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Abstract
Multiplex immunofluorescence (mIF) allows simultaneous antibody-based detection of multiple markers with a nuclear 
counterstain on a single tissue section. Recent studies have demonstrated that mIF is becoming an important tool for immune 
profiling the tumor microenvironment, further advancing our understanding of the interplay between cancer and the immune 
system, and identifying predictive biomarkers of response to immunotherapy. Expediting mIF discoveries is leading to 
improved diagnostic panels, whereas it is important that mIF protocols be standardized to facilitate their transition into clinical 
use. Manual processing of sections for mIF is time consuming and a potential source of variability across numerous samples. 
To increase reproducibility and throughput we demonstrate the use of an automated slide stainer for mIF incorporating 
tyramide signal amplification (TSA). We describe two panels aimed at characterizing the tumor immune microenvironment. 
Panel 1 included CD3, CD20, CD117, FOXP3, Ki67, pancytokeratins (CK), and DAPI, and Panel 2 included CD3, CD8, 
CD68, PD-1, PD-L1, CK, and DAPI. Primary antibodies were first tested by standard immunohistochemistry and single-
plex IF, then multiplex panels were developed and images were obtained using a Vectra 3.0 multispectral imaging system. 
Various methods for image analysis (identifying cell types, determining cell densities, characterizing cell-cell associations) 
are outlined. These mIF protocols will be invaluable tools for immune profiling the tumor microenvironment.
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Introduction

The interface of cancer with the host immune system 
occurs primarily in the reactive tissue stroma around the 
tumor and this has been referred to as the tumor immune 
microenvironment (TIME). The TIME has come under 
renewed and intense interest with the success of cancer 
immunotherapy using immune checkpoint inhibitors that 
target proteins such as programmed cell death protein 1 
(PD-1, a T-cell co-inhibitory receptor) or programmed 
death ligand 1 (PD-L1, also called B7-H1 or CD274) [1, 2]. 
Characterizing the TIME in the context of immunotherapy 
can help generate candidate predictive biomarkers of 
response. In addition, since various immune cell populations 
are involved in both pro- and anti-cancer responses, a better 
understanding of these cells and their associations with 
each other and with the cancer cells will help guide the 
identification of new immunotherapeutic strategies.

Immunohistochemistry is  routinely used for 
pathological analysis of important clinical markers 
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such as estrogen receptor or HER2. However, standard 
IHC protocols typically only measure a single 
marker per slide. With the recent advent of multiplex 
immunofluorescence (mIF), this limitation is overcome 
by allowing detection of multiple different markers on a 
single tissue section [3–6]. One strategy for mIF utilizes 
sequential rounds of antibody-labelling of one marker, 
followed by horseradish peroxidase (HRP) catalyzed 
linking of fluorophore-conjugated tyramide molecules 
around the antibody-labelled epitope. The fluorophore 
is covalently bound to tyrosine residues on or around 
the marker of interest, allowing for the primary and 
secondary antibodies to be stripped from the section 
before the next round of staining. The mIF stained 
slides can then be scanned with a multispectral imaging 
microscope and analyzed with a variety of image analysis 
software packages.

For mIF to be widely adopted as a diagnostic and 
prognostic tool, staining and imaging protocols need to 
be standardized, automated, and validated. Automated 
slide stainers are relatively common equipment in clinical 
laboratories. Here we present an optimized protocol for 
fully-automated seven-color mIF incorporating TSA 
coupled with a multispectral imaging system for the 
simultaneous detection of six tissue biomarkers plus a 
nuclear counterstain. We developed two panels which 
included the following markers: CD3, CD8, CD20, CD68, 
CD117, FOXP3, PD-1, PD-L1, Ki67, pancytokeratins 
(CK), and DAPI. The pancytokeratins and Ki67 markers 
allowed analysis of epithelial tumor cell boundaries and 

the proliferation status of various cell types, respectively. 
In addition, we present image analysis methods for 
phenotyping cells, determining cell densities, and 
characterizing cell-cell associations.

Materials and Methods

Tissue Specimens

All tissues used in this study were provided without 
patient identification or clinical information. Some 
were obtained in the context of other clinical studies 
with appropriate institution review board oversight and 
informed consent for those studies, but these data were 
not shared with our research team. As such, this work 
was determined to be “not human subject research” 
under the Public Health Service definition. Sequential 
4 µm sections from human tonsil FFPE blocks were 
prepared for conventional immunohistochemistry 
(IHC), single-plex immunofluorescence, and multiplex 
immunofluorescence (mIF) staining. In addition, 4 µm 
sections from cases of lung carcinoma and breast cancer 
were prepared for mIF.

Single‑plex IHC and IF

The antibody clones used in this study are shown in 
Table 1. Chromogenic staining (DAB single-plex) was 
performed on the Ventana Discovery Ultra autostainer 

Table1.   Staining conditions for multiplex IHC for IP1 and IP2

Staining 
cycle

Marker Clone Company Product Antibody dilution Fluorophore Fluoro-
phore 
dilution

IP1
1 FOXP3 SP97 Spring M3972 1:25 Opal620 1:250
2 CKs AE1/AE3 DAKO M3515 1:200 Opal650 1:200
3 Ki67 30-9 Ventana 790-4286 RTU​ Opal690 1:100
4 CD20 L26 Ventana 790-2531 RTU​ Opal540 1:250
5 CD3 2GV6 Ventana 790-4341 RTU​ Opal520 1:100
6 CD117 c-kit DAKO A4502 1:100 Opal570 1:300
7 Perkin Elmer FP1490 DAPI RTU​
IP2
1 PDL1 E1L3N CST 13648e 1:100 Opal620 1:100
2 PD1 EPR4877 Abcam ab137132 1:100 Opal650 1:200
3 CD8 4B11 Leica CD8-4B11-L-CE 1:100 Opal690 1:100
4 CKs AE1/AE3 DAKO M3515 1:200 Opal570 1:300
5 CD68 PG-M1 DAKO M0876 1:100 Opal540 1:250
6 CD3 2GV6 Ventana 790-4341 RTU​ Opal520 1:100
7 Perkin Elmer FP1490 DAPI RTU​

