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Ambient air pollution contributes to 7 million premature deaths annually. Concurrently, the ongoing coronavirus
disease 2019 (COVID-19) pandemic, complicated with S-protein mutations and other variants, caused by the
novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 2.5 million deaths glob-
ally. Chronic air pollution-mediated cardiopulmonary diseases have been associated with an increased incidence of
hospitalization andmechanical ventilation following COVID-19 transmission.While the underlyingmechanisms re-
sponsible for this association remain elusive, air pollutant-induced vascular oxidative stress and inflammatory re-
sponses have been implicated in amplifying COVID-19-mediated cytokine release and vascular thrombosis. In
addition, prolonged exposure to certain types of particulate matter (PM2.5, d < 2.5 μm) has also been correlated
with increased lung epithelial and vascular endothelial expression of the angiotensin-converting enzyme-2
(ACE2) receptors to which the SARS-CoV-2 spike glycoproteins (S) bind for fusion and internalization into host
cells. Emerging literature has linked high rates of SARS-CoV-2 infection to regionswith elevated levels of PM2.5, sug-
gesting that COVID-19 lockdowns have been implicated in regional reductions in air pollutant-mediated cardiopul-
monary effects. Taken together, an increased incidence of SARS-CoV-2-mediated cardiopulmonary diseases seems
to overlap with highly polluted regions. To this end, we will review the redox-active components of air pollutants,
the pathophysiology of SARS-CoV-2 transmission, and the key oxidative mechanisms and ACE2 overexpression un-
derlying air pollution-exacerbated SARS-CoV-2 transmission.
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1. Introduction

Ambient air pollution affects millions of people daily as one of the
leading causes of morbidity and mortality worldwide (Rajagopalan
et al., 2018) (Table 1). In parallel, the coronavirus disease 2019
(COVID-19) represents the worst infectious outbreak of the century, in-
fecting cardiovascular, pulmonary, and other organ systems with the
novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The global death toll from COVID-19 infection has risen beyond 2.5 mil-
lion, as reported by the World Health Organization (WHO)
(“Coronavirus Disease (COVID-19)”, 2021).

Industrial regions with the highest levels of pollutants are
experiencing particularly high mortality rates from SARS-CoV-2 trans-
mission (X. Wu et al., 2020; Ali and Islam, 2020; Comunian et al.,
2020; Mukherjee et al., 2021). The first case of COVID-19 in Wuhan
City in China and subsequently, in the Po Valley in Italy, are examples
of the geographical link with SARS-CoV-2 infection (Fig. 1) (Conticini
et al., 2020; Hui et al., 2020; Jiang et al., 2020; Remuzzi and Remuzzi,
2020; Coccia, 2021a, 2021b, 2021c). The Po Valley spans the cities of
Lodi, Cremora, Bergamo, and Brescia, known as the four Italian cities
with the highest pollution levels (Frontera et al., 2020a). These highly
industrialized regions were found to have a two-fold higher mortality
rate from COVID-19. However, in other regions of Italy with low pollu-
tion, 40–50% of the population had positive COVID-19 swabs but were
asymptomatic. Thus, there seems to be a correlation between COVID-
19 patients having more severe symptoms and living in an area with
higher air pollution (X. Wu et al., 2020).

While ambient particulate matter is widely recognized as a contrib-
utor to the underlying cardiopulmonary diseases, recent epidemiologi-
cal findings support the emerging association between elevated levels
of air pollution and COVID-19 outbreaks and mortality (Martelletti
and Martelletti, 2020; Petroni et al., 2020). Patients with pre-existing
diseases that are correlated with chronic exposure to air pollution,
such as atherosclerosis, chronic obstructive pulmonary disease
(COPD), cystic fibrosis (CF), diabetes, and obesity, fare worse clinically
after contracting SARS-CoV-2. These patients develop an increased risk
of death and are in need of mechanical ventilation (Chen et al., 2020a;
Colombo et al., 2020; Ji et al., 2020; F. Wu et al., 2020; Mohammad
et al., 2021). Emergency department admissions due to exacerbation
of COPD or CF have been attributed to 10 μg/m3 increases of particulate
matter (PM) in the air (Zanobetti and Schwartz, 2005).
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Aggressive measures to contain COVID-19 outbreaks through public
lockdowns and home quarantines led to a reduction in air pollution
from transportation and industrial emissions (Chen et al., 2020b;
Huang et al., 2020). In the Yangtze River Delta region, including Shang-
hai, in China, concentrations of particulate matter with a diameter of
2.5 μm (PM2.5) were reduced by 22.9% as compared to pre-lockdown
levels (Huang et al., 2020). Daily premature mortality related to PM2.5

exposure during the lockdown period was estimated to be 895 (95%
confidence interval: 637–1081). This mortality was 43.3% lower than
the pre-lockdown period and 46.5% lower than averages for
2017–2019 (Huang et al., 2020). Thus, the substantial health benefits,
such as a lowered incidence of premature deaths due to cardiopulmo-
nary diseases inWuhan, China, suggest an association with the reduced
emission levels from reduced human and industrial activities (Chen
et al., 2020a; Giani et al., 2020; Han and Hong, 2020; Xu et al., 2020).

