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A B S T R A C T   

There are overwhelming increases of studies and over 200,000 publications related to all the aspects of COVID- 
19. Among them, 262 papers were published by authors from 67 countries regarding COVID-19 with water 
science and technology. Although the transmission routes of SARS-CoV-2 in water cycle have not been proved, 
the water and wastewater play an important role in the control of COVID-19 pandemic. Accordingly, it is 
scholarly relevant and interesting to look into publications of COVID-19 in water science and technology to track 
the investigations for moving forward in the years to come. It is believed that, through the literature survey, the 
question on what we know and what we do not know about COVID-19 so far can be clear, thus providing useful 
information for helping curbing the epidemic from water sector. This forms the basis of the current study. As 
such, a bibliometric analysis was conducted. It reveals that wastewater-based epidemiology (WBE) has recently 
gained global attention with the source and survival characteristics of coronavirus in the aquatic environment; 
the methodology of virus detection; the water hygiene; and the impact of the COVID-19 pandemic on the water 
ecosystem being the main topics in 2020. Various studies have shown that drinking water is safety whereas 
wastewater may be a potential risk during this pandemic. From the perspective of the water cycle, the scopes for 
further research needs are discussed and proposed, which could enhance the important role and value of water 
science in warning, monitoring, and predicting COVID-19 during epidemic outbreaks.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) was epidemically 
spreading throughout the world in 2020. As the world hopes for swift 
roll-outs of COVID-19 via vaccines in 2021, researchers’ ambitions are 
likely to still be constrained by the continuing pandemic and its effects 
for the moment. No doubt, COVID-19 study was the hottest topic 
throughout 2020. The scientific community has carried out massive 
research in various fields to respond this global challenge, such as 
tracking the source of the virus, exploring possible treatments, and 
addressing the impact of the epidemic on the environment and socio- 
economy. As a whole, investigation of the COVID-19 became the most 
urgent priority while over 200,000 studies were published in 2020 [1]. 
More significantly, some major publishers removed paywalls from 

papers about COVID-19 last year to maximally speed development and 
findings into curbing the virus’s impact such as strategies, vaccines and 
treatment approaches. 

Water and wastewater play a particularly important role in the 
spread and control of coronavirus pandemics because clean water is the 
basic resource for life and any related activities including virus eradi-
cating. Globally, scientists engaged in water research began their work 
at the beginning of the epidemic. Hundreds of articles were published in 
2020 which focused on the investigation and discussion of COVID-19 
related with water sector (science and technology). Several webinars 
to timely update investigation and exchange of ideas about COVID-19 in 
the water sector were also organized. There has been consensus on the 
role of water, sanitation and personal hygiene in reducing SARS-CoV-2 
transmission and supporting the response to COVID-19 [2–4]. On the 
other hand, scientific reports indicated that SARS-CoV-2 has been 
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widely detected in wastewater [5–18]. The occurrence, fates and po-
tential treatment approaches of this virus in the water cycle should be 
urgently studied. 

General, a series of scientific output confirmed that the water sci-
entific community has offered possible solutions to COVID-19. Yet, 
considerable uncertainty remains in the information about the fate of 
SARS-CoV-2 in water and wastewater and the removal efficiency for 
virus existing treatment infrastructure. It is necessary and interesting to 
look back at the publications to track the investigations for the purpose 
of moving forward in the future. As such, we have reviewed the scientific 
publications related to COVID-19 in water and wastewater. Information 
extracted from the published literature was summarized regarding what 
we know about COVID-19 in water based on bibliometric analysis. 
Furthermore, future efforts and research agenda to help curbing the 
COVID-19 pandemic in water industry for professionals in the field of 
the water science and technology were proposed. 