(2020) 25:41 –4327Journal of Mammary Gland Biology and Neoplasia418



1 3

(Roche). 4 µm tonsil FFPE sections were mounted on 
Superfrost Plus microscope slides (Thermo Fisher 
Scientific) and dried overnight prior to staining. Sections 
were deparaffinized followed by antigen retrieval in CC1 
buffer (pH 9, 95 °C; Roche), endogenous peroxidase 
blocking, and then incubation with the pr imary 
antibodies. Chromogenic detection was performed with 
Chromomap DAB (Roche) followed by counterstaining 
with hematoxylin. Tonsil sections stained with and 
without primary antibody were used as positive and 
negative controls for each marker. Working dilutions 
were determined on the basis of the negative and positive 
stained sections as well as the expected staining pattern 
of cells for the given marker.

After chromogenic IHC, single-plex IF was performed 
for each marker. We first assigned Opal fluorophores 
(Akoya Biosciences) to each marker and tested the 
primary antibody at its optimal dilution determined 
from the chromogenic staining, as well as one dilution 
above and one dilution below this. Staining was 
performed on the Ventana Discovery Ultra. Sections 
were deparaffinized followed by antigen retrieval in 
CC1 at 97 °C. To inhibit enzymatic activities, Discovery 
inhibitor (Roche) was applied, followed by the primary 
antibody. Detection was performed with OmniMap 
secondary antibody (Roche) followed by incubation 
with one of the Opal fluorophores, prepared according 
to the manufacturer’s instructions. Finally, the slides 
were counterstained with Discovery QD DAPI (Roche) 
or Spectral DAPI (Akoya Biosciences) and mounted with 
ProLong Diamond antifade mounting medium (Thermo 
Fisher Scientific). As with the IHC single-plex staining, 
positive and negative controls were included and the 
optimal titration in the single-plex IF was chosen based 
on a uniform, specific, and correct staining pattern.

Automated mIF Staining

A schematic of the mIF staining workflow is shown in 
Supplementary Figure 1. After each primary antibody 
was optimized in single-plex IHC and IF, they were 
combined to create two 6-marker multiplex panels. To 
test each panel, tonsil sections were stained with primary 
antibodies at the optimized concentrations determined 
from the single-plex assays. Sections were subjected to 6 
sequential rounds of staining with each primary antibody 
followed by a secondary HRP-conjugated polymer. 
Signal amplification was achieved with TSA-Opal 
fluorophores. Between each round of staining, a heat-
induced epitope retrieval (HIER) step was performed 
to remove primary-secondary-HRP complexes before 
staining with the next primary antibody. After the final 

round of antibody staining, slides were counterstained 
with Discovery QD DAPI or Spectral DAPI and mounted 
with ProLong Diamond antifade mounting medium.

During multiplex optimization, antibody-Opal dye 
pairings, concentrations, and order in the panel were 
assessed and adjusted as needed. This was achieved 
by checking signal-to-noise ratios (signal intensity of 
positive stain:background > 10:1) and signal balance 
(signal intensity of each fluorophore ~10-30 normalized 
counts) using inForm software (Akoya Biosciences). To 
check for signal crosstalk, a leave-one-out set of controls 
was run for each antibody using the final optimized mIF 
protocol. For each panel, six serial sections from human 
tonsil tissue were prepared. Each section was subjected to 
the full mIF protocol with one primary antibody left out. 
These were imaged on the Vectra 3, then the images were 
unmixed and analyzed using inForm. The final sequence 
of antibodies for each panel is shown in Table 1, along 
with the antibody/Opal dye pairs and their working 
dilutions. Full protocols for mIF staining (panels IP1 and 
IP2) on the Ventana Discovery autostainer are presented 
in Supplementary Tables 1 and 2.

Manual mIF Staining

Tissue sections (4 µm) prepared from formalin-fixed 
paraffin embedded tissue blocks were baked at 58 °C 
for 1 hour. If tissue detachment (commonly exhibited 
as lifting edges of sections) was observed following a 
staining procedure, a longer baking time was applied to 
revised protocols to enhance tissue attachment. After 
baking, tissue sections were deparaffinized with three 
treatments of xylene for 5 min each, followed by three 
rinses with 100% ethanol for 2 min each. Sections were 
rehydrated by rinsing in 95% ethanol, 70% ethanol, 
and water for 5 min each. Initial antigen retrieval was 
performed in a decloaking chamber (Biocare Medical 
LLC, Concord, CA) with 10mM citrate buffer (pH 6.0) 
for 45 min at 125 °C at 15psi.

An Opal 7-color manual IHC kit (Akoya Bioscience) 
was used for manual mIF staining with the same 
antibodies and Opal dye dilutions used for automated 
staining (Table 1). Tissue sections were incubated with 
the first primary antibody diluted in Antibody Diluent/
Blocking solution provided in the kit followed by 
washing in TBST buffer and then incubated with the 
secondary-HRP conjugate. After another wash, slides 
were incubated with the appropriate Opal fluorophore. 
The HIER step for removing the primary-secondary-
HRP complex between staining rounds was achieved 
by placing the slides in a plastic coplin jar filled with 
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antigen retrieval buffer (AR6 provided in the kit), 
placing the jar in a 1100-watt microwave, and heating 
for 45 min at 100% power followed by 14 min at 20% 
power. After the slides cooled to room temperature they 
were washed and then were ready for the next round of 
staining with the next primary antibody. After the last 
round of antibody staining, slides were counterstained 
with Spectra DAPI, then mounted with Fluoromount-G 
Mounting Medium (Thermo Fisher Scientific).