Despite the rising mortality rates in the highly polluted regions, the
relationship between air pollutant-mediated cardiopulmonary diseases
and exacerbation of COVID-19-associated comorbidities has yet to be
determined (Giani et al., 2020). High rates of hospitalization from
COVID-19 outbreaks have occurred in regions with elevated levels of
pollutants (Benmarhnia, 2020; Bianconi et al., 2020; Bontempi, 2020;
Frontera et al., 2020b; Giani et al., 2020). To further study the overlap-
ping relationship between the impact of air pollution and COVID-19
on the cardiopulmonary system, we hereby conducted this critical re-
view. This emerging domain of study covers the intersection of
COVID-19 and the environmental impacts on the heart, lungs, and vas-
culature, thereby providing an epidemiological basis for future basic and
clinical research. Our review highlights the inflammatory responses,
and overexpression of angiotensin-converting enzyme 2 (ACE2) recep-
tors underlying the cumulative effects of ambient PM2.5-exposure and
SARS-CoV-2 transmission on exacerbating cardiopulmonary outcomes.

2. Research methodology

We conducted a literature search on the PubMed database for key-
words (“COVID-19” OR “SARS-CoV-2”) AND (“air pollution” OR “envi-
ronment”) AND (“cardiovascular” OR “cardiopulmonary”) to identify
articles that were relevant to COVID-19 and the intersection between
cardiopulmonary effects and air pollution. These articles weremanually
selected for further comparison. Each article was inserted into a
Microsoft Excel document where the title, year, keywords,



Table 1
Size and composition of air pollutants.

Pollutant Source US Levels US Air Quality
Standard

Reference

PM2.5 Combustion sources (e.g. vehicle emissions and
industrial processes)
Natural causes (e.g. wildfires)
Atmospheric photochemical reactions with
gaseous pollutants such as NOx, O3, SO2, CO, and
VOCs

10.40 μg/m3 (2000–2019)
8.57 μg/m3 (2010–2019)

12 μg/m3 (annual mean)
25 μg/m3 (24-hour mean)

Brandt et al. (2020)
Health effects of particulate
matter (2013)

PM10 79.49 μg/m3 (2000–2019)
75.13 μg/m3 (2010–2019)

No annual mean
150 μg/m3 (24-hour mean)

Brandt et al. (2020)
California Air Resources Board
(2020)

PM0.1 (UFPs) 4730 particles/cm3 10,760 particles/cm3 Brandt et al. (2020)
Morawska et al. (2008)

NO2 and other NOx Combustion sources
Conversion from NO by atmospheric O3

44.45 ppb (2000–2019)
37.29 ppb (2010–2019)

40 μg/m3 (annual mean)
200 μg/m3 (1-hour mean)

“Basic Information about NO2”
(2016)
Brook et al. (2004)
U.S. Environmental Protection
Agency (2016)

O3 Atmospheric photochemical reactions with oxygen,
NOx, and reactive hydrocarbons in sunlight

0.074 ppm (2000–2019)
0.068 ppm (2010–2019)

100 μg/m3 (8-hour mean) U.S. Environmental Protection
Agency (2015)

CO Vehicle emissions
Incomplete combustion of organic fuels (e.g.
gasoline, oil, and coal from vehicles and other
fossil fuel combustion sources)

1.88 ppm (2000–2019)
1.26 ppm (2010–2019)

9 ppm (8-hr mean) “Carbon Monoxide Trends”
(2016)
U.S. Environmental Protection
Agency (2016)

SO2 Burning of fuel containing sulfur (e.g. coal and oil
in power plants, vehicles, and volcanoes)
Reacts with water to form sulfuric acid

47.33 ppb (2000–2019)
25.84 ppb (2010–2019)

20 μg/m3 (annual mean)
500 μg/m3 (10-minute
mean)

U.S. Environmental Protection
Agency (2016)

VOC (e.g. formaldehyde and
benzene)

Mostly indoor burning of fuels, organic chemicals
in household products

0.1–1 ppb N/A Pankow et al. (2003)

Only the most representative citations are given. (PM, particulate matter; PM2.5, particles with a diameter ≤ 2.5 μm; PM10, particles with a diameter ≤ 10 μm; PM0.1, particles with a diam-
eter ≤ 2.5 μm; NO2, nitrogen dioxide; NOx, nitrogen oxides; O3, ozone; CO, carbonmonoxide; SO2, sulfur dioxide; VOC, volatile organic compounds; μg/m3, micrograms per meter cubed;
ppm, parts per million; ppb, parts per billion.)
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methodology, key findings, authors, and journal names were docu-
mented. Through an iterative process, the articles were coded into dif-
ferent themes, followed by classification into three categories in the
ensuing Results section. The articles under each categorywere analyzed
for critical reflection and future research directions.

3. Results

Cumulative effects from the exposure to air pollution and COVID-19
on the cardiopulmonary systemare not fully understood. Fromour liter-
ature search, we identified three overarching research categories that
relate the cumulative effects of COVID-19 and air pollution on the car-
diopulmonary systems that require future studies: (1) the direct physi-
cal impact of air pollution and COVID-19 on cardiopulmonary organs
and tissues, (2) subsequent activation of immune systemand imbalance
in inflammatory responses, and (3) the indirect and direct effects of air
pollution on the transmission of SARS-CoV-2.