2. Overall publications related to weekly count case numbers of 
the epidemic 

Several types of publications, such as peer-reviewed articles, reports, 
editorial material, letters, and opinions in the Web of Science, Di-
mensions, PubMed, and Google Scholar database, were searched. The 
terms of “COVID-19”, “SARS CoV-2”, “Severe acute respiratory syn-
drome coronavirus 2”, “2019 novel coronavirus”, “coronavirus 2019”, 
“coronavirus disease 2019”, “2019-novel CoV”, “2019 nCoV”, “HCoV- 
2019”, and “Water”, “Drinking water”, “Wastewater”, “Sewage”, 
“Sludge”, were used to search in the literature and databases. The 
suitable papers were based on the principles of that: 1) the accepted time 
of publication was from January 1, 2020 to December 31, 2020; 2) 
publications must closely describe the relationship between the water/ 
wastewater (science and technology) and COVID-19/SARS CoV-2; 3) 
each publication must have complete article structure, for those without 
references will be removed; 4) the preprint articles are not included. The 
brief literature collection process includes several steps. The initial 
search yielded over 1329, 1799, 217, and 3150 English papers in Web of 
Science, Dimensions, Pub Med, and Google Scholar, respectively. After 
removing duplicate records, 1030 papers remained. Then, by reading 
the title and abstract, the 762 records were screened. The publications 
were finally narrowed down to 262 full-text articles based on the above 

principles, which include 192 articles by context screening and 70 ar-
ticles from snowball screening. These articles can then be divided into 
four categories of research article, review, editorial material & letters, 
and others (e.g. report, short communication, commentary, opinion, and 
news) (Fig. 1). 

In Fig. 1, the publications related to weekly count case numbers of 
the epidemic are jointly illustrated. Globally, there were 81,484,663 
confirmed cases and 701,027 deaths of COVID-19 from January 4, 2020 
to December 31, 2020 [19]. During this period, scientific publications 
also show a sharp increase together with the increase of the confirmed 
case numbers. The first accepted journal publication was an editorial 
perspectives in Environmental Science: Water Research & Technology on 
March 18, 2020. In this paper, the authors advocated that the water 
engineers and professionals need to understand the nature and fate of 
coronavirus in urban water cycle. The authors also proposed some future 
research needs, such as upgrading the existing water and wastewater 
treatment infrastructure; understanding the efficiency of inactivating 
the coronavirus; monitoring drinking water distribution system; and 
discussing the potential risks to the ecosystem and human health of the 
massive use of drugs; as well as the water and sanitation systems in 
developing countries [20]. Later, opinions and reviews were also 
accepted in large numbers. The first research article on the detection of 
the virus in sewage was accepted on April 9, 2020. In the study, the 
quantitative real-time reverse transcription PCR (qRT-PCR) method was 
applied to detect SARS-CoV-2 RNA in hospital sewage. The result 
showed the positive at the entrance of the sewage disinfection pool and 
the negative after disinfection [21]. From the summer, the number of 
publications increased dramatically. While 48 documents were accepted 
before June 1, over 166 had been accepted till September 1, perhaps 
because the scientists began to return to their posts and then conduct 
research after the end of the first lockdown period. 

Although 70.7% of the publications were peer-reviewed scientific 
journal papers, the number of review papers (106, 40.5%) was more 
than research articles (79, 30.2%). The review papers provided broad 
information and deep analysis about the COVID-19 related to water 
science and technology in various aspects. Opinion-type articles also 
accounted for a large proportion, while water engineers and pro-
fessionals provided key viewpoints and information based on their 
knowledge and understanding to prevent and control virus transmission 
in water environment. For example, Lodder and de Roda Husman [22] 

Fig. 1. The COVID-19 publication related to water science and technology with coronavirus cascade during 2020. 
Source for COVID-19 cases data: https://covid19.who.int/ (Accessed on 10 January 2021). 
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provided perspective on “SARS-CoV-2 in wastewater: potential health 
risk, but also data source”, saying that the wastewater could be a sen-
sitive surveillance system and early warning tool in pandemic. 
Wastewater-based epidemiology (WBE) has been quickly and widely 
tested in many countries and regions around the world, such as Spain 
[11,23], Italy [8,24,25], UK [26], Netherlands [13], USA [27,28], India 
[14,29], Japan [15], Germany [7], Australia [17,30], and United Arab 
Emirates [16]. Many countries, such as Ireland and China, were con-
ducting such kind of research to closely monitor wastewater related 
SARS-CoV-2. These studies aimed to provide a diversified way to gain a 
deeper understanding of the COVID-19 with the water industry and 
establish the platform to help curbing the ensuing and future epidemics. 