Image Acquisition and Analysis

Stained slides were imaged using the Vectra 3 quantitative 
pathology imaging system (Akoya Biosciences). A tonsil 
section was included as a positive control in each batch 
of mIF stained tumor sections run on the autostainer. 
After a low magnification scan (4x or 10x), regions of 
interest (ROI) were selected using the Phenochart viewer 
(Akoya Bioscience) and these ROIs were subsequently 
scanned/acquired at a higher resolution (20x). For tissue 
microarrays (TMAs), each core section was considered an 
ROI. To build a spectral library for subsequent spectral 
unmixing of these images, single-plex IF stains were 
performed on tonsil sections with an anti-CD20 primary 
antibody paired with each of the Opal f luorophores 
(without a DAPI counterstain). An unstained tonsil 
section and a DAPI only stained section were also 
prepared. Representative fields from these single-color 
slides were imaged at 20x using the Vectra 3, and spectra 
were extracted from the acquired images using inForm 
software and saved to a spectral library. The quality of 
the spectral library was assessed by evaluating unmixed 
images to confirm the absence of spectral overlap or 
bleed-over between channels.

Image files acquired on the Vectra 3 were opened in 
inForm and spectrally unmixed using the appropriate 
spectral library. Several image analysis software packages 
were then used to identify and characterize cells in the ROIs. 
These included inForm, QuPath, FCS Express, MATLAB, 
and various R packages. The use of these platforms will be 
described in more detail in the Results section.

Results

Multiplex Immunofluorescence Panel Optimization

We designed two 6-plex mIF panels based on 
recommendations of the Molecular and Cellular 
Characterization of Screen-Detected Lesions (MCL: 
https​://mcl.nci.nih.gov/) pathologists working group. 
The first panel, designated IP1, consisted of the markers 

CD3, CD20, FOXP3, CD117, pan-cytokeratins (CK), 
and Ki67. The second panel, IP2, was comprised of the 
markers CD3, CD8, CD68, PD-1, PD-L1, and CK. A 
schematic depicting the workflow for developing and 
optimizing these panels is shown in Fig. 1. Evaluation/
optimization of single-plex staining is fundamental 
in designing a multiplex protocol as it determines the 
staining parameters for each individual marker in the 
mIF panel. Initial working dilutions for single-plex IF 
were determined on the basis of single-plex IHC stained 
sections that yielded the expected staining pattern of 
cells for each marker. Initial antibody-Opal dye pairings 
were assigned to each marker based on the single-plex 
IHC results, taking into consideration the expression and 
relative abundance of each marker.

Once the optimal staining parameters were established 
for each marker, the single-plex IF protocols were 
combined into a preliminary mIF protocol. Initial 
staining sequences for each mIF panel were arranged 
such that sequential antibodies do not colocalize in 
the same cellular compartments within the same cells. 
This helps when issues of incomplete stripping arise. 
In addition, since Opal 520 and Opal 570 show some 
attenuation by HIER, these fluorophores were placed in 
later rounds of staining. The multiplex protocols were 
progressively modified as needed for reasons such as 
spectral bleed through or inadequate antibody stripping. 
This included revising antibody-Opal dye pairings, 
positions, and dilutions. Following each adjustment to 
the protocol, the signal-to-background ratio and signal 
balance for each marker were reassessed. As an example, 
the initial design of IP1 paired Ki67 with Opal 570 and 
FOXP3 with Opal 620. However, as shown in Fig.  2, 
Ki67 positive tumor cells were appearing as FOXP3 
positive cells, visualized here using inForm’s pathology 
view option (panels A, C, and E). This suggested either 
bleed through of the Opal 570 signal into the Opal 620 
channel, or incomplete stripping of the Ki67 antibody 
(which was last in the sequence). Redesigning this mIF 
panel to pair Ki67 with Opal 690 and CD117 with Opal 
570 (leaving FOXP3 paired with Opal 620) resolved 
this issue (Fig. 2, panels b, d, and f). This put the Ki67/
Opal690 in a channel further away from the FOXP3/
Opal620 pairing and in addition, placed Ki67 3rd in the 
staining sequence, which was then followed by more 
HIER stripping steps compared to the initial placement 
of Ki67 in the last position of the staining sequence.

Leave-one-out control stains were performed for the 
final optimized protocols for mIF panels IP1 and IP2 
to evaluate cross-talk issues (Fig. 3 and Supplementary 
Figure  2). Each row of images in Fig.  3 is from a 
tonsil section stained with IP1 with one of the primary 
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Single-plex IHC & IF op�miza�on

� Determine primary an�body dilu�ons 
using chromogenic IHC 

� Assign Opal fluorophores to each 
marker

� Op�mize primary an�body condi�ons 
and Opal dye concentra�ons

Mul�plex IF op�miza�on

� Combine markers into 6-plex panels
� Sequen�al rounds of staining
� Acquire images on Vectra 3
� Use spectral library to unmix images 

in inForm
� Assess for crosstalk or interference
� Re-balance Opal signals or re-order 

an�bodies in panel as needed

Spectral library development

� Prepare single-plex library slides
� Acquire images on Vectra 3
� Build libraries in inForm
� Assess library unmixing

performance

Image analysis

� Acquire images on Vectra 3
� Select ROIs in Phenochart
� Use spectral library to unmix

images in inForm
� Segment �ssue and/or cells in 

inForm or QuPath
� Phenotype cells and subsequent 

analyses (inForm, QuPath, FCS 
Express, MATLAB, R)

� Tissue area
� Cell loca�ons
� Cell counts
� Cell densi�es
� Marker intensi�es
� Spa�al analyses

1). Mul�plex staining
(Ventana autostainer)

3). Select regions of interest (Phenochart)

Tissue microarray Whole �ssue sec�on

2). Image acquisi�on
(Vectra 3 imaging pla�orm)

4). Scanned image 
(TMA core)

5). Spectrally unmixed 
composite image

6). Segment �ssue 7). Segment cells 8). Phenotype cells
9). Quan�fica�on 
& other analyses

Fig. 1   Workflow for multiplex immunofluorescence panel opti-
mization and image analysis. The top flow diagram highlights the 
mIF panel optimization steps, from single-plex IHC & IF optimiza-
tion to spectral library development, multiplex IF optimization, and 
image analysis. The lower flow diagram highlights the steps used for 
image acquisition and analysis. (1) Whole slides containing tumor 
tissue or tissue microarrays were stained on a Ventana Discovery 
Ultra platform. (2) Stained slides were scanned with the Vectra 3 at 
low magnification (4x or 10x). (3) Regions of interest were selected 
in Phenochart on tissue microarray (TMA) or whole tissue section. 