3.1. Cumulative effects from direct physical impact of air pollutants and
COVID-19 on the cardiopulmonary system

Air pollutants and COVID-19 both enter the human body via inhala-
tion through the lungs, and the cumulated effects may accentuate
COVID-19-mediated transmission and symptoms. Patientswith existing
cardiopulmonary comorbidities are predisposed to cytokine storms and
subsequent need for mechanical ventilation following COVID-19 infec-
tion (Ejaz et al., 2020; Sanyaolu et al., 2020; Vaughan et al., 2021;
Silverio et al., 2021). This may be due to the direct physical impact
that both air pollution and COVID-19 impart on the cells at the respira-
tory interface and the cardiovascular level. The primary ingestion of air
pollutant particles is through the lungs, where small gaseous air pollut-
ants and soluble PM deposit (Rao et al., 2018). Some atmospheric ultra-
fine particles (UFP, d < 0.1–0.2 μm) are reported to enter the digestive
system via inhalation (Li et al., 2015). Larger particles, including PM10,
tend to deposit in the upper airways, whereas smaller particles, includ-
ing PM2.5 andUFP, have the potential to reach the depths of the alveolar
sacs where these particles cross the alveolar epithelial and capillary en-
dothelial tight junctions into the bloodstream (Daigle et al., 2003;
3

Nemmar et al., 2002). A chronic, low-grade inflammatory response
due to ineffective mucociliary clearance of the particles is also impli-
cated in the increased risk of cardiopulmonary disease (Lawal, 2017)
(Table 2).

The disease at large, COVID-19, is a respiratory infection with sys-
temic effects. As upper airway epithelial cells are the first to be infected,
they further contribute to viral shedding and consequently, transmis-
sion, as observed during the early phase of infection, when patients'
symptoms resemble a routine upper respiratory infection (Wölfel
et al., 2020).

3.1.1. Particulate matter and ultrafine particles
Atmospheric pollutants, including components within PM, are well-

recognized to induce a systemic inflammatory response and oxidative
stress. The compositions and seasonal variations in air pollutants
further modulate the overexpression of inflammatory cytokines
(Kumarathasan et al., 2018) (Table 2). A host of data supports that
exposure to PM promotes cardiomyocyte injury, cardiac sodium chan-
nel dysfunction, and decreased cardiomyocyte mitochondrial function
(Liu et al., 2015; Nichols et al., 2015; Wang et al., 2012).

PM2.5 exposure has been associated with acceleration of atheroscle-
rosis and subsequent vascular calcification, as well as exacerbation of
chronic respiratory diseases (Dominici et al., 2006; Kaufman et al.,
2016; Rajagopalan et al., 2018; Sun et al., 2005). Recently, studies have
shown that inhalation of ambient air particles, especially those from
combustion-related sources, imparts far-reaching cardiopulmonary se-
quelae and mortality in humans. These types of PM consist of a combi-
nation of organic and inorganic components in the form of solid and
liquid particles of varying sizes and chemical compositions. The PM
are categorized in terms of size: (1) PM10 particles are less than
10 μm, (2) PM2.5 particles are less than 2.5 μm, and (3) PM0.1 particles,
or ultrafine particles (UFPs), are less than 0.1–0.2 μm in diameter
(Conticini et al., 2020).

Due to their small size, PM2.5 particles are widely studied epigenetic
factors for cardiovascular morbidity and mortality (Kaufman et al.,
2016). Compared to PM10, these particles harbor a higher probability
of evading the mucociliary clearance to reach the alveoli, accentuating
the severity of cardiopulmonary diseases (Sun et al., 2010). Other



Fig. 1.Maps of the geographical distribution of Aerosol Optical Depth (AOD) across China, which represents tropospheric particulate concentrations. COVID-19 cases and air pollution concen-
trations were concentrated in industrial regions. Wuhan, China is one of these regions. Figure fromNichol et al. in Remote Sens. 2020 under the Creative Commons license (Nichol et al., 2020).

A. Lai, M.L. Chang, R.P. O'Donnell et al. Science of the Total Environment 779 (2021) 146464

4



Table 2
Redox mechanisms of air pollutants and cardiopulmonary diseases.

Pollutant Mechanisms Physiological outcomes Reference

PM2.5, PM10, & PM0.1

(UFPs)
Enters bloodstream
Promotion of atherosclerotic progression
Oxidative stress
Acute conduit artery vasoconstriction

Increased presence of hypertension, blood
coagulation, and reactive hyperemia
Increased risk for exacerbations of congestive heart
failure and respiratory diseases

Briet et al. (2007)
Brook et al. (2004)
California Air Resources Board. (2020)
Gold et al. (2000)
Lucking et al. (2008)
Morawska et al. (2008)
Mutlu et al. (2007)
Peters et al. (2001)
Suwa et al. (2002)
Wellenius et al. (2005)

NO2 and other NOx Oxidative Stress
ROS production causing lung tissue damage
Inflammation
Disrupts endothelial function

Exacerbation of respiratory diseases (e.g. COPD)
Trigger/aggravator of cardiovascular conditions
(e.g. acute coronary episodes, arrhythmia)

Briet et al. (2007)
Brook et al. (2004)
Peters et al. (2001)

O3 Airway inflammation
Disrupts endothelial function
Oxidative stress
Acute conduit artery vasoconstriction

Increased presence of hypertension and blood
packet activation, increasing risk for CVD
Aggravates CVD (e.g. coronary artery disease,
stroke)

Briet et al. (2007)
Rajagopalan et al. (2018)

CO Body cell and tissue hypoxia by binding to hemoglobin
Disrupts endothelial function