3. Bibliometric tracking of the investigation trends since 
outbreak 

Fig. 2 presents the network visualization map of co-occurrence based 
on key terms extracted from the titles and the abstracts of the 262 
publications. The bibliometric analysis was performed on the VOS-
viewer software (version 1.6.15), in which the processes were referred 
to Ji, et al. [31]. The colors in Fig. 2 represent different clusters. 
Research on cluster 1 is focused mostly on the source and survival 
characteristics of coronavirus in aquatic environment. There are some 
evidences to support the possibility of water transmission of 
SARS-CoV-2. These include: 1) isolated virus from infected individuals’ 
excrement [32,33]; 2) detected virus RNA in municipal wastewater [7, 
10,14,24]; 3) investigating the virus persistence in wastewater and tap 
water [34,35]. All these show highly stability under certain conditions. 
No doubt, it is believed that such kind of information triggered people’s 

concerns. Cluster 2 is in close relation to cluster 1. The methodology of 
virus detection is a prerequisite to ensure SARS-CoV-2 research in water 
and wastewater. The achievements of these investigations have been 
applied to the WBE system. In addition, the torrent of COVID-19 has 
significantly affected the socio-economy and daily life. Cluster 3 high-
lights the “Water, Sanitation and Hygiene (WASH)” as a critical control 
measure in COVID-19 pandemic. The importance of water and virus 
control is generally accepted and practiced, not only in drink water, but 
in daily water hygiene as well. The challenges of water availability, 
accessibility, and quality still remain a matter both in developing and 
developed countries because of impact of COVID-19 pandemic [36–38]. 
Meanwhile, water can play an important role in revitalizing the econ-
omy after COVID-19 [37]. Finally, cluster 4 concerns on the impact of 
COVID-19 pandemic on water ecosystem. The government management 
measures during COVID-19 on the aquatic environment seem to have 
both positive and negative impacts. The lockdown measures restricted 
the human activity, with a consequence, and improved the surface water 
quality [39,40]. However, disinfection threatens the aquatic ecosystem. 
Excessive use of disinfectants and the cumulative toxicity of disinfection 
by-products (DBPs) may destroy the fragile aquatic ecosystem [41,42]. 

Fig. 3 presents the density visualization map of the co-occurrence key 
terms with the warm red colors representing hot areas in the COVID-19 
publication related to water science and technology. Sampling and 
detecting the SARS-CoV-2 and its RNA in wastewater are undoubtedly 
the hottest of research in 2020. Although the SARS-CoV-2 RNAs in 
wastewater have been widely reported, the method of sampling, storage, 
concentration, isolation, and detection are not the same in each study 
[43]. Obviously, as a key step in WEB system, the analytical protocols 
need more evaluation and investigation, which will be discussed in 

Fig. 2. Key terms occurrences network visualization map in COVID-19 publication related to water science and technology.  
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detail in later section of the review. The removal and fate of the virus in 
wastewater treatment plant (WWTP) have been widely investigated as 
WWTP is the wastewater collection and treatment site in the urban 
water cycle [44,45]. Up till now, conventional WWTPs may be sufficient 
to eliminate the SARS-CoV-2, and there are no reports of transmission 
via contact with the effluent of WWTPs. Moreover, it is well known that 
the basic design principle of WWTPs is to avoid the spread of potential 
pathogens in wastewater. Although the SARS-CoV-2 RNA has been 
detected in secondary effluent in some cases [11,15], the infectivity of 
virus still needs to be determined. In addition, the tertiary treatment and 
disinfection with a higher dosage can enhance the inactivation of 
SARS-CoV-2 in WWTPs [5]. Accordingly, the survival and persistence of 
coronaviruses in the environment through water-related routes are a 
concern and have also been highly investigating. The infectious of 
SARS-CoV-2 in wastewater can be remained for a few days [34], 
depending on the environmental conditions. Moreover, the impact of 
water safety and ecosystem and human health is also highly concerned. 