(4) High-resolution acquisition (20x) of ROIs. (5) Images obtained 
were imported into inForm and spectrally unmixed using a previously 
optimized spectral library. (6) Using inForm’s (or QuPath) trainable 
tissue segmentation algorithms, images were segmented into tumor, 
stroma, and no tissue regions. (7) Using inForm (or QuPath), nuclei 
were identified and cell segmentation was performed. (8) Cells were 
phenotyped based on the labeling of markers in each mIF panel. 
(9) Data of individual cells derived from phenotyping in inForm, 
QuPath, or FCS Express were exported for further analyses. Scale bar 
on each TMA core is 100 µm
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antibodies left out of the protocol. Each image in a row 
shows the signal from the individual channel for the 
antibody-Opal dye pairs shown across the top of the 
figure. For example, the top row, Slide 1, had anti-CD3 
left out, so there is no signal in the CD3/Opal 520 
channel, but there are signals in all of the other channels. 
Similarly, Slide 2 had anti-CD20 left out, and here we 
see signal in all images except for the one corresponding 
to the CD20/Opal 540 channel. The lack of signals in 
the images along the diagonal (top left to bottom right) 
confirmed the absence of spectral bleed through or 
inadequate antibody stripping issues. Similar results were 
obtained for IP2 (Supplementary Figure 2).

Image Acquisition and Region of Interest Selection 
for mIF Analysis

After mIF panels were optimized, they were applied to 
lung cancer and breast cancer tissue samples. Using the 
Vectra 3 imaging system, a low magnification whole 
slide scan (4x or 10x) was initially obtained. For large 
tissue sections, it is often necessary to confine the 
image analysis to several regions of interest as opposed 
to the entire section. These can be selected using the 
Phenochart viewer and are subsequently scanned at a 
higher resolution (20x) (see Fig. 1). There are various 
ROI selection strategies including random selection 

Fig. 2   Spectral bleed through 
in IP1 resolved by changing 
antibody-Opal dye pairings. 
Panels a, c, and e show staining 
of a breast cancer section with 
IP1 in which Ki67 was paired 
with Opal 570 and FOXP3 was 
paired with Opal 620. As indi-
cated by the red arrows, most 
of the Ki67 positive cells were 
showing up as FOXP3 positive 
cells, indicating spectral bleed 
over or incomplete stripping of 
the Ki67 antibody. Panels b, 
d, and f show the results of a 
redesigned IP1 in which Ki67 
swapped positions and Opal 
pairing with CD117 yielding 
Ki67/Opal 690 and CD117/
Opal 570 (with FOXP3 remain-
ing paired with Opal 620). The 
red arrows highlight some cells 
that are Ki67+ and FOXP3- and 
the green arrows highlight 
some cells that are FOXP3+ and 
Ki67-. Scale bars are 50 µm

CK

Ki67

FOXP3

CK

Ki67

FOXP3

a b

c d

e f
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of ROIs, ROI selection based on staining hot spots, or 
ROI selection based on other criteria (eg. tumor/stroma 
borders). However, there are no established guidelines 
for ROI selection, so we recommend that the selection 
methodology be described when presenting results from 
mIF analyses.

For tissue microarrays (TMAs), each core is typically 
defined as an ROI (Fig. 1). As an example, images of 
a bronchial airway tumor TMA stained with optimized 
mIF protocols for IP1 and IP2 are shown in Fig. 4. After 
staining, slides were scanned on the Vectra 3 with each 
core treated as an ROI in Phenochart. Multispectral 
images for each core were opened in inForm and 
spectrally unmixed. Unmixed composite images of a 
representative core stained with IP1 (Fig. 4a panel a) and 
IP2 (Fig. 4b panel a) are shown with each marker pseudo-
colored as indicated in the legends. “Pathology views” 
for each individual marker are also shown. These were 
generated in inForm, where the specific marker/Opal dye 

is pseudo-colored brown to mimic a DAB chromogenic 
stain and the DAPI channel is colored blue to mimic a 
hematoxylin counterstain. IP1 identifies 5 different cell 
types in the tumor microenvironment: CD3+ T cells, 
CD20+ B cells, CD3+FOXP3+ regulatory T cells (Treg), 
CD117+CK- mast cells, and CK+ epithelial/tumor cells 
(Fig. 4a panels b-g). The co-localization of nuclear Ki67 
staining within these cell types permits the evaluation 
of their proliferation status. In addition, co-localization 
of CD117 with CK can distinguish three populations of 
cells: CK+CD117+ tumor cells, CK+CD117- tumor cells, 
and CK-CD117+ mast cells. IP2 identifies 4 different 
cell types: CD3+CD8- T cells, CD3+CD8+ cytotoxic T 
cells, CD68+ macrophages, and CK+ epithelial/tumor 
cells (Fig. 4b panels b-g). This panel also includes the 
immune checkpoint molecules PD-1 and PD-L1 whose 
expression in any of these cell types can be evaluated. As 
an example, Fig. 4c shows a region from a breast cancer 
TMA stained with IP2 demonstrating co-localization of 

Slide 1
No CD3

Slide 2
No CD20

Slide 3
No CD117

Slide 4
No FOXP3

Slide 5
No CK

Slide 6
No Ki67

CD3/Opal 520 CD20/Opal 540 CD117/Opal 570 FOXP3/Opal 620 CK/Opal 650 Ki67/Opal 690

