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Abstract
Thoracic (pulmonary and thymic) neuroendocrine tumors are well-differentiated epithelial neuroendocrine neoplasms that are 
classified into typical and atypical carcinoid tumors based on mitotic index cut offs and presence or absence of necrosis. This 
classification scheme is of great prognostic value but designed for surgical specimens, only. Deep molecular characterization 
of thoracic neuroendocrine tumors highlighted their difference with neuroendocrine carcinomas. Neuroendocrine tumors 
of the lung are characterized by a low mutational burden, and a high prevalence of mutations in chromatin remodeling and 
histone modification-related genes, whereas mutations in genes frequently altered in neuroendocrine carcinomas are rare. 
Molecular profiling divided thymic neuroendocrine tumors into three clusters with distinct clinical outcomes and charac-
terized by a different average of copy number instability. Moreover, integrated histopathological, molecular and clinical 
evidence supports the existence of a grey zone category between neuroendocrine tumors (carcinoid tumors) and neuroen-
docrine carcinomas. Indeed, cases with well differentiated morphology but mitotic/Ki-67 indexes close to neuroendocrine 
carcinomas have been increasingly recognized. These are characterized by specific molecular profiles and have an aggres-
sive clinical behavior. Finally, thoracic neuroendocrine tumors may arise in the background of genetic susceptibility, being 
MEN1 syndrome the well-defined familial form. However, pathologists should be aware of rarer germline variants that are 
associated with the concurrence of neuroendocrine tumors of the lung or their precursors (such as DIPNECH) with other 
neoplasms, including but not limited to breast carcinomas. Therefore, genetic counseling for all young patients with thoracic 
neuroendocrine neoplasia and/or any patient with pathological evidence of neuroendocrine cell hyperplasia-to-neoplasia 
progression sequence or multifocal disease should be considered.
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Introduction

Pulmonary neuroendocrine tumors (pulmonary carcinoid 
tumors) are well-differentiated epithelial neuroendocrine 
neoplasms that represent about 25% of all neuroendocrine 
neoplasms [1].  Unlike gastro-entero-pancreatic 
neuroendocrine tumors, pulmonary neuroendocrine tumors 
are diagnosed in the vast majority as early-stage disease. 
Lymph node involvement is present in about 20% of cases 
[2]. Stage III and stage IV diseases are encountered in 
about 10% of patients, each [3, 4]. Thymic neuroendocrine 
tumors represent less than 5% of all thymic and mediastinal 
neoplasms and 0.4% of all neuroendocrine tumors. In 
general, thymic neuroendocrine tumors behave more 
aggressively than pulmonary neuroendocrine tumors, they 
are frequently metastatic, and 5-year survival is not reached 
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in approximately 50% [5]. Patients with these tumors are 
typically symptomatic, often secrete ectopic hormones 
(e.g., ACTH in 40% of tumors) and, like neuroendocrine 
tumors of the lung, secrete circulating biomarkers such as 
chromogranin A and 5-HIAA (metabolite of serotonin).

Histopathological Classification

World Health Organization (WHO) classification of thoracic 
tumors categorizes neuroendocrine tumors of the lung and 
thymus as typical (< 2 mitoses per 2 mm2 and no necrosis) 
and atypical (2–10 mitoses per 2 mm2 and/or necrosis) [6]. 
Tumor histology is one of the most powerful predictors of 
aggressive behavior in lung and thymic carcinoids. In fