Skip to main content
. 2021 Mar 16;18(4):1099–1114. doi: 10.1007/s11554-021-01086-y

Table 4.

Accuracy, F1 score, Sensitivity, Precision, Extraction time, Training time (TrT), and Test time (TsT) obtained by classifying features extracted by different combinations of CNN architectures and features classifiers

CNN Classifier Accuracy (%) F1 score (%) Sensitivity (%) Precision(%) Extraction time (ms) Training time (s) Test time (ms)
NASNetMobile Bayes 80.392 ± 1.471 81.142±1.377 80.392±1.471 83.221±1.190 47.332 ± 1.928 0.5479±0.345 0.050±0.034
MLP 93.259±0.328 93.279±0.317 93.259±0.328 93.307±0.302 1283.897±158.429 0.026±0.009
Nearest Neighbors 89.044±1.203 89.169±1.092 89.044±1.203 89.535±0.847 0.383±0.020 14.627±0.402
RF 87.150±2.894 87.599±2.602 87.150±2.894 89.496±1.298 153.024±4.645 4.862±2.414
SVM Linear 83.038±5.165 83.900±4.831 83.038±5.165 89.341±1.828 74.485±4.740 10.390±0.257
SVM Polynomial 63.771±18.362 51.538±20.011 63.771±18.362 44.039±18.362 64.385±5.740 37.749±0.293
SVM RBF 87.628±4.863 86.544±7.129 87.628±4.863 88.903±3.641 225.685±37.106 15.320±2.733
Xception Bayes 87.986±0.522 88.345±0.495 87.986±0.522 89.477±0.440 108.338 ± 1.728 1.196±0.717 0.024±0.004
MLP 95.188±0.335 95.166±0.332 95.188±0.335 95.166±0.333 3592.964±259.828 0.204±0.111
Nearest Neighbors 93.618±0.954 93.651±0.936 93.618±0.954 93.709±0.909 2.7631±1.055 28.666±0.401
RF 92.321±0.833 92.061±0.967 92.321±0.833 92.466±0.660 1206.235±31.802 6.891±1.732
SVM Linear 95.666±0.379 95.661±0.377 95.666±0.379 95.662±0.375 148.377±2.667 14.083±0.498
SVM Polynomial 76.331±6.758 67.134±11.181 76.331±6.758 60.526±14.612 127.277±3.767 72.632±0.698
SVM RBF 94.983±0.932 94.881±0.979 94.983±0.932 95.030±0.907 178.985±33.990 26.651±0.142
MobileNet Bayes 91.553±0.648 91.732±0.617 91.553±0.648 92.276±0.517 19.447 ± 0.651 0.5849±0.504 0.047±0.061
MLP 95.358±0.475 95.336±0.464 95.358±0.475 95.342±0.478 584.750±67.986 0.157±0.149
Nearest Neighbors 95.137±0.291 95.162±0.283 95.137±0.291 95.214±0.267 2.291±2.210 12.140±0.364
RF 94.317±0.533 94.278±0.534 94.317±0.533 94.284±0.547 469.650±12.416 6.070±2.112
SVM Linear 95.290±0.595 95.311±0.586 95.290±0.595 95.348±0.570 75.606±15.417 5.587±0.111
SVM polynomial 96.177±0.723 96.161±0.727 96.177±0.723 96.172±0.734 62.206±18.617 8.524±0.915
SVM RBF 95.853±0.751 95.844±0.726 95.853±0.751 95.866±0.694 139.965±12.778 9.206±2.161
DenseNet121 Bayes 86.826±0.783 86.631±0.769 86.826±0.783 86.584±0.774 72.683 ± 0.749 0.526±0.661 0.016±0.351
MLP 95.717±0.302 95.717±0.311 95.717±0.302 95.722±0.320 2019.860±67.986 0.039±0.010
Nearest neighbors 94.198±0.378 94.251±0.364 94.198±0.378 94.378±0.328 1.996±2.720 14.402±0.355
RF 94.556±0.360 94.528±0.336 94.556±0.360 94.574±0.332 507.653±11.816 5.871±1.613