Fig. 3   Leave-one-out control stains for IP1. Six serial sections from 
human tonsil FFPE tissue were prepared and stained with the full IP1 
protocol. Each row represents images from a slide in which one pri-
mary antibody was left out of the staining protocol (ex. Row 1, Slide 
1, no CD3 had anti-CD3 left out). Each image in a row shows the 

staining pattern for the antibody/fluorophore combination shown at 
the top, with all other channels turned off. The absence of spectral 
bleed through or inadequate antibody stripping issues are indicated by 
the lack of signal in the images along the diagonal (top left to bottom 
right). Scale bars are 100 µm

(2020) 25:41 –4327Journal of Mammary Gland Biology and Neoplasia 423



	

1 3

a, Unmixed image b, CD3/ Opal520 c, CD68/ Opal540 d, CKs/ Opal570

e, PDL1/Opal620 f, PD1/Opal650 g, CD8/Opal690
DNA
CD3
CD68
CKs
PDL1
PD1
CD8

a, Unmixed image b, CD3/ Opal520 c, CD20/ Opal540 d, Ki67/ Opal570

e, FOXP3/Opal620 f, CKs/Opal650 g, CD117/Opal690
DNA
CD3
CD20
Ki67
FOXP3
CKs
CD117

a

b

c CD68PD-L1CK

 CD3 & CD8 PD-1 merged
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PD-L1+CD68+ cells with PD-1+ T cells (both CD3+CD8- 
and CD3+CD8+).

Image Analysis Using inForm Software

After ROIs have been selected, scanned, and spectrally 
umixed in inForm, a variety of imaging platforms can 
be used to analyze the images. Unmixed multispectral 
component images can be analyzed within inForm itself, or 
these images can be exported from inForm and opened with 
other software packages such as QuPath [7], ImageJ [8–10], 
and HALO (Indica Labs).

The first step in image analysis is often segmentation 
of the tissue into different categories such as tumor, 
stroma, or no tissue (Fig. 1). inForm contains a user-
trainable protocol to automatically detect and segment 
specific tissue types based on tissue morphologies 
using machine-learning feature recognition algorithms. 
Training is performed by drawing a training area that 
encompasses the tissue category of interest (eg. stroma, 
tumor, or no tissue). Specific markers can be used to 
help identify different tissue compartments, for example 
CK staining to differentiate epithelial tumor cells from 
stromal cells. Segmentation is iteratively refined by 
adding new training areas to address any misclassified 
regions. Training a tissue segmentation algorithm is 
typically performed on several images and then the final 
trained algorithm can be applied to a batch of similarly 
stained images.

Figure 5 illustrates the tissue segmentation algorithm 
applied to a breast cancer sample. After staining with 
IP1, two areas of interest containing both tumor and 
stroma were selected for analysis (Supplementary 
Figure 3). Unmixed composite images from two ROIs 
selected from these areas are shown in Fig. 5, panels a 
and b. CK+ tumor cells are pseudocolored white in these 
images. Panels c and d show the tissue types identified 
by a trained tissue segmentation algorithm where red 
areas indicate tumor, green areas indicate stroma, and 
blue areas indicate no tissue present. A comparison of 
Fig. 5a to 5c and Fig. 5b to 5d illustrates the robustness 
of the tissue segmentation algorithm.

Following tissue segmentation, cell segmentation and 
phenotyping was performed. Using inForm, nuclei were 
identified/segmented using the DAPI counterstain and a 
variety of user-defined parameters such as DAPI intensity, 
minimum nuclear size, and splitting sensitivity. Following 
nuclear segmentation, parameters for membrane/cytoplasm 
segmentation were adjusted, including cytoplasm thickness 
to define the distance from the boundary of each cell’s 
nucleus to the outer boundary of its cytoplasm and 
membrane search distance, which defines the maximum 
distance from the boundary of each cell’s nucleus to search 
for membrane signals.

Once cell segmentation parameters were adequately 
optimized, cell phenotyping was performed. inForm’s 
phenotyping feature automatically classifies cell 
phenotypes using machine-learning algorithms to 
differentiate cell types across a tissue section. Phenotypes 
for IP1 and IP2 were defined based on the markers 
present in the panel, along with a phenotype designated 
as “other” for cells that weren’t positive for any of the 
markers. For training the classifier, the software requires 
only 5 user selected cells as examples for each marker. 
However, we have found that generally, 20-30 examples 
of each marker are required for reliable cell phenotyping. 
In addition, example cells should be selected across 
several images. Training typically involved selecting 
an initial set of ~10 example cells for each marker, 
followed by iterative addition of examples to refine the 
classifier. When the training is complete, the algorithm 
can be applied to a batch of similarly stained sections. 
Due to staining variability across tissue samples, the 
phenotyping results must be verified for each case and 
a new classifier may need to be trained for individual 
cases. Finally, the data obtained following phenotyping 
were exported from inForm and tabulated reports of 
cell numbers, percentages, or cell densities (counts per 
area) were obtained using the R package phenoptr [11] 
or phenoptr Reports (Akoya Biosciences). The phenoptr 
package contains functions that make it easy to read and 
analyze data tables and images created in inForm.

Figure  5 (E&F) illustrates an inForm analysis 
applied to a breast cancer sample stained with IP1 
(Supplementary Figure 3). Thirty-six ROIs, including 
both tumor and stroma, were selected across the entire 
tissue section. Two areas were selected to investigate 
whether sampling smaller regions adequately represents 
the overall tumor tissue, with respect to immune cell 
infiltrates (Supplementary Figure 3). Eight ROI images 
were obtained from area 1 and seven from area 2. Tissue 
segmentation, cell segmentation, and phenotype analyses 
using inForm were performed on the 36 ROIs obtained 
from this breast cancer section. Phenoptr was used to 
generate cell density data (cell counts per megapixel) 

Fig. 4   Representative examples of mIF with IP1 and IP2 on tumor 
tissue. A human bronchial airway biopsy TMA was stained with mIF 
panels IP1 A  and IP2 B. Composite images from a representative 
core, pseudo-colored as indicated in the legends, are shown in panels 
Aa and Ba. Pathology views from inForm (positive signal = brown, 
DAPI counterstain = blue) for each individual marker are shown in 
panels b-g. Scale bars are 100 µm. C A human breast cancer tissue 
stained with IP2 illustrating the co-localization of PD-1+ T cells with 
PD-L1+ macrophages. Each image is of the same region of the tis-
sue with only the indicated marker’s channels turned on. Merged: CK 
(yellow), CD3 (green), CD8 (magenta), CD68 (cyan), PD-1 (orange), 
PD-L1 (red), DAPI (blue). Scale bars are 100 µm

◂
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from the inForm results. As shown in Fig. 5e, there was no 
difference in the density of CK+Ki67- cells obtained for 
the whole tumor section compared to the two smaller sub-
sampled regions. In contrast, the density of proliferating 
CK+ cells (CK+Ki67+) was significantly lower in area 2 
compared to area 1 or the total tissue.