Damage to heart and lung tissue
Worsens respiratory and cardiac function
Increased embolisms and thrombotic changes

Blumenthal (2001)
Briet et al. (2007)
Hoek et al. (2001)

SO2 Oxidative stress
Produced sulfuric acid causes irritation to eyes, mucous
membranes, and skin

Disrupts respiratory function and exacerbates
pre-existing respiratory conditions
Increased morbidity and mortality of CVD (heart
failure, arrythmia)
Increased hypertension and thrombotic events

Hoek et al. (2001)
Ibald-Mulli et al. (2001)
Lipsett (2001)

VOC May combine to form harmful pollutants (tropospheric
ozone and smog)
May increase CRP plasma levels

Damage to heart and lung tissue
Worsens respiratory and cardiac function
Increased embolisms and thrombotic changes

Pankow et al. (2003)
U.S. Environmental Protection Agency
(2014)

Only the most representative citations are given. (PM, particulate matter; PM2.5, particles with a diameter ≤ 2.5 μm; PM10, particles with a diameter ≤ 10 μm; PM0.1, particles with a diam-
eter ≤ 2.5 μm; NO2, nitrogen dioxide; NOx, nitrogen oxides; O3, ozone; CO, carbonmonoxide; SO2, sulfur dioxide; VOC, volatile organic compounds; μg/m3, micrograms per meter cubed;
ppm, parts per million; CVD, cardiovascular disease; ROS, reactive oxygen species; CRP, C-reactive protein.)
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inhaled smaller particles, such as UFP, may further induce NF-κB-
mediated vascular oxidative stress and inflammatory responses, alter
the diversity of gut microbiota, and elevate circulating lipid metabolites
(Li et al., 2010, 2015, 2017; Salim et al., 2014) (Table 2).

3.1.2. Gaseous pollutants
The gaseous pollutants in the atmosphere, including nitrogen oxides

(NOx), sulfur dioxide (SO2), ozone (O3), carbonmonoxide (CO), volatile
organic compounds (VOCs), and polycyclic aromatic hydrocarbons, are
considered redox-active (Manisalidis et al., 2020). Akin to PM pollution,
these gaseous pollutants gain entry into the circulatory system primar-
ily via inhalation. They can also be absorbed through the skin, causing
direct damage in other organ systems (Ghorani-Azam et al., 2016)
(Table 2). The relatively low concentration of ambient SO2 reacts with
water to form sulfuric acid (Lipsett, 2001). Due to hemoglobin having
a higher affinity for CO rather than for oxygen, CO binds to hemoglobin
upon inhalation, resulting in reduced oxygen perfusion to tissues and
organs (Blumenthal, 2001). Some VOCs such as formaldehyde and ben-
zene are highly redox-active, undergoing photochemical reaction with
other atmospheric gases. This can adversely affect the cardiopulmonary
systemupon inhalation. However, VOC concentrations tend to be so low
that they impart little or no adversarial effects on human health
(“Volatile Organic Compounds' Impact on Indoor Air Quality”, 2014).

3.1.3. Air pollutants and COVID-19: histology and tissue deterioration
The findings in lung histology of COVID-19 patients resemble those

of injured microscopic structures in air pollutant exposure. A histologi-
cal study of admitted COVID-19 patients revealed viral penetration of
liver and small intestine endothelial cells, as well as endothelial inflam-
mation in the small intestine, vascular, lung, heart, liver, and kidney
cells. These are all organ systems that are also affected by chronic air
pollution (Varga et al., 2020). Although preliminary, animal models ex-
posed to chronic PM2.5 report increased fibrosis in the alveolar walls
(Sun et al., 2005). Current histological findings of COVID-19 patients
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reveal diffuse infiltration of alveolar walls by lymphocytes and edema,
and patients with severe symptoms developed extensive intra-
alveolar fibrin deposits in association with inflammatory or deteriorat-
ing hyaline membranes, suggestive of early onset acute respiratory dis-
tress syndrome (ARDS) (Bezzio et al., 2020). Tissue biopsies revealed
extravasation of red blood cells in both the lung and skin issues such
as the mid-dermis (Jimenez-Cauhe et al., 2020; Mayor-Ibarguren et al.,
2020). Vascular injury was also a prominent feature in association
with endothelial dysfunction, micro-thrombus formation, and cellular
inflammation (Fig. 2). Furthermore, a study in Germany found that
lung histology from COVID-19 patients showed consistent diffuse alve-
olar injury in associationwith activated pneumocytes, protein-enriched
edema, and microvascular thromboemboli (Wichmann et al., 2020).
Heart tissue biopsies further revealed interstitial mononuclear inflam-
matory infiltrates consistent with an elevated level of serum troponin
and cardiac arrhythmias; however, the molecular mechanisms remain
undefined (Lindner et al., 2020). In addition to cardiopulmonary injury,
gastrointestinal involvement is reported in up to 26% of patients (Z.
Zhou et al., 2020). These COVID-19-infected tissues run in parallel
with the organ systems as reported in populations living in areas with
high air pollutant concentrations.

