerj-cs.423/fig-10

Figure 11 Experiment III—Accuracy of each DCT and DWT features extracted from the ResNet-50
CNN of Gastro-CADx constructed using Dataset II. Full-size DOI: 10.7717/peerj-cs.423/fig-11
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Figure 12 reveals the classification accuracy for the three SVM classifiers learned
with CA and CD coefficients of DWT, besides the 500 DCT coefficients extracted from
AlexNet CNN using Dataset II. The figure specifies that the highest accuracy of 95.6%
is accomplished using the CA coefficients of DWT with a quadratic SVM classifier.
A slightly lower accuracy of 95.5% is attained using the CD coefficients of DWT with
quadratic SVM.

Figure 13 indicates the classification accuracy for the three SVM classifiers built with
CA and CD coefficients of DWT, besides the 500, DCT coefficients extracted from

Figure 12 Experiment III—Accuracy of each DCT and DWT features extracted from the AlexNet
CNN of Gastro-CADx constructed using Dataset II. Full-size DOI: 10.7717/peerj-cs.423/fig-12

Figure 13 Experiment III—Accuracy of each DCT and DWT features extracted from the DenseNet-
201 CNN of Gastro-CADx constructed using Dataset II.Full-size DOI: 10.7717/peerj-cs.423/fig-13
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DenseNet CNN using Dataset II. The figure identifies that the highest accuracy of 94.4% is
accomplished using the CA coefficients of DWT with cubic and quadratic SVM classifiers.
The same accuracy is reached using the CD coefficients of DWT with a quadratic
SVM classifier.

Figure 14 demonstrates the classification accuracy for the three SVM classifiers
constructed with CA and CD coefficients of DWT, in addition to the DCT coefficients
extracted from DarkNet-19 CNN using Dataset II. As the number of DL features
mined from DarkNet-19 was only 10 in the case of Dataset II (which is already a small
dimension of features), all the DCT coefficients are employed in this experiment without
the necessity of the zigzag scanning process. The figure specifies that the peak accuracy
of 96.4% is obtained using the DCT coefficients with linear SVM.

Experiment IV results
This experiment represents the third stage of Gastro-CADx. This experiment aims to
explore the effect of combining features on the CADx’s performance. Moreover, to search
for the best combination of fuzed feature set which has the highest influence on the
classification accuracy. To form the fuzed feature sets, firstly for DWT, the CD coefficients
extracted from the DL features for every two CNNs are fuzed. Next, the CD coefficients
extracted from the DL features of each three CNNs are merged. Afterward, all CD
coefficients extracted from the DL features of the four CNNs are combined. A similar
fusion process is executed for the CA coefficients. For DCT, initially, the coefficients
extracted from the DL features for every two CNNs are fuzed. Afterward, the DCT
coefficients extracted from the DL featured of each three CNNs are fuzed. Next, the
coefficients extracted from DL images of the four CNNs are merged.

Figure 14 Experiment III—Accuracy of each DCT and DWT features extracted from the DarkNet-19
CNN of Gastro-CADx constructed using Dataset II. Full-size DOI: 10.7717/peerj-cs.423/fig-14
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Table 5 displays a comparison between classification accuracy achieved using CA and
CD features extracted from different combinations of the DL features generated from
the four CNNs employed in Gastro-CADx using Dataset I. This comparison shows the
CA features has slightly higher accuracy than CD features for all combination of fuzed
features except for AlexNet+ResNet and AlexNet+DenseNet. The maximum performance
(written in bold) is achieved using CA and CD features extracted using the fusion of
AlexNet+ResNet+DenseNet CNNs, where the highest accuracy of 97.3% is attained using
CA features extracted using AlexNet+ResNet+DenseNet CNNs with both quadratic and
cubic SVM. On the other hand, Table 6 presents a comparison between classification
accuracy accomplished using 500 DCT features extracted from different combinations of
the DL variables produced from the four CNNs employed in Gastro-CADx using Dataset I.

