Table 12. Comparisons with recent related studies based on Dataset I.
Article | Method | Performance metrics | ||||
---|---|---|---|---|---|---|
Accuracy (%) | Sensitivity | Precision | Specificity | F1 score | ||
Ahmad et al. (2017) | AlexNet | 75.4 | – | – | – | – |
Agrawal et al. (2017) | GF1+Inception V3+VGG+SVM | 96.1 | 0.852 | 0.847 | 0.978 | 0.827 |
Pogorelov et al. (2017) | ResNet+LMT2 | 95.7 | 0.826 | 0.829 | 0.975 | 0.802 |
Pogorelov et al. (2017) | GF+Decision Tree | 93.7 | 0.748 | 0.748 | 0.964 | 0.747 |
Pogorelov et al. (2017) | GF+Random Forest | 93.3 | 0.732 | 0.732 | 0.962 | 0.727 |
Nadeem et al. (2018) | GF+LBP3+Haralick+LR4 | 94.2 | 0.774 | 0.767 | 0.966 | 0.707 |
Thambawita et al. (2018) | GF+CNN | 95.8 | 0.958 | 0.9587 | 0.9971 | 0.9580 |
Owais et al. (2019) | ResNet+DenseNet+MLP5 | 92.5 | 0.993 | 0.946 | – | 0.934 |
Gastro-CADx | 97.3 | 0.9715 | 0.9718 | 0.9959 | 0.9715 |
Notes:
Global features.
Logistic model tree.
Local binary pattern.
Logistic regression.
Multilayer perceptron.