3.1.4. Future directions
While air pollution-mediated inflammatory effects often start in the

pulmonary system, subsequent effects cascade throughout the circula-
tory system to induce oxidative stress and deterioration in the heart,
lungs, and vasculature. In recent decades, exposure to PM2.5 pollution
has been associated with increased hospitalization and mortality, espe-
cially in patients with congestive heart failure or arrhythmia (Dominici
et al., 2006; Mann et al., 2002; Pope et al., 2002). Statistics on COVID-19
mortality corroborate that comorbidities, including coronary artery dis-
eases, hypertension, diabetes, and congestive heart disease, worsen the
severity of symptoms and patient outcomes (Harrison et al., 2020;
Ssentongo et al., 2020). In the face of increased COVID-19 cases in air



Fig. 2.Histopathologic images from COVID-19 patients showing endothelial injury and thrombus, which is similar to the histopathology seen in populations living in regions with high air
pollution. (A)Histopathologicfindings fromCOVID-19patients showacute lung injurywith hyalinemembrane in the alveolar space. (B) Vascular damagewithmicrothrombi in lung small
vessels. (C) Cases show, airway inflammation in trachea sections with polymorphous inflammatory infiltrate of submucosal layers. (D) Pulmonary thromboembolus is also seen inmany
COVID-19 patients. Photos A–C from Calabrese et al. in Virchows Arch. 2020 and D from Vasquez-Bonilla et al. in Hum. Pathol. 2020 under the Creative Commons license (Calabrese et al.,
2020; Vasquez-Bonilla et al., 2020).
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pollutant-affected regions, epidemiological data supports chronic air
pollution-induced oxidative stress and inflammatory response, mediat-
ing the direct impact on the cardiopulmonary system from chronic air
pollution exposure.

Additionally, industrial and urban regions harbor higher PM2.5 and
PM10 concentrations compared to rural areas. For example, rural loca-
tions in theMidwestern United States exhibited lower PM2.5 concentra-
tions (8.4–10.4 μg/m3) as compared to urban locations (9.5–11.6 μg/m3)
(Kundu and Stone, 2014). Thus, investigating the local impact of indus-
trial areas on cardiopulmonary health is essential to elucidate the subse-
quent impact on the severity of COVID-19 infections.

3.2. Activation of multiple inflammatory mechanisms in response to both
chronic air pollution exposure and COVID-19 infection

Populations exposed to long-term high concentrations of PM and
gaseous pollutants develop chronic inflammation in association with
the pathogenesis of cardiopulmonary diseases. Similarly, a severe im-
mune response has been reported in approximately 15% of COVID-19
patients that present with intravascular cytokine release, and, in more
severe cases, microvascular thrombosis (Lippi et al., 2020). One such re-
sponse is the cytokine release syndrome (CRS) as characterized by the
systemic release of cytokines, specifically, interleukin-6 (IL-6) (P.P. Liu
et al., 2020; Hirawat et al., 2021). The pro-thrombotic properties of cy-
tokines promote both microvascular and macrovascular thrombosis
(P.P. Liu et al., 2020). In combination with raised baseline inflammation
levels of populations living in areas of high air pollution concentration,
the additive inflammation caused by COVID-19 further magnifies the
rate of COVID-19-associated acute respiratory distress syndrome
(ARDS), myocarditis, cardiac arrhythmia, and heart failure (P.P. Liu
et al., 2020). If left unchecked, these conditions lead to inflammatory in-
filtration and destruction of alveolar septae and cardiac injury, largely
being responsible for patient death due to lung and heart failure
(Wichmann et al., 2020). As outlined by this section, the effects of
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short- and long-term exposure to air pollution create a heightened
inflammatory state with symptoms that mirror those of COVID-19
patients. These consequences may be additive and exacerbate cardio-
pulmonary symptoms in COVID-19 patients, increasing their risk of
mortality.

3.2.1. Cardiopulmonary inflammation due to exposure to pollutants
increases susceptibility to respiratory infections

Effects of pollutants include pulmonary and systemic oxidative
stress that alter vascular homeostasis (Roy et al., 2014). These oxidative
effects come through pollutants affecting the lipids and proteins or indi-
rectly through the activation of intracellular oxidant pathways
(Daellenbach et al., 2020; Lodovici and Bigagli, 2011). At the molecular
level, exposure to pollutants may activate cell signaling membrane re-
ceptors, intracellular phosphatases and kinases, and transcription fac-
tors that regulate inflammatory responses (Glencross et al., 2020).

Exposure to common air pollutants is well-recognized to alter host
immunity to viral respiratory infections by suppression of the host's de-
fenses (Ciencewicki and Jaspers, 2007). Long-term exposure to air pol-
lution is linked to elevated blood pressure, ventricular diastolic
dysfunction, reduced coronary flow reserve, and myocardial fibrosis
(Rao et al., 2018;Wold et al., 2012). In addition, an altered cardiac auto-
nomic nervous system, including increased mean heart rate and heart
rate variability, develop in response to prolonged exposure to air pollu-
tion (Park et al., 2005, 2008). However, short-term exposure to PM2.5

mediates vascular endothelial dysfunction and increased blood viscosity
and circulating fibrinogen to promote a hypercoagulable state, predis-
posing patients to hypertension, acute coronary events, heart failure,
and stroke (Donaldson et al., 2001; Peters et al., 2000; Ghio et al.,
2000; Nelin et al., 2012; Rajagopalan et al., 2018). These conditions are
implicated in the cumulative effects of COVID-19-patients inwhom car-
diac injury is evidenced by elevated serum troponin and cytokine levels
in associationwith cardiac arrhythmia,myocarditis, and contractile dys-
function (Bonow et al., 2020; Driggin et al., 2020; Yang and Jin, 2020).
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3.2.2. The role of ubiquitous ACE2 receptor and inflammation
Chronic exposure to air pollution has been associated with the ex-