Table 5 The classification accuracy (%) for the CA and CD features of DWT extracted from different
combination of CNNs used in Gastro-CADx using Dataset I.

Features CA CD

Linear Quadratic Cubic Linear Quadratic Cubic

ResNet+DarkNet 94.8 95 95 93.8 94 93.7

AlexNet+DarkNet 93.7 94.5 94.6 93.4 93.7 93.4

DenseNet+DarkNet 48.8 48.5 47.6 48.4 48.6 47.7

AlexNet+ResNet 94.2 94.4 94.1 94.3 94.7 94.5

AlexNet+DenseNet 95.7 96 96.2 95.8 96.2 96

ResNet+DenseNet 96.1 96.3 96.6 96.4 96.5 96.7

AlexNet+ResNet+DenseNet 96.8 97.3 97.3 96.5 96.8 96.8

AlexNet+ResNet+DarkNet 95.2 95.3 95.4 94.4 94.7 94.7

AlexNet+DenseNet+DarkNet 95.6 95.9 96.2 95.9 96.4 96.3

ResNet+DenseNet+DarkNet 96.3 96.7 96.7 96.3 96.4 96.5

AlexNet+ResNet+DenseNet+DarkNet 96.6 96.8 97 96.3 96.6 96.6

Table 6 The classification accuracy (%) for the 500 DCT features extracted from different
combination of CNNs used in Gastro-CADx using Dataset I.

Features Linear Quadratic Cubic

ResNet+DarkNet 95 95 95.3

AlexNet+DarkNet 95 95 95.1

DenseNet+DarkNet 47.7 47.5 46.6

AlexNet+ResNet 94.2 94.2 94.4

AlexNet+DenseNet 95.5 95.7 96.1

ResNet+DenseNet 96.2 96.2 96.3

AlexNet+ResNet+DarkNet 95.5 95.8 95.9

AlexNet+ DenseNet +DarkNet 95.8 95.9 96

ResNet +DenseNet+DarkNet 96.3 96.5 96.5

AlexNet+ResNet+DenseNet 96.8 97 97.1

AlexNet+ResNet+DenseNet+DarkNet 97.1 97.3 97.3
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This comparison indicates the maximum performance (written in bold) is achieved
using DCT features extracted using AlexNet+ResNet+DenseNet+DarkNet CNNs, where
the highest accuracy of 97.3% is attained using features extracted using AlexNet+ResNet
+DenseNet+DarkNet CNNs with both quadratic and cubic SVM.

Table 7 demonstrates a comparison between the classification accuracy accomplished
using CA and CD features extracted from different combinations of the DL variables
produced from the four CNNs using Dataset II. This comparison indicates the CA features
has slightly higher accuracy than CD features for all combinations of fuzed features except
for AlexNet+ResNet and AlexNet+DenseNet. The peak performance (written in bold)
is achieved using CA and CD features extracted using AlexNet+ResNet+DenseNet CNNs,
where the maximum accuracy of 99.7% is reached using CA features extracted using
AlexNet+ResNet+DenseNet CNNs using cubic SVM. In contrast, Table 8 shows a
comparison between classification accuracy accomplished using 500 DCT features
extracted from different combinations of the DL variables generated from the four CNNs
employed in Gastro-CADx using Dataset II. This comparison specifies the maximum
accuracy (written in bold) is achieved using 500 DCT features extracted using AlexNet
+ResNet+DenseNet CNNs and AlexNet+ ResNet+DenseNet+DarkNet CNNs, where the
highest accuracy of 97.3% is attained using linear, quadratic, and cubic SVM classifiers.
Table 9 shows the performance metrics for cubic SVM classifiers trained with the fuzed
CA features extracted from AlexNet+ResNet+DenseNet CNNs using Dataset I and
Dataset II. The results of Table 9 indicate that the specificity of 0.9959 and 0.9996,
sensitivity of 0.9715 and 0.9965, precision of 0.9718 and 0.9961, and F1 score of 0.9715 and
0.9963 are obtained for Dataset I and Dataset II respectively

Table 7 The classification accuracy (%) for the CA and CD features of DWT extracted from different
combination of CNNs used in Gastro-CADx using Dataset II.