So far, there are 67 countries and regions contributing to the water 
science and technology with COVID-19 research activity (Fig. 4(a)). The 
country distribution of publications revealed a strong predominance of 
articles from the USA, India, UK, China, and Italy. Authors belonged to 
these countries have contributed 184 publication, while the USA has 
published more than a quarter of the total. Furthermore, regarding 
COVID-19 research types related to water science and technology, the 
USA is undoubtedly the most comprehensive. It is research directions 
include measurement of SARS-CoV-2 RNA in wastewater and sewage 
sludge [28,46]; investigation of the persistence of SARS-CoV-2 in water 
and wastewater [34]; discussion of the potential transmission for 
SARS-CoV-2 in the water cycle [47,48]; application of WBE for tracking 

COVID-19 [27,49]; summarization of water policy and law to respond to 
COVID-19 [50,51]; and spotlight on urban water quality under the 
pandemic [52] etc. India is the second largest productive country 
regarding wastewater surveillance [14], water quality [53], and water 
ecology [54], etc. Some countries only have literature reviews without 
field research [55,56], which may depend highly on the country’s sci-
entific research conditions and socio-economic levels. The technology 
and resource-poor regions remain under-studied. Generally, North 
America, Asia, Europe, and Oceania are active for scientific research and 
publication. However, it is evident that COVID-19 has disrupted science, 
reflecting the effect of the pandemic. 

Travel bans, social distancing, ‘lockdown’ and closed borders hinder 
communication across the academic interface, but international coop-
eration and research have not been interrupted. Fig. 4(b) presents the 
cooperative publishing of articles among the top 10 countries. The USA, 
Australia, Japan, and India are active cooperative communities for 
documents publishing. Webinars and online conferences are important 
communication ways for academic exchange and dissemination during 
the pandemic. International Water Association (IWA) [57–59], Inter-
national Water Resources Association (IWRA) [60], Water Research 
Foundation (WRF) [61], and United States Environmental Protection 
Agency (USEPA) [62], etc. have held a series of webinars to share latest 
research activities/outcomes and to address some issues related to water 
and COVID-19. 

Table 1 presents the top 10 cited research articles. The detection of 
SARS-CoV-2 in different types of wastewaters is of greatest concern to 
researchers. Ahmed, et al. [17] published a paper entitled “First 
confirmed detection of SARS-CoV-2 in untreated wastewater in 
Australia: A proof of concept for the wastewater surveillance of 

Fig. 3. The density visualization map of co-occurrence keywords COVID-19 publication related to water science and technology  
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COVID-19 in the community” in Science of the Total Environment on 15 
April 2020, which was cited over 300 times from Google Scholar data-
base by the end of 2020. They detected the presence of SARS-CoV-2 in 
the wastewater and then used the Monte Carlo approach to estimate the 
number of infected individuals in the watershed based on the number of 
RNA copies observed in the wastewater and proved that the WBE system 
could provide valuable information on monitoring the prevalence of 
infections among the population. There is an increased interest in the 
occurrence of SARS-CoV-2 RNA in wastewater based on other articles 
with high citation. In addition to the monitoring of SARS-CoV-2 in the 
wastewater or surface water, the assessment of the impact of COVID-19 
pandemic on nature water bodies has also received extensive attention 
[40]. In term of the source of high cited research article, Science of the 
Total Environment occupied absolutely statues (6 for 10). Coincidentally, 
all the water related COVID-19 papers have been published in 111 
journals. Science of the Total Environment published 69 papers, the largest 
source of publications. As the top professional journal of water science 
and technology, Water Research ranked second, with 9 peer-reviewed 
articles published. 