pression of ACE2 in lung endothelial cells (Aztatzi-Aguilar et al., 2015;
Paital and Agrawal, 2020). ACE2 is the receptor for the SARS-CoV-2
spike protein for virus internalization into the host (Lv et al., 2020). In
mammalian models, chronic exposure to PM2.5 has also been known
to increase epithelial and endothelial ACE2 expression (Lindner et al.,
2020). In addition to binding to the ACE2 receptor, transmembrane pro-
tease serine 2 (TMPRSS2) and potentially another common protease,
furin, participate in the internalization of SARS-CoV-2 to the alveolar
type 2 cells in the lung (Ackermann et al., 2020; Walls et al., 2020;
Sajuthi et al., 2020). Thus, COVID-19 infection may be correlated with
air pollution-mediated ACE2 expression (Hamouche et al., 2020).

ACE2 is a key part of the lung renin-angiotensin system (RAS), an in-
flammatory response balancing act. ACE2 cleaves Angiotensin II (Ang-
II) to form [Ang(1-7)] which binds to the Mas receptor. The ACE2/
Ang1-7/Mas receptor axis activation is a response to PM2.5 exposure.
Mas activation occurs as a result and suppresses STAT3 and ERK,
exerting an anti-inflammatory response. The other axis is the ACE/
Ang-II/AT1R axis that leads to the release of proinflammatory cytokines
(Chamsi-Pasha et al., 2014). When the SARS-CoV-2 virus binds to ACE2
receptors of epithelial cells, there is an increase in Ang-II in the systemic
circulation which primes the ACE/Ang-II/AT1R axis activation (Fig. 3).
ACE2 and TMPRSS2 are ubiquitous in lung alveolar type 2 cells where
their upregulation can lead to increased susceptibility to SARS-CoV-2
binding.

3.2.3. Inflammation and predisposition to cytokine storm
Atmospheric contaminants modulate the host inflammatory re-

sponse, leading to overexpression of inflammatory cytokines and
chemokines. The cytokine storm that is present in severely ill
COVID-19 patientsmay also beworse in populations exposed to chronic
air pollution.

The recently coined “cytokine storm” is a symptom seen in patients
with severe COVID-19 infection and is characterized by the release of in-
flammatory cytokines (Hu et al., 2020; P. Zhou et al., 2020). Interleukin-
6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha
(TNF-α) are dominant cytokines released by lung epithelium upon
Fig. 3.ACE2 receptor binding to the SARS-CoV-2 spike protein leads to an imbalance of the RAS s
the surface of endothelial cells leads to the activation of multiple pathways that ultimately resu
the Creative Commons license (Hirano and Murakami, 2020).
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interaction with PM (Pope et al., 2016). When the inflammatory re-
sponse “spills over” into systemic circulation, a cellular inflammatory
response and platelet activation are implicated in the abundant
microthrombi found in COVID-19 patients (Brook and Rajagopalan,
2010). Another major route of inflammation is through the subsequent
activation of the NF-κB pathway (Deng et al., 2018). NF-κB activation
after coronavirus infection occurs via pattern recognition receptors in
the MyD88 pathway, resulting in cytokine induction (DeDiego et al.,
2014). Furthermore, receptor CD40, expressed by both immune and
non-immune cells, binds to ligand CD40L, temporarily expressed on T
cells and is involvedwith recruitment of TNF-α receptor-associated fac-
tors (Kawabe et al., 2011). This interaction further leads to the release of
inflammatory cytokines (Bai and Sun, 2016). IL-6 is also amajormarker
of cellular senescence, supporting the notion of susceptibility to COVID-
19 infection and complication from the age-dependent increase in IL-6
(Hirano and Murakami, 2020; Moccia et al., 2020). Taken together,
both ambient PM exposure and COVID-19 infection prime the host in-
flammatory state via the NF-κB signaling pathway in association with
elevated IL-6 levels, and COVID-19 infection further potentiates the pro-
gression to cytokine storms (Kim et al., 2016).

3.2.4. Future directions
The precise mechanism underlying air pollution-mediated inflam-

mation and COVID-19-mediated cardiovascular diseases remains elu-
sive. A potential mechanism is the ACE2 receptor and disrupted
activation of the RAS in the myocardium in association with the patho-
genesis of cardiovascular disease (Kuba et al., 2010). As shown by amu-
rine model, the first generation of the SARS virus affected the
pulmonary system, triggering an ACE2 dependentmyocardial infarction
(Kassiri et al., 2009). Additional cellular injury due to elevated IL-6,
D-dimer, ferritin, other inflammatory cytokines, and hypoxia-induced
excessive intracellular calcium are also implicated in cardiac myocyte
apoptosis. However, the precise mechanisms must be investigated fur-
ther (Clerkin et al., 2020).