Features CA CD

Linear Quadratic Cubic Linear Quadratic Cubic

ResNet+DarkNet 98.6 98.6 98.6 98.4 98.6 98.6

AlexNet+DarkNet 98.6 98.7 98.9 98.1 98.6 98.7

DenseNet+DarkNet 97.1 97.3 97.3 96.5 96.7 96.7

AlexNet+ResNet 98.7 99 99 98.6 98.9 99

AlexNet+DenseNet 97.7 98 98.1 97.7 98 98.1

ResNet+DenseNet 48.8 49 49.2 48.7 49 49.1

AlexNet+ResNet +DenseNet 99.6 99.6 99.7 99.5 99.6 99.5

AlexNet+ResNet+DarkNet 98.8 98.8 98.9 98.8 98.9 98.9

AlexNet+DenseNet+DarkNet 98.7 98.7 98.8 98.6 98.8 98.8

ResNet+DenseNet+DarkNet 98.8 98.9 99 98.7 99 99.1

AlexNet+ResNet+DenseNet+DarkNet 99.6 99.6 99.6 99.4 99.5 99.6

Attallah and Sharkas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.423 24/36

http://dx.doi.org/10.7717/peerj-cs.423
https://peerj.com/computer-science/


DISCUSSION
The manual diagnosis of GI diseases with a huge number of endoscopic images is very
challenging and time-consuming. Besides, at times the image containing the abnormality
can be simply unobserved by the medical expert which can lead to misdiagnosis.
Therefore, there is an essential need for automatic systems that have the capability to
automatically identify possible anomalies by analyzing the entire endoscopic images (Aoki
et al., 2019). Nowadays, with the current development of DL and imaging processing
technologies, CADx systems have been frequently used to help gastroenterologists in
automatically examining endoscopic images and recognizing the GI disease (Khan et al.,
2020b). In this study, an automatic CADx system called Gastro-CADx is proposed. The
proposed CADx involves three steps including the image preprocessing step, followed by the
feature extraction, reduction, and fusion step, and finally the classification step. Primary the
endoscopic images were augmented. Next, is the feature extraction, reduction, and fusion
step. Which presents the three stages of Gastro-CADx. In the first stage of Gastro-CADx,
four spatial valuable DL features were extracted from the four CNNs and used to train SVM
classifiers. Next, in the second stage of Gastro-CADx, DCT, and DWT feature extraction
methods were employed to extract temporal-frequency and spatial-frequency features.
These methods were used for feature reduction as well. These extracted features are utilized

Table 8 The Classification Accuracy (%) for the 500 DCT features extracted from different
combination of CNNs used in Gastro-CADx using Dataset II.

Features Linear Quadratic Cubic

ResNet+DarkNet 98.1 98.4 98.5

AlexNet+DarkNet 97.7 97.9 98

DenseNet+DarkNet 48.7 49 49.2

AlexNet+ResNet 98.2 98.5 98.6

AlexNet+DenseNet 98.2 98.6 98.6

ResNet +DenseNet 98.8 98.9 98.9

AlexNet+ResNet+DarkNet 98.8 99 99.2

AlexNet+DenseNet+DarkNet 98.6 98.7 98.7

ResNet +DenseNet+DarkNet 98.6 98.9 98.9

AlexNet+ResNet +DenseNet 99.6 99.6 99.6

AlexNet+ResNet +DenseNet+DarkNet 98.7 99.5 99.6

Table 9 The Performance metrics for the CA features of DWT extracted from AlexNet+ResNet
+DenseNet CNNs using Dataset I and II.