SVM linear 94.881±0.591 94.948±0.572 94.881±0.591 95.155±0.509 134.274±47.817 6.073±0.305
SVM polynomial 66.126±20.064 56.317±24.237 66.126±20.064 51.149±25.882 101.674±49.817 36.615±0.194
SVM RBF 95.768±0.220 95.772±0.197 95.768±0.220 95.808±0.142 222.004±88.078 9.322±2.201
DenseNet169 Bayes 90.324±0.555 89.985±0.614 90.324±0.555 90.283±0.565 90.651 ± 0.830 0.918±0.541 0.019± 0.092
MLP 96.007±0.394 95.997±0.375 96.007±0.394 96.022±0.359 1797.904±109.458 0.169±0.078
Nearest neighbors 94.522±0.419 94.559±0.405 94.522±0.419 94.633±0.374 2.355±2.210 23.841±0.495
RF 94.590±0.417 94.550±0.407 94.590±0.417 94.580±0.420 1533.250±61.574 5.874±1.953
SVM linear 95.802±0.662 95.840±0.630 95.802±0.662 95.957±0.498 223.547±27.513 8.92±0.512
SVM polynomial 45.410±22.488 31.527±24.508 45.410±22.488 25.678±22.488 183.123±31.613 59.115±0.406
SVM RBF 96.212±0.444 96.197±0.433 96.212±0.444 96.228±0.434 191.653±40.839 14.366±2.462
DenseNet201 Bayes 90.904±0.352 90.639±0.401 90.904±0.352 90.844±0.350 114.376 ± 0.898 3.107±1.722 0.021±0.092
MLP 96.331±0.683 96.329±0.677 96.331±0.683 96.338±0.682 596.263±88.912 0.149±0.129
Nearest neighbors 94.898±0.698 94.926±0.687 94.898±0.698 94.983±0.670 1.025±0.415 27.472±0.093
RF 94.949±0.453 94.950±0.461 94.949±0.453 94.970±0.461 508.184±13.306 4.064±2.110
SVM linear 95.717±0.238 95.768±0.238 95.717±0.238 95.943±0.268 138.142±33.954 10.613±0.759
SVM polynomial 63.771±18.362 51.538±20.011 63.771±18.362 44.039±18.362 108.342±38.154 32.620±0.362
SVM RBF 96.416±0.492 96.415±0.489 96.416±0.492 96.427±0.484 284.151±23.886 17.863±4.141
VGG16 Bayes 88.840±0.837 88.066±0.913 88.840±0.837 89.360±0.946 96.921 ± 1.470 0.154±0.0526 0.015±0.01
MLP 95.444±0.284 95.427±0.284 95.444±0.284 95.425±0.284 1850.59±107.380 0.037±0.026
Nearest neighbors 94.966±0.498 94.926±0.495 94.966±0.498 94.933±0.502 0.3745±0.155 7.947±0.504
RF 94.078±0.605 94.070±0.593 94.078±0.605 94.073±0.588 939.220±35.012 5.864±2.330
SVM linear 94.863±0.799 94.921±0.777 94.863±0.799 95.077±0.711 50.683±15.664 3.585±0.209
SVM polynomial 67.491±21.467 57.576±25.827 67.491±21.467 51.849±26.917 47.132±18.164 17.610±1.386
SVM RBF 96.007±0.288 96.001±0.289 96.007±0.288 96.000±0.292 69.159±2.775 5.302±0.027
VGG19 Bayes 88.089±0.861 87.246±0.978 88.089±0.861 88.513±0.938 121.694 ± 1.517 0.2276±0.075 0.03±0.03
MLP 95.461±0.668 95.455±0.648 95.461±0.668 95.471±0.624 1850.59±107.380 0.133±0.094
Nearest neighbors 94.608±0.907 94.563±0.921 94.608±0.907 94.566±0.923 0.288±0.148 8.173±0.734
RF 94.164±0.653 94.113±0.653 94.164±0.653 94.114±0.665 118.690±3.456 7.271±1.175
SVM linear 95.529±0.299 95.573±0.291 95.529±0.299 95.698±0.271 28.096±4.723 3.373±0.276
SVM polynomial 60.887±28.226 52.255±34.683 60.887±28.226 49.182±36.603 22.136±5.123 18.145±0.440