4. State of the knowledge and research needs 

4.1. The facts of COVID-19 with water 

Overview of the pass year, the presence of SARS-CoV-2 in aquatic 

environment is an uncontroversial fact. Over 20 countries and territories 
have reported relevant evidences (Fig. 5). It was not only presented in 
raw/untreated wastewater, the SARS-CoV-2 was detected in effluent 
from secondary treatment and sewage sludge as well, even in rivers [10, 
18]. According to Bhowmick et al. [63], the virus has various routes into 
the water environment, especially in the urban water cycle. The 
SARS-CoV-2 may hide in faeces, urine, or vomit of the infected person, 
and then enter the sewage network. But in general, there are limited 
studies on the persistence of SARS-CoV-2 in water and wastewater. 
Mean T90 of viable infectious SARS-CoV-2 with a high-starting titer (105 

TCID50 mL− 1) in wastewater and tap water at 20 ℃ in laboratory is 1.6 
and 2.0 days, respectively [34]. In conventional wastewater treatment 
processes, the primary treatment (screens, grit chamber, primary clari-
fier) at WWTPs may not be effective because of the size of the corona-
virus (60–220 nm), whereas the activated sludge flocs adsorption and 
membrane filtration could effectively remove coronaviruses from the 
aqueous phase [29,64]. However, the inactivation process is highly 
dependent on tertiary treatment with chemical oxidation disinfection 
and/or UV treatment [6]. Comparing the concentration of SARS-CoV-2 
RNA in wastewater before and after treatment suggests that 1–2 log10 
viral titers can be removed [65], depending on the process and opera-
tional conditions. To date, however, the research on the infectivity of 
SARS-CoV-2 in wastewater is very limited, which requires trained staff 
and specialized equipment. One study shows that the infectivity of 
SARS-CoV-2 was null both in raw or treated wastewater, despite the 

Fig. 4. The countries contributing to COVID-19 publication with water (a) and the cooperative publishing of articles among the top 10 countries (b).  
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presence of viral RNA in the samples in field investigation in Italy during 
the pandemic [10]. 

Due to the virus transfer from the aqueous phase to the solids phase 
by adsorption, precipitation, and filtration, the sludge is a potential 
reservoir of SARS-CoV-2 in water and wastewater treatment [12,66,67]. 
While limited information about the SARS-CoV-2 in sludge, the risk of 
virus transmission in sludge disposal should not be ignored as the 

complex compounds in the sludge can shield viruses from disinfection 
[68]. 

The clear water is a fundamental resource to fight the pandemic. So 
far, there is no evidence to show that the SARS-CoV-2 was detected in 
drinking water. Moreover, the SARS-CoV-2 is an enveloped virus with a 
single-stranded RNA, it is less persistent in water than other non- 
enveloped viruses [69]. Waterworks or drinking water treatment 

Table 1 
The top 10 cited research articles in COVID-19 publication related to water science and technology.  

No Title First Author Corresponding 
Author 

Accepted Cited 
Timesa 

Source 

1 First confirmed detection of SARS-CoV-2 in untreated wastewater in 
Australia: A proof of concept for the wastewater surveillance of COVID- 
19 in the community 

Warish Ahmed Warish Ahmed 15 April 
2020  

336 Science of the Total 
Environment 

2 SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a 
low prevalence area 

Walter Randazzo Gloria Sanchez 12 May 
2020  

177 Water Research 

3 First detection of SARS-CoV-2 in untreated wastewaters in Italy Giuseppina La 
Rosa 

Giuseppina La 
Rosa 

21 May 
2020  

151 Science of the Total 
Environment 

4 Presence of SARS-Coronavirus-2 RNA in sewage and correlation with 
reported COVID-19 prevalence in the early stage of the epidemic in the 
Netherlands 