Specificity Sensitivity Precision F1 score

Dataset I

Cubic SVM 0.9959 0.9715 0.9718 0.9715

Dataset II

Cubic SVM 0.9996 0.9965 0.9961 0.9963
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to construct the SVM classifiers. Finally, in the third stage of Gastro-CADx, the coefficients
of the DCT and DWT were fuzed to form different combinations of fuzed feature sets.
This stage examined the influence of fuzing features on the performance of the CADx.
Besides, the third stage of Gastro-CADx searched for the greatest mixture of features that
influenced Gastro-CADx’s performance. Two datasets, namely Dataset I and Dataset II were
used to evaluate the performance of the proposed Gastro-CADx.

The first stage of Gastro-CADx is compared with the end-to-end DL CNNs of
experiment I and the results are shown in Tables 10 for Dataset I and II. It can be observed
from Table 10 that the first stage of Gastro-CADx has higher accuracies compared to the
end-to-end CNNs constructed in experiment I for both datasets. The highest accuracy
achieved in the first stage of Gastro-CADx is 94.4% using linear SVM trained with
DarkNet-19 features for Dataset I (written in bold). Whereas, for Dataset II, the peak
accuracy attained in the first stage of Gastro-CADx is 96.9% using linear SVM trained with
DarkNet-19 features.

It was found that most of the previous studies directly used spatial DL features to
perform the classification, however in the article we tried extracting spatial-temporal-
frequency DL features using DWT and spatial-frequency DL features using DCT to
examine their influence on the classification performance of Gastro-CADx (stage two of
Gastro-CADx). DCT and DCT was also performed to reduce the huge dimension of the
DL spatial features. It is proved from Fig. 15, that for dataset I, stage two has enhanced
the classification performance with reduced feature set, while for dataset II it attained the
same accuracy but with lower feature dimension. The second stage of Gastro-CADx
has reduced the features extracted from the first stage of Gastro-CADx with almost the
same accuracy but with fewer feature dimensional space for Dataset I and Dataset II.
The highest accuracy of 94.7% of the second stage of Gastro-CADx for Dataset I was
obtained using linear SVM classifier trained with the DCT coefficients extracted from deep
learning features of DarkNet-19 CNN. Whereas, for Dataset II, the peak accuracy of 96.9%

Table 10 The classification Accuracy (%) for the first stage of Gastro-CADx compared to Experiment
I (end-to-end classifiction process) using Dataset I and II.

CNN Experiment I
(END to END)

First Stage of Gastro-CADx

Linear Quadratic Cubic

DataSet I

AlexNet 88.32 92.9 93 92.7

ResNet-50 91.66 93.5 93.4 93.4

DarkNet-19 90.08 94.4 94.3 92.2

DenseNet-201 89.83 91 91.5 91.7

DataSet II

AlexNet 91.66 95.5 95.7 95.3

ResNet-50 94.75 96.9 96.8 96.7

DarkNet-19 93.26 96.4 96 95.2

DenseNet-201 91.93 94.7 94.6 94.6
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is achieved using linear SVM classifier trained with the CA coefficients extracted from deep
learning features of ResNet-50 CNN.