We also compared immune cell densities across the two 
sub-sampled regions with the total tumor section. These 
included B cell (CD20+Ki67- and CD20+Ki67+), mast 
cell (CD117+CK-), T cell (CD3+Ki67- and CD3+Ki67+), 

and regulatory T cell (CD3+FOXP3+) populations. Most 
immune cell populations showed similar cell densities 
across the different areas. However, as shown in Fig. 5f, 
the density of proliferating B cells (CD20+Ki67+) was 
significantly higher in the stroma of area 1 compared to 
area 2 or the total area. Likewise, non-proliferating T cells 
(CD3+Ki67-) were significantly higher in the stroma of area 
1. These observations illustrate the spatial heterogeneity 
with the tumor microenvironment, with respect to immune 
cell infiltrates as well as proliferation status of tumor cells.

Fig. 5   A comparison of areas 
from a breast cancer tissue dem-
onstrating differences in densi-
ties of immune cells. Panels a & 
b: Unmixed composite images 
from two ROIs selected from 
two different areas of a breast 
cancer tissue (see Supplemen-
tary Figure 3) stained with IP1 
(CK/white, CD3/green, CD20/
yellow, CD117/red and DAPI/
blue are indicated). Panels c & 
d: Tissue segmentation of a and 
b showing tumor (red), stroma 
(green), and no tissue (blue) 
areas. Scale bars are 100 µm. 
(e) Cell densities of proliferat-
ing tumor cells (CK+Ki67+) and 
non-proliferating tumor cells 
(CK+Ki67-) within the tumor 
segmented regions across the 
entire tissue (T) or just within 
area 1 or area 2 as indicated. 
(f) Cell densities of various 
immune cell populations within 
the tumor or stroma segmented 
regions across the entire tissue 
(T) or just within area 1 or area 
2 as indicated. For both Panels 
e and f, each dot represents 
the cell density within one 
ROI. Horizontal lines indicate 
mean values. Student’s T test: 
*p<0.05, **p<0.01
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Image Analysis Using QuPath

Unmixed multispectral component images generated in 
inForm are saved as multilayer TIFF files. These image 
files can be opened in a variety of image analysis software 
packages, including QuPath [7]. QuPath is an open-source 
software for bioimage analysis that is used for digital 
pathology applications due to its powerful set of tools for 
working with whole slide images. Like inForm, QuPath 
contains user-trainable algorithms for tissue segmentation, 

nuclear/cell segmentation, and cell phenotyping which 
involve iterative training/testing to optimize the classifiers.

We compared the analysis of a TMA core image in 
inForm with analysis of the same image in QuPath. Figure 6 
shows the pseudo-colored, unmixed composite image 
obtained from inForm (panel a) and the pseudo-colored 
image obtained from the component TIFF file imported 
into QuPath (panel b). A phenotype map obtained after 
segmentation and phenotyping in inForm is shown in Fig. 6c 
and a similar map, plotted in MATLAB after segmentation 

Fig. 6   Cell phenotyping using 
inForm vs QuPath. Multispec-
tral images from a TMA core 
stained with IP1 were unmixed 
in inForm (a) and converted to a 
multilayered TIFF file that was 
analyzed in QuPath (b). Scale 
bars are 100 µm. (c) Phenotype 
map generated in inForm. (d)
Phenotype map created in 
MATLAB using phenotypes 
generated in QuPath. (e) Pie 
chart showing the distribution 
of various cell types as deter-
mined from inForm phenotyp-
ing. (f) Pie chart showing the 
distribution of various cell types 
as determined from QuPath 
phenotyping
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and phenotyping in QuPath, is shown in Fig.  6d. Cell 
densities obtained from both platforms are shown in the pie 
charts (Fig. 6e and 6f) and demonstrate that both analysis 
pipelines yielded similar results, with the exception of a 
higher fraction of CD20+Ki67- B cells being identified in 
this image by the inForm analysis.

Image Analysis Using FCS Express

Image analysis software such as inForm and QuPath 
provides sufficient information on a per cell basis, including 
total fluorescence for each fluorophore and cell size, to be 
processed using flow cytometry software. FCS Express 6 
Image Cytometry software (DeNovo Software) can import 
mIF images and associated data that were acquired using 
the Vectra imaging platform. This allows users to apply flow 
cytometry gating strategies to digital microscopy images 
with access to the original images for visualization.

In Fig. 7, we show an example of gating Treg cells in 
a breast cancer sample using FCS Express. The tissue 
was stained with IP1, images were acquired on the Vectra 
system, and cell segmentation was performed in inForm. 
The composite image (TIFF file; Fig. 7a), component 
images (multi-image TIFF), segmentation maps (multi-
image TIFF), and cell segmentation data files were 
exported from inForm and imported into FCS Express. 
A contour plot of cell size vs. CD3 fluorescence was 
generated in FCS Express and a rectangular gate was 
drawn around the population of CD3+ cells as shown in 
Fig. 7b. Cells in this gate were then used to create a plot 
of CD3 vs. nuclear FOXP3 staining for gating Treg cells 
(CD3+FOXP3+; Fig. 7c). As gates are being drawn, one 
can visualize in real time which cells are being included 
in the gates as shown in Fig. 7d (CD3 gated cells are 
marked in green and Tregs are marked in red). The ability 
to inspect the data at the level of the nucleus (as with the 
FOXP3 staining shown in Fig. 7), cytoplasm, membrane 

or total fluorescence provides a benefit over standard 
flow cytometry analyses which generally measure total 
cellular f luorescence and require additional staining 
protocols to obtain data on subcellular location. Cell 
counts, percentages, and other statistics can be generated 
from the gated populations in FCS Express, and exported 
as reports or as data tables for further analyses.