SVM RBF 96.468±0.644 96.461±0.644 96.468±0.644 96.463±0.647 43.972±14.761 5.570±2.032
InceptionV3 Bayes 86.826±0.783 86.631±0.769 86.826±0.783 86.584±0.774 66.000 ± 0.908 0.989±0.322 0.039±0.029
MLP 93.925±0.549 93.897±0.555 93.925±0.549 93.893±0.558 3270.333±294.801 0.158±0.128
Nearest neighbors 92.167±0.739 92.171±0.743 92.167±0.739 92.190±0.744 2.854±2.347 28.876±0.498
RF 92.372±0.631 92.227±0.711 92.372±0.631 92.331±0.607 1805±69.116 5.075±2.292
SVM linear 93.669±0.469 93.734±0.463 93.669±0.469 93.880±0.454 188.825±36.993 20.035±1.538
SVM polynomial 54.590±22.488 41.533±24.508 54.590±22.488 34.858±22.488 110.250±39.490 72.814±0.460
SVM RBF 93.072±2.697 92.840±3.106 93.072±2.697 93.211±2.355 378.215±57.102 30.017±4.826
InceptionResNetV2 Bayes 81.280±0.759 81.791±0.698 81.280±0.759 82.893±0.652 158.771 ± 1.248 1.36211±0.467 0.017±0.064
MLP 93.754±0.469 93.709±0.459 93.754±0.469 93.774±0.393 724.022±97.302 0.250±0.117
Nearest neighbors 88.959±1.053 89.282±0.969 88.959±1.053 90.360±0.629 1.615±1.445 20.464±0.019
RF 91.092±1.158 91.003±1.109 91.092±1.158 91.055±1.088 800.504±30.570 3.056±1.800
SVM linear 92.935±0.450 93.025±0.453 92.935±0.450 93.259±0.492 113.940±22.140 14.001±0.738
SVM polynomial 74.863±2.974 68.497±8.693 74.863±2.974 65.793±15.524 101.340±19.140 51.355±6.868
SVM RBF 93.908±0.844 93.868±0.854 93.908±0.844 93.883±0.871 128.050±18.991 18.942±2.977
ResNet50 Bayes 86.433±1.384 86.768±1.269 86.433±1.384 87.614±0.936 57.701 ± 1.134 1.362±0.461 0.046± 0.027
MLP 94.539±0.280 94.531±0.286 94.539±0.280 94.538±0.297 724.0229±97.079 0.159±0.083
Nearest neighbors 93.618±0.671 93.670±0.653 93.618±0.671 93.784±0.622 1.616±1.447 28.474±0.012
RF 93.584±0.587 93.537±0.570 93.584±0.587 93.545±0.582 800.504±30.570 3.464±1.508
SVM linear 94.539±0.831 94.587±0.804 94.539±0.831 94.717±0.739 113.940±22.140 14.714±0.577
SVM polynomial 27.048±0.000 11.517±0.000 27.048±0.000 7.316±0.000 99.340±25.340 72.765±0.299
SVM RBF 94.983±0.513 94.935±0.516 94.983±0.513 94.949±0.526 128.052±18.853 25.461± 5.514
NASNetLarge Bayes 82.611±1.138 83.107±1.032 82.611±1.138 84.261±0.774 313.715 ± 2.359 1.492±0.522 0.042±0.113
MLP 94.437±1.004 94.411±1.009 94.437±1.004 94.430±1.011 2486.365±282.362 0.215±0.102
Nearest neighbors 89.863±1.141 90.085±1.060 89.863±1.141 90.733±0.823 2.436±0.428 56.197±0.496
RF 91.809±1.220 91.722±1.190 91.809±1.220 91.815±1.110 862.818±27.096 5.496±2.070
SVM linear 94.488±0.585 94.527±0.563 94.488±0.585 94.611±0.516 304.663±31.350 36.452±0.933
SVM polynomial 36.229±18.362 21.522±20.011 36.229±18.362 16.497±18.362 283.125±34.120 143.020±0.448
SVM RBF 93.942±1.473 93.818±1.615 93.942±1.473 93.975±1.365 441.346±6.816 52.329±7.522

Bold values highlight the performance of the proposed algorithm