On the other hand, the third stage of Gastro-CADx has further enhancement on the
classification accuracy of Gastro-CADx as shown in Fig. 15 for Dataset I and Dataset II.
Figure 15 shows the highest classification accuracy achieved using each stage of
Gastro-CADx for Dataset I and II respectively. It can be noticed from the third stage of
Gastro-CADx (experiment IV) that the fusion of DCT and DWT of DarkNet and
DenseNet CNNs yielded the worst accuracy of around 47–49% for both Dataset I and
Dataset II. Whereas, the highest accuracy of 97.3% and 99.7% is achieved using cubic SVM
classifier trained with the fuzed CA coefficients extracted using deep learning features of
AlexNet+ResNet+DesneNet for Dataset I and Dataset II respectively. In order to make a
fair comparison regarding the computational time with other related studies, we both
should use the same platform and environment like using the same processor and video
controller and other specifications which can vary the computational time. Since, this is
very hard to be accomplished as an alternative, we compared the computational cost of
the proposed Gastro-CADx with ResNet CNN (end-to-end deep learning techniques)
which is widely used in the literature and achieved the highest accuracy using both
Dataset I and Dataset II as shown in Table 10. This comparison is shown in Table 11
which compares both the classification accuracy and training time of ResNet CNN using
end-to-end procedure with Gastro-CADx. Table 11 proves that Gastro-CADx has much
lower computation time than ResNet (end-end classification) while attaining higher
accuracy for both datasets. This is because the computation time for ResNet is 80,580 s and
100,800 s for Dataset I and II respectively which is much higher than the 210 s and 780 s
achieved by Gastro-CADx. Also, the accuracy for ResNet is 90.08% and 94.75% for

Figure 15 A comparison between the highest accuracy attained from the three stage of Gasto-CADx
using Dataset I and II. Full-size DOI: 10.7717/peerj-cs.423/fig-15
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Dataset I and II respectively which is much higher than the 97.3% and 99.7% obtained by
Gastro-CADx Note that we also searched related studies to see if the authors have
mentioned the computational time of their proposed methods, but unfortunately this
information was missing.

All experiments are done with Matlab 2020a. The processor used is Intel(R) Core(TM)
i7-7700HQ, CPU @ 2.80 GHz 2.8 GHz, RAM 16 GB, and 64-bit operating system.
The video controller is NVIDIA GeForce GTX 1050.

A comparison is made to compare the performance of Gastro-CAD with the latest
relevant work that used Dataset I. The results of this assessment are displayed in Table 12.
Table 12 results prove the competence of Gastro-CADx compared to other previous
related studies. Gastro-CADx proposed in this article appears to perform well on all of the
metrics provided in Table 12. Gastro-CADx outperformed the systems presented by
Ahmad et al. (2017), Pogorelov et al. (2017) (first method), Owais et al. (2019), as they
used only spatial information extracted and from one or two CNN. The proposed
system also outperformed (Pogorelov et al., 2017; Nadeem et al., 2018) as they used only
handcrafted global features and did not benefit from using the spatial information of
features extracted with DL techniques. Although, Agrawal et al. (2017) combined
DL features with handcrafted global features, yet their performance is lower than

Table 11 Computation time and accuracy acheived using Gastro-CADx compared to ResNet end-to-
end deep learning method.

Method Dataset I Dataset II

Training time (s) Accuracy (%) Training time (s) Accuracy (%)

ResNet (end-to end) 80,580 90.08 100,800 94.75

Gastro-CADx 210 97.3 780 99.7

Table 12 Comparisons with recent related studies based on Dataset I.

Article Method Performance metrics

Accuracy (%) Sensitivity Precision Specificity F1 score

Ahmad et al. (2017) AlexNet 75.4 – – – –

Agrawal et al. (2017) GF1+Inception V3+VGG+SVM 96.1 0.852 0.847 0.978 0.827

Pogorelov et al. (2017) ResNet+LMT2 95.7 0.826 0.829 0.975 0.802

Pogorelov et al. (2017) GF+Decision Tree 93.7 0.748 0.748 0.964 0.747

Pogorelov et al. (2017) GF+Random Forest 93.3 0.732 0.732 0.962 0.727

Nadeem et al. (2018) GF+LBP3+Haralick+LR4 94.2 0.774 0.767 0.966 0.707

Thambawita et al. (2018) GF+CNN 95.8 0.958 0.9587 0.9971 0.9580

Owais et al. (2019) ResNet+DenseNet+MLP5 92.5 0.993 0.946 – 0.934

Gastro-CADx 97.3 0.9715 0.9718 0.9959 0.9715

Notes:
1 Global features.
2 Logistic model tree.
3 Local binary pattern.
4 Logistic regression.
5 Multilayer perceptron.