FCS Express also includes several other data 
visualization tools (histograms, dot plots, density plots), 
reporting tools (bar charts, pie charts, line graphs), 
and high-dimensional data reduction tools such as 
tSNE, SPADE and K-means, which can be applied to 
multispectral data generated from mIF. Finally, since 
flow cytometry is commonly used in research and clinical 
settings, this type of analysis is easily understood by 
immunology researchers and clinicians who are familiar 
with results from flow cytometry software, providing 
image data in a manner that is readily transferable between 
research and diagnostic laboratories.

Additional Analyses of Cell Phenotype Data

After cells have been segmented and phenotyped, for 
example using inForm, QuPath, or FCS Express, the data 
can be exported for further analyses in other software 
packages. R provides a number of data analysis and 
visualization packages. One of these, phenotpr, was 
designed specifically for the analysis of data generated 
from inForm [11]. As an example of using R packages 
to analyze mIF image data, we compared immune cells 
infiltrates in various regions of a breast cancer tissue 
section using a clustered heatmap analysis. Sections 
were stained with IP1 and IP2 and 46 ROIs from each 
were acquired on the Vectra system (Supplementary 
Figure 4). These ROIs were annotated by a pathologist to 
be representative of either IDC, DCIS, or normal tissue. 
Cell segmentation and phenotyping were performed 

CD3
FoxP3
CD20
Ki67
CK

Cell Area (pixels)

C
D

3 
(O

pa
l5

20
)

CD3 (Opal520)

FO
XP

3 
(O

pa
l6

20
, n

uc
le

us
)

a b c d

Fig. 7   Cell phenotyping using gating strategies in FCS Express. 
(a) Unmixed composite image of a breast cancer tissue stained with 
IP1. (b) Contour plot of cell size vs. CD3 mean fluorescence gener-
ated from inForm data that were imported into FCS Express. A T 
cell gate (green rectangle) was manually drawn around the CD3+ cell 

population. (c)  CD3 vs. FOXP3 contour plot of gated T cells from 
b. A Treg gate (red) was manually drawn around the FOXP3+ cell 
population. (d) Masks of gated cells (T cells in green, Treg cells in 
red) overlaid on a grayscale image of the nuclear DAPI channel. Scale 
bars are 100 µm
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in inForm and the resulting data were exported for 
subsequent analysis. Cell densities were determined for 
each ROI using phenoptr and a clustered heatmap was 
generated with the heatmap.2 function in the R package 
gplots [12]. This heatmap (Fig. 8) illustrates the relative 
densities of various cell types within the different areas 
of the tumor. Unsupervised cluster analysis yielded 
3 main clusters, denoted cluster 1, 2, and 3 in Fig. 8. 
Cluster 1 had high levels of immune infiltrates, cluster 
2 had moderate levels, and cluster 3 had low levels. In 
addition, cluster 1 had higher levels of proliferating CK+ 
cells (CK+Ki67+) compared to the other clusters. All of 
the ROIs annotated as normal tissue fell into cluster 3. 
Of the DCIS annotated ROIs, 52.2% belonged to cluster 
3, 43.5% to cluster 2, and only 4.3% to cluster 1. Finally, 
90% of the ROIs annotated as IDC fell into cluster 1, 10% 
in cluster 2, and 0% in cluster 3. This clustering heatmap 
analysis provides a convenient method to visualize and 
compare the differences in ROIs across a tissue sample.

The analyses in Fig.  5 and 8 illustrates the spatial 
heterogeneity of immune infiltrates across different areas 
within a breast cancer specimen. Since the spatial location 
(x,y coordinates) for each cell in an image can be obtained 

from inForm or QuPath analyses, these data along with 
the phenotyping data can be used to evaluate spatial 
associations between various cell types in the tumor 
microenvironment. Nearest neighbor analysis quantifies 
cell-cell interactions by determining the distance between 
each cell of one phenotype and its closest neighbor of 
another phenotype. The phenoptr package includes 
functions for calculating nearest neighbor distances, 
counting cells within a radius of a given cell type, and 
plotting/visualizing nearest neighbors. Figure 9 shows a 
composite image of a breast cancer sample stained with 
IP2 (Fig. 9a) and a nearest neighbor map (from phenoptr) 
depicting CK+ tumor cells in red and CD8+ T cells in 
green, with a line drawn from every tumor cell to the 
nearest CD8+ T cell (Fig. 9b). Similar analyses can be 
performed in MATLAB. Here we show a phenotype 
map generated in MATLAB from cell segmentation and 
phenotyping data obtained in QuPath (Fig. 9c). Fig. 9d 
depicts a Delaunay triangulation neighborhood plot for the 
CD3+ T cells in this sample (each dot represents a T cell). 
The density of Treg cells within 100 µm of each T cell is 
displayed as a heatmap above each dot and shows a high 
clustering of Treg and T cells near the center of the image.
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Fig. 8   Heatmap clustering of immune cells in different regions of 
a breast cancer sample. A breast cancer tissue sample was stained 
with mIF panels IP1 and IP2 and analyzed using inForm. Selection 
of ROIs from this sample is shown in Supplementary Figure 4. The 
heatmap panel a  shows the relative densities of various cell popula-
tions, where each row represents data from one ROI and each column 
is a cell population within the tumor or stroma compartments as indi-

cated along the bottom. Unsupervised clustering yielded 3 main clus-
ters as indicated on the left. ROIs were annotated as invasive ductal 
carcinoma (IDC), ductal carcinoma in situ (DCIS), or normal. A rep-
resentative ROI composite image from each of the different annota-
tions and their corresponding row in the heatmap is shown in panels 
b, c, and d. CD3 (green), CD68 (magenta), CK (white), and DAPI 
(blue) are highlighted
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Discussion

There is a large clinical need to characterize immune cell 
infiltrates in cancers. Immune biomarkers will be important 
for stratifying patients to various immunotherapies as well as 
determining why some patients do not respond to or relapse 
following current immunotherapy. This will require complex 
phenotyping using a variety of markers and is currently 
beyond the scope of standard chromogenic IHC that is 
widely used in the clinic. There is a sea of information hiding 
in a tissue section that is only partially revealed by standard 
IHC and this is where multiplex immunofluorescence (mIF) 
platforms will become indispensable tools for elucidating 
the interplay between the immune system and cancer.