Gertjan Medema Gertjan Medema 20 May 
2020  

147 Environmental Science & 
Technology Letters 

5 SARS-CoV-2 titers in wastewater are higher than expected from 
clinically confirmed cases 

Fuqing Wu Eric J. Alm 6 July 
2020  

127 mSystems 

6 Computational analysis of SARS-CoV-2/COVID-19 surveillance by 
wastewater-based epidemiology locally and globally: Feasibility, 
economy, opportunities and challenges 

Olga E.Hart Rolf U. Halden 19 April 
2020  

114 Science of the Total 
Environment 

7 SARS-CoV-2 RNA detection of hospital isolation wards hygiene 
monitoring during the Coronavirus Disease 2019 outbreak in a Chinese 
hospital 

Jie Wang Ting ting Qu 9 April 
2020  

91 International Journal of 
Infectious Diseases 

8 Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers Sara 
GiordanaRimoldi 

Fabrizio Stefani 10 July 
2020  

81 Science of the Total 
Environment 

9 First environmental surveillance for the presence of SARS-CoV-2 RNA in 
wastewater and river water in Japan 

Eiji Haramoto Eiji Haramoto 19 June 
2020  

78 Science of the Total 
Environment 

10 COVID-19 and surface water quality: Improved lake water quality 
during the lockdown 

Ali P. Yunus Ali P. Yunus 24 April 
2020  

66 Science of the Total 
Environment  

a number of citations as of the end of 2020. 

Fig. 5. Confirmed cases of SARS-CoV-2 detection in global aqueous environment.  
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plants are believed to be enough to remove pathogen and non-enveloped 
viruses, which should also inactivate the SARS-CoV-2. What we are 
trying to pay the attention is the safety of the water supply network 
system and the concentration of residual chlorine and/or monochlor-
amine in the terminal water. 

WBE provides a new idea for tracing COVID-19 source and moni-
toring infection dynamic in the community (Fig. 6). SARS-CoV-2 RNA 
can be detected in sewage before clinically confirmed cases [13,26,70], 
which supports that WBE could be a sensitive and an early warning tool 
for COVID-19 epidemiological surveillance. On the other hand, there is a 
correlation between the concentration of SARS-CoV-2 RNA in the 
municipal wastewater and the rise and fall of cases in COVID-19 
pandemic [12,47,71]. These successful applications of WEB have 
prompted some countries to plan and implement national wastewater 
monitoring programs, which can be used as virus tracking tools to 
supplement existing public health indicators [72]. 

4.2. The scope for further research needs 

Numerous publications in 2020 demonstrated and enhanced the 
important role and value of water science in warning, monitoring, and 
predicting COVID-19 during the epidemic outbreaks. No doubt, further 
studies are needed to explore the details of the relation between COVID- 
19 and the water environment. 

4.2.1. The potential transmission of SARS-CoV-2 in the collection, 
treatment, and distribution of water cycle 

There are several publications exploring the potential SARS-CoV-2 
transmission via wastewater plumbing systems in buildings [73,74]. 
Obviously, this is the important study with high value of COVID-19 early 
warning and curbing. However, more studies are needed to find nodes 
that may be overlooked and eradication of this transmission route. In the 
water/wastewater treatment process, workers dealing with drinking 
water, wastewater, and sludge may face potential risks. The risks of 
transmission from direct contact and derived from the sewage-derived 
aerosol need to be assessed [75]. For the distribution of wastewater 
systems, the sludge and wastewater discharged from WWTPs are po-
tential infection risks, which may include coronaviruses. There are very 
limited research reports on the issue of SARS-CoV-2 RNA being detected 
in receptors water bodies. Rimoldi et al. [10] detected SARS-CoV-2 RNA 
in rivers in Italy and found no infectivity. Another research report on 
SARS-CoV-2 RNA being detected in river water is from a low sanitation 
country of Ecuador, but the infectivity of SARS-CoV-2 has not been 
discussed [18]. Therefore, the survival characteristics of the virus in the 
receiving environment (lakes, rivers, soil, etc.) must be further evalu-
ated. On the other hand, for drinking water distribution, network acci-
dent and cross-contamination are the most likely source of risk, while 

the biological safety of booster pumping stations in high-rise buildings 
also needs further study. 