Viral entry to the host cell occurs by binding between the S1 region
of the virus spike (S) protein to the ACE2 receptor on the cell surface (Lv
et al., 2020). SARS-CoV-2 binds to ACE2 for entry, and TMPRSS2 and
endosomal cysteine proteases cathepsin B and L (CatB/L) prime the S
ystemand a subsequent inflammatory response. SARS-CoV-2 binding to ACE2 receptors on
lt inmassive cytokine release. Figure from Hirano and Murakami in Immunity. 2020 under
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protein (Hoffmann et al., 2020b). Interestingly, SARS-CoV-2 also har-
bors a multibasic cleavage site at the S1/S2 boundary that is absent in
SARS-CoV and other closely related animal coronaviruses (Walls et al.,
2020). This unique cleavage site can be recognized by furin, essential
for SARS-CoV-2 infection of human cells (Hoffmann et al., 2020a).
While TMPRSS2 is highly expressed in the lungs, furin is expressed in
many other organs, which may contribute to SARS-CoV-2's deleterious
effects on multiple organs. In this context, developing inhibitors for
both TMPRSS2 and furin may represent a promising therapeutic ap-
proach targeting SARS-CoV-2 in the setting of exposure to air pollution
(Barile et al., 2020).

3.3. Air pollution exposure-mediated transmission of COVID-19 and overlap

SARS-CoV-2 is the seventh documented coronavirus to infect
humans, targeting the ACE-2 receptor for entry into the host cell
(Andersen et al., 2020). While SARS-CoV-2 may not be as lethal as pre-
vious coronavirus outbreaks, its transmission rate is higher, with R0

being between 3.6 and 4 (Chen et al., 2020a, 2020b). Respiratory vi-
ruses, including SARS-CoV-2, have been understood to undergo trans-
mission via direct contact (person to person) and droplet (bodily fluid
to person) routes (Shiu et al., 2019). Controversy remains regarding
the spread of viral particles suspended in the atmosphere, otherwise
known as aerosol spread (Tellier et al., 2019). Furthermore, other routes
of viral transmission relevant to the current pandemic, such as waste-
water, have been implicated in its spread (D. Liu et al., 2020).

Air pollution and weather patterns have been recently studied for
their physical contribution to the transmission of SARS-CoV-2. Similarly,
components of air pollution, which are distributed byweather patterns,
may act as viral distributors by acting as a surface to prolong viral sur-
vival. SARS-CoV-2 also survives for a longer period of time on dry sur-
faces than in an aerosol form (van Doremalen et al., 2020). One study
analyzing air particles in two Wuhan hospitals found SARS-CoV-2 ge-
netic material in sampled PM in the 0.25 to 1.0 μm range (Y. Liu et al.,
2020). This may point to PM2.5 and smaller particles acting as trans-
porters for SARS-CoV-2 particles. These PM-virus aggregates can be
more easily distributed in the alveoli and upper respiratory tract and fa-
cilitate delivery and virus binding to the pulmonary epithelium
(Farhangrazi et al., 2020).

Additionally, as with other viruses, the coronaviruses have been ob-
served to survive outside host cells for longer periods at lower temper-
atures and humidity (Farhangrazi et al., 2020). However, the impact of
meteorological conditions on virus transmission remains less under-
stood. One study conducted in a tropical climate revealed that higher
temperatures and increased solar radiation limited the effect on
COVID-19 transmission (Rosario et al., 2020). A similar study conducted
in Italy, a Mediterranean climate, reported that temperature and hu-
midity were negatively correlated with COVID-19 transmission (Lolli
et al., 2020). Lastly, a more-comprehensive study using spatial and tem-
poralmodels found that weather had a non-influential effect on COVID-
19 transmission when compared with other factors such as homestay
and urban density (Jamshidi et al., 2020). While meteorological factors
such as temperature and wind speed have been shown to potentiate
the ability of coronavirus to survive outside of a host, they are unlikely
to be the singular reason for the extreme variability in COVID-19 infec-
tion rates across political borders (Coccia, 2021a, 2021b, 2021c).

3.3.1. Future directions
The precisemechanismwhereby the environmentmodulates SARS-

CoV-2 transmissionwarrants further investigation. Several studies have
noted the seasonal relationship between various respiratory virus infec-
tions andmeteorological variables, including temperature andhumidity
(Moriyama et al., 2020; Srivastava, 2021). Furthermore, simulated sun-
light deactivates SARS-CoV-2 in minutes (Schuit et al., 2020).While PM
pollution is a contributor to atmospheric haze, its impact on SARS-CoV-
2 transmissibility warrants further study. Whether PM2.5 and smaller
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particles have the capacity to transport SARS-CoV-2 remains to be ex-
plored. A previous outdoor study comprehensively isolated and catego-
rized viral and microbial genetic material from PM (Cao et al., 2014),
suggesting some viral material was able to associate with the pollution
particles. The three most-represented samples were DNA-based vi-
ruses; however, SARS-CoV-2 is an RNA virus, and its RNA is unstable
under most extracellular conditions. Thus, whether the mere presence
of viral RNA indicates infectivity also requires further validation. In ad-
dition, volcano ash emission, alongwith the heavymetals, may contrib-
ute to SARS-CoV-2 transmission and/or atmospheric persistence of the
viral particle. Both the Po Valley and Wuhan City are relatively close to
active volcanoes and vents, possibly providing a link to the severe infec-
tion and adverse clinical outcomes observed in those areas (Raciti and
Calabrò, 2020).