The widespread adoption of mIF techniques for diagnostic 
pathology will require optimized, validated automation 
protocols. Manual mIF staining is time consuming and the 
multiple rounds of staining/stripping potentially introduces 
unacceptable levels of variability across time and between 
individuals performing the staining. Herein, we described 
the development and optimization of protocols for two 
7-color TSA-based mIF panels using Opal fluorophores 
on a Ventana Discovery Ultra autostainer. For both panels, 
single-plex IHC and IF stains were initially evaluated. The 
optimization of mIF protocols involved fine-tuning primary 
antibody and fluorophore dilutions and incubation times, 
testing different epitope retrieval buffers, identifying optimal 
HIER incubation periods and temperatures, testing different 
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Fig. 9   Spatial profiling of cells within the tumor microenvironment. 
(a) Unmixed composite image of a breast cancer sample stained with 
mIF panel IP2 (CK/yellow, CD3/green, CD8/magenta, CD68/cyan, 
PD-1/orange, PD-L1/red, DAPI/blue). b  Nearest neighbor analysis 
of a using phenoptr R package. Line segments are drawn from each 
tumor cell (red dots) to its nearest CD8+ T cell (green dots). Scale 

bars are 200 µm for (a) and (b). c Phenotype map created in MAT-
LAB from IP1 staining of a TMA phenotyped in QuPath. d Delaunay 
triangulation neighborhood plot for CD3+ T cells from c  (each dot 
represents a T cell) overlaid with a heatmap representing the density 
of Treg cells within 100 µm of each T cell
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sequences of primary antibodies, and testing different 
pairings of primary antibodies with Opal fluorophores. 
Spectral crosstalk or incomplete stripping of antibodies 
between rounds of staining was ruled out using leave-one-
out controls. In our initial optimization of IP1, leave-one-
out controls revealed some bleed-through of Ki67 stain into 
the FOXP3 channel. This was remedied by changing the 
antibody-Opal dye pairings.

In addition to optimizing the staining protocol, the use of 
multispectral imaging aids in the identification of positively 
stained cells. Multispectral imaging and unmixing reduces 
fluorophore crosstalk and increases the signal-to-noise ratio 
by capturing the spectral signal of each fluorophore while 
isolating tissue autofluorescence. The Vectra 3 provides 
multispectral and automated imaging within a familiar 
digital pathology workflow. This workflow can include the 
Phenochart whole slide viewer with annotation capability, 
where users (pathologists, technicians, etc.) can navigate 
around a whole slide scanned image and identify areas of 
interest for high-resolution multispectral acquisition.

A variety of imaging platforms can be used to analyze 
scanned and spectrally unmixed images including inForm, 
QuPath, ImageJ, FCS Express, and HALO. These platforms 
utilize different approaches for the identification and 
phenotyping of cells, from user-trainable machine-learning 
algorithms (inForm, QuPath) to manual or semi-automated 
gating strategies (FCS Express). Therefore, the analysis and 
interpretation of mIF data needs to be carefully planned 
and should involve the participation of a multidisciplinary 
team, including technicians, immunologists, pathologists, 
and biostatisticians.

One of the main advantages of this platform when 
compared to other recently developed approaches such 
as single-cell RNA sequencing and CyTOF [13, 14], is 
the preservation of tissue architecture. Characterizing the 
spatial proximity of different cell types within the tumor 
microenvironment may uncover novel biomarkers of 
response. For example, is it more important to have a high 
density of T cells or a high fraction of tumor cells with at 
least one T cell within close proximity? Or, is the proximity 
of effector T cells to Treg cells more informative than 
the Treg:T cell ratio? To address these types of questions 
requires the preservation of tissue architecture. There are 
other mIF platforms that offer much larger plex panels 
than the method used herein while still preserving tissue 
architecture, such as CODEX (Akoya Biosciences) [15], 
Digital Spatial Profiling (Nanostring)[16, 17], InSituPlex 
(Ultivue)[18], and mass spectrometry based platforms [19, 
20]. However, these have many limitations that do not permit 
cost- and time-effective whole-slide imaging.

To conclude, we have presented a digital pathology 
workflow for the optimization and automation of mIF 
panels for use in cancer immunology studies. We have 

described the development of two mIF panels, IP1 and 
IP2, designed to characterize immune infiltrates in 
cancer. IP1 includes markers for T cells (CD3), Treg cells 
(FOXP3), B cells (CD20), mast cells (CD117), tumor/
epithelial cells (CK), and a proliferation marker (Ki67). 
IP2 includes markers for T cells (CD3), cytotoxic T cells 
(CD8), macrophages (CD68), tumor/epithelial cells (CK), 
and two immune checkpoint molecules (PD-1 and PD-L1). 
We are currently working on expanding this repertoire of 
immune markers and developing panels that will include 
other immune inhibitory checkpoints (such as CTLA4, 
TIM-3, LAG-3, TIGIT, VISTA), immune stimulatory 
checkpoints (such as OX40, GITR, CD40, CD137, ICOS, 
CD27), innate immunity checkpoints (CD47), NK cell 
inhibitory receptors (KIRs, CD96), as well as panels to 
better elucidate myeloid lineage cells (macrophages, 
dendritic cells, myeloid derived suppressor cells) in the 
tumor microenvironment.
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