4.2.2. The survival/infection of SARS-CoV-2 in water cycle under field 
conditions 

To date, only a few experiments have studied the survival of SARS- 
CoV-2 in tap water and wastewater. These experiments are cultured 
under relatively stable conditions (fixed temperature, constant nutrient 
substrate), while the survival rates could be different under complexly 
and variability field conditions. There are some key nodes that need to 
pay attention in water cycle: 1) wastewater plumbing systems: It is 
necessary to understand the survival features of virus from source to sink 
because the wastewater needs a certain time to be transported to a 
centralized WWTP; 2) wastewater treatment processes: Although some 
studies have described the fate of coronaviruses in WWTPs with obser-
vations of surrogates, the need for confirming the real removal perfor-
mance of SARS-CoV-2 in treatment process is desirable. Moreover, 
mastering the removal or inactivating mechanism can further develop 
wastewater treatment technologies that efficiently remove coronavirus 
to avoid waste of resources and secondary risks caused by excessive 
operations. 

4.2.3. The methods for the detection and quantification of coronaviruses in 
aquatic environment 

The RT-qPCR and nested RT-PCR are available for detecting SARS- 
CoV-2 in wastewater, but more research is needed to effectively 
recover and optimize RNA extraction methods from different water 
matrices. In addition, the main drawbacks of PCR-based methods for 
viral nucleic acid detection are time-consumption and high costs. The 
paper-based devices may provide a “sample-to-answer” tool for near 
real-time and continuous detection of SARS-CoV-2 in wastewater [76]. It 
is critical indeed to develop reliable, cheap, easy-to-use protocol/tool for 
wastewater analysis to help control the pandemic in low- and 
middle-income countries and remote rural areas. 

4.2.4. The standardized protocol for WBE 
The research and application about WBE in COVID-19 has recently 

gained global attention, but there is an obvious need to establish a 
standardized protocol to strengthen the science of methodology and 
promote information sharing. Both WRF and IWA have held interna-
tional webinars with the themes of “Environmental surveillance of 
COVID-19 indicators in sewersheds” [61] and “COVID-19: 
Wastewater-based epidemiology” [59], respectively. These Webinars 
share the cases and results of the WBE monitoring in COVID-19 and 
presented some new recommendations in several areas for WBE prac-
tices. The optimized protocols for SARS-CoV-2 detection and quantifi-
cation from sampling to reporting the results in WBE have been 

Fig. 6. Schematic diagram of Water-Based Epidemiology (WBE) and potential application (Modified from Farkas, et al. [65]).  
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discussed in great details in Michael-Kordatou et al. [67] and Daughton 
[77]. Of course, improving the detection sensitivity of SARS-CoV-2 RNA 
in sewage is the basis for reflecting the role of WBE early warning and 
monitoring. In addition, measuring wastewater solids may be more 
sensitive than measuring SARS-CoV-2 in wastewater [9,28]. Meanwhile, 
research on the viral load per an infected person or population and 
sewage network transportation efficiency, as well as the decay rate of 
viruses can provide more reliable data for WBE prediction models [78, 
79]. All of these approaches and proposals need further study and 
standardized protocol should be established. 

4.2.5. The secondary risk in water related with COVID-19 
In order to control the spread of SARS-CoV-2 in the environment, the 

intensified disinfection has been undertaken in indoor and outdoor and 
water treatment process. The high concentrations of disinfectants and 
harmful disinfection by-products (DBPs) will pose potential risks to 
water quality and safety of water environment [41,42]. There is the need 
to assess water quality and aquatic ecological integrity in before, during, 
and after the COVID-19 pandemic, and to develop novel disinfection 
technologies to minimize the environmental hazard load of disinfectants 
in water treatment. Similarly, the medical service is increasing the use of 
antiviral drugs to treat patients, which will have potential adverse ef-
fects on ecosystems when its residues or metabolites were discharging 
into wastewater and then entering water environment. 