4. Discussion: pre-existing cardiopulmonary diseases mediated by
air pollution and COVID-19 infection

Increasing evidence suggests that chronic exposure to air pollution
leads to exacerbation and hospitalization of patients with COVID-19.
As explained in the aforementioned redox-active mechanisms
(Table 2), PM and air pollutants deposited in the lung reach the deep al-
veolar spaces to induce cytokine release and oxidative stress. These
redox-active reactions are implicated in the exacerbation of COVID-19
infection and hospitalizations. A study in Italy supported the correlation
between the Po Valley regions with 4-year exposure to high levels of
NO2, PM2.5 and PM10 and the regions with the most hospitalizations of
COVID-19 patients (Fattorini and Regoli, 2020). The northern regions
of Italy, in particular, reflected up to 80 days of exceedance per year of
the regulatory limits (Fattorini and Regoli, 2020). These same areas
are regions in Italy that have experienced a high number of COVID-19
cases.

In the SARS-CoV-2 predecessors, SARS and MERS, the pre-existing
cardiovascular diseases (CVDs) were reported to increase the risk of
death, similar to the COVID-19 patients (Badawi and Ryoo, 2016;
Booth et al., 2003; Chan et al., 2003). In Wuhan City, where there are
high levels of air pollutants, hospitalizations were significantly preva-
lent among the COVID-19 patients with cardiopulmonary diseases (F.
Zhou et al., 2020). In particular, these Wuhan residents with coronary
heart disease, congestive heart failure, hypertension, and/or diabetes
develop increased susceptibility to the severity of COVID-19 infection
and death (Gold et al., 2000; Mutlu et al., 2007). Thus, patients living
in polluted regions with pre-existing cardiopulmonary conditions,
which may arise from exposure to air pollution, were likely to develop
high rates of hospitalization when saddled with a COVID-19 infection
(Hamouche et al., 2020).

The relationship between COVID-19 and underlying cardiopulmo-
nary diseases and impact of air pollution is an emerging topic. More
studies and comprehensive reviews are necessary to further determine
the interrelationships between the deleterious effects of air pollution
exposure and the severity of COVID-19 infections.

5. Conclusion

This review presented overarching themes found in current litera-
ture that suggest exposure to pollution increases susceptibility to
COVID-19 infection, creating a pre-inflammatory state in patients. Pop-
ulations that are more at-risk for pollution-related CVDs, such as the el-
derly living in urban areas, may also be more at-risk to COVID-19
(Dockery et al., 1993). Inhalation of PM has been associated with respi-
ratory and cardiovascular events. Therefore, as air pollutants affect re-
spiratory and cardiovascular health, COVID-19 prognosis and
mortality are impacted by the presence of respiratory and cardiovascu-
lar comorbidities. Air pollution may also negatively impact COVID-19
outcomes.



Fig. 4. Relationship between particulatematter (PM) air pollution, SARS-CoV-2 infection, and COVID-19 prognosis and a potential therapy for the prevention and treatment of disease. PM
air pollution largely targets the lung, triggering signaling pathways that have also been found to be caused by SARS-CoV-2. These signals include the release of inflammatory cytokines
including IL-6, reactive oxygen species (ROS), and calcium-release activation calcium (CRAC) channels and a consequent rise in thrombotic events. Patients who already experience
this response may be at risk for a higher severity of COVID-19 disease and increased risk of mortality. Figure from Menendez in Aging. 2020 under the Creative Commons license
(Menendez, 2020).
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Current literature broadly finds that chronic exposure to air
pollution results in patients with higher compensatory ACE2 receptor
expression, which may also lead to a lower barrier to entry for the
SARS-CoV-2 virus. Targeting this pathway alongside pharmaceutical
agents to reduce inflammation may ultimately mitigate the severity of
symptoms in patients from areas of high air pollution. Furthermore,
considering the environmental factors surrounding a COVID-19 patient
is essential for effective intervention and prevention.

Ambient pollutants are increasingly recognized as the epigenetic co-
factors in the current COVID-19 pandemic and inform potential inter-
vention and prevention (Fig. 4). Chronic exposure to air pollution
increases inflammation in populations that are thus more susceptible
to contracting the virus. The signaling pathways underlying inflamma-
tory responses can potentially be therapeutic targets to attenuate the
cardiopulmonary manifestation from SARS-CoV-2 infection. The
RECOVERY Trial is assessing whether existing drugs can be repurposed
to treat COVID-19 by enrolling 104 patients for a relatively low dose of
6 mg of dexamethasone, a steroid for inflammation, for 10 days
(RECOVERY Collaborative Group et al., 2020). The RECOVERY trial is
also evaluating several experimental COVID-19 therapies, including
theHIV drug combination Kaletra, convalescent plasma, and the contro-
versial antimalarial drug hydroxychloroquine.

Targeting endothelial inflammation and using anti-inflammatory
drugs already proven in clinical use could be particularly relevant for
vulnerable patients with pre-existing endothelial dysfunction (Varga
et al., 2020). Additionally, medicine targeting ACE2 receptors may also
reduce viral entry into the alveolar space. Despite concerns that CVD pa-
tients taking ACE inhibitors and angiotensin receptor blockers (ARBs)
may be more-susceptible to COVID-19, due to resulting ACE2R up-
regulation, a global observational study with 169 sites and 8910 pa-
tients found no increased risk of in-hospital death (Mehra and
Ruschitzka, 2020). In addition, mitigating the long-term cardiopulmo-
nary effects of air pollution would require concerted public health ac-
tions to help protect residents in highly polluted regions. While urban
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air pollution seems to have decreased in the United States during the
COVID-19 pandemic, more efforts must be made to maintain lower
levels even after business returns to normal (Berman and Ebisu, 2020).
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