Skip to main content
. 2021 Mar 10;7:e426. doi: 10.7717/peerj-cs.426

Algorithm 3. Event history analysis.

Input: A sequence of input data latency L= l1, l2 … ln.
Distribution model M = {Gamma, LogNormal, Weibull}.
Output: Probability density function for distribution model, Hazard rate.
 • H(⋅|x) is a hazard rate that models the probability of an event to occur at time t.
 • F(t) is the Probability Density Function for input data.
 • μ = Scale, σ = Shape.
Step-1: Identify the suitable distribution model m ∈ M. // find the suitable distribution model
Step-2: Calculate the probability distribution function for model m. // Fit the model
F(x)=e((ln(x/m))2/(2σ2))xσ2π
Step-3: Calculate hazard rate H(x,σ)=(1xσ)ϕ(lnxσ)Φ(lnxσ) // Forecast the probability of delay