Another potential secondary risk comes from the stagnant water in 
reopening buildings after extended stagnation during the pandemic. 
Stagnant water can have chemical and microbiological contaminants 
that pose potential health risks to occupants [80]. In particular, water 
stagnation in buildings may lead to Legionella growth, but study on the 
relationship between Legionnaires’ disease cases and COVID-19 lock-
downs is still limited [81]. This should be considered to ensure the safety 
building water system and devices when reopening buildings. 

As an effective and inexpensive way to prevent the coronavirus 
outbreak, personal protective equipment (PPE) has significantly 
increased in the demand and consumption during the COVID-19 [82, 
83]. However, after a large amount of PPE is used, the challenge is how 
to dispose of such plastic products. It has been estimated that 1.56 
billion masks could enter ocean in 2020, which pose an existential threat 
to marine wildlife and ecosystems [84]. In particular, it is noted that 
plastics will be further broken down into microplastics (MPs) which are 
regarded as an emerging pollutant [85]. Actually, limited information 
was exists in the literature on the source, abundance, and distribution of 
PPE in aquatic environment. Some scientists have initially studied its 
behavior in the marine environment [86,87], but in the freshwater 
environment it remains unclear. 

4.2.6. Water and digital revolution in pandemic 
The ongoing COVID-19 limits human activities, but provides an op-

portunity to focus on investigating the virus. What happens when the 
Covid-19 virus gets into the environment through human digestive 
waste? We know that faeces from people infected with the SARS-CoV-2 
virus can contain genetic material (RNA) from the virus, and that it is 
possible to detect that viral RNA in sewage. This will provide insight into 
the prevalence of the virus in the community, and serve as an early 
warning system for a new wave of infection. In addition, this is also an 
opportunity to promote the digital revolution of the water industry. 
Merging accurate biosensor tools in wastewater with big data analytics, 
machine learning strategies will provide a valuable scenario for making 
predictions way before symptoms appear in a certain community. Dig-
ital technology can optimize the water treatment process and manage-
ment resource allocation to support the achievement of the Sustainable 
Development Goals (SDG) in the COVID-19 pandemic [88,89]. This can 
also help to work out what happens to the SARS-CoV-2 virus in nearby 
bodies of water such as rivers, streams and sea, including the swimming 
water in beach. 

5. Conclusions 

Although researchers’ ambitions for swift roll-outs of COVID-19 in 
2021 are likely to still be constrained by the continuing pandemic and its 
effects for the moment, COVID-19 study was the hottest topic 
throughout 2020. By December 31, 2020, authors from 67 countries 
have published 262 COVID-19 publications related to water science and 
technology. These studies have greatly demonstrated and enhanced the 
important role and value of water science and technology during 
COVID-19 pandemic. Studies have shown that drinking water is safe 
whereas wastewater may be a potential risk during this pandemic. Based 
on the bibliometric analysis, the source and survival characteristics of 
coronavirus in the aquatic environment, the methodology of virus 
detection, the water hygiene, and the impact of the COVID-19 pandemic 
on the water ecosystem are the highlighted topics in the past year. Due 
to the detection of SARS-CoV-2 in sewage in many places across the 
world, WBE becomes a highly important water science platform. Water 
scientists and professionals can provide unique and powerful informa-
tion and practical guides to discover the blind spots of SARS-CoV-2 in 
the water cycle and further curb the spread of the virus. For better doing 
so, we need more research on the relationship between COVID-19 and 
water. The topics of the potential transmission and survival character-
istics of SARS-CoV-2 in the collection, treatment, and distribution of 
water cycle; the method of detection of virus in different aquatic envi-
ronment; the standardized protocol for WEB; and the secondary risk for 
water health; as well as the digital revolution in water industry are 
highly desirable for investigation. 
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