Attallah and Sharkas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.423 28/36

http://dx.doi.org/10.7717/peerj-cs.423
https://peerj.com/computer-science/


Gastro-CADx. This is because Gastro-CADx considered the fusion of two types of textural
features while reducing the feature space.

Dataset II is a new dataset for GI disease that was just released in 2020. Therefore, there
is still no research articles to compare with. For this reason, we only compared with
the ResNet-50 CNN used in Borgli et al. (2020) as well as the other three CNNs employed
in experiment I of Gastro-CADx and illustrated in Table 13. The results of Gasto-CADx
shown in Table 12 verifies its competence. It outperformed the classification accuracy
achieved by ResNet-50 used in Borgli et al. (2020). Gastro-CADx has also better
performance than the classification accuracy achieved by AlexNet, DenseNet-201, and
DarkNet-19 CNNs. This is because Gastro-CADx extracted not only spatial features but
temporal-frequency and spatial-frequency features. It also used DCT and DWT not only
for feature extractors but also for feature reduction methods. Moreover, it fuzes these
several reduced t features to enhance the performance of the CADx.

The three stages of Gatro-CADx based on deep CNNs, DCT, and DWT showed the best
performance with the highest accuracies of 97.3% and 99.7% for Dataset I and Dataset II
respectively. The following article (Attallah, 2020; Colquhoun, 2014), that that the
reliability of a medical system requires that the sensitivity should be greater than or
equivalent to 80%, the specificity is greater or equivalent to 95%, and the precision is more
or equivalent to 95%. The specificities, sensitivities, and precision shown in Table 9 are
all larger than 95%, therefore Gastro-CADx can be considered a reliable system. This
remarkable reliability and performance of Gastro-CADx rises its usability in the diagnosis
of several GI diseases by automatically detecting several types of GI lesions or anomalies.
Our AI-based Gastro-CADx framework can help the medical experts in an effective
diagnosis of several complex GI diseases. Furthermore, it may assist gastroenterologists in
reaching a more accurate diagnosis whereas reducing examination time. The proposed
system can be used to decrease medical obstacles, death-rates in addition to the cost of
treatment.

CONCLUSION
This article introduced a CADx system called Gastro-CADx for the automatic
classification of GI diseases based on DL techniques. Gastro-CADx consist of three stages.
The first stage is based on DL feature extraction techniques to extract spatial information
from endoscopic images. The second stage extracted some temporal-frequency and
spatial-frequency features. The feature reduction procedure is also considered in this stage.

Table 13 Comparisons with studies based on Dataset II.

Method Accuracy (%)

AlexNet 91.66

ResNet-50 (Borgli et al., 2020) 94.75

DarkNet-19 93.26

DenseNet-201 91.93

Gastro-CADx 99.7
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The third stage is a feature fusion based process where several features sets extracted in the
second stage are fuzed to form numerous combinations of fuzed features. The results
of the three stages of Gastro-CADx verified that the proposed system was capable of
accurately classifying GI diseases. The first stage of Gastro-CADx achieved higher
accuracy than that of end to end DL CNNs. Moreover, the results of the second stage of
Gastro-CADx indicated that using the temporal-frequency and spatial-frequency has a
better performance compared to using only spatial features. Besides, the second stage of
Gastro-CADx achieved competitive performance to the first stage with a lower dimension
of features. Also, the third stage has further improvement in the performance of
Gastro-CADx which indicated that feature fusion had a significant impact on the accuracy
of classification. The performance of the Gastro-CADx is competitive with recent
related work based on the same dataset. This means the proposed method can be used
efficiently for the diagnosis and classification of GI diseases. Consequently, the cost of
medical investigations, medical complications, and death-rates will be reduced. Moreover,
the quality of diagnosis will be enhanced as well as the accuracy. Future work will focus on
combining multiple datasets to form a multicenter study. Besides, exploring more
CNNs and more handcrafted feature extraction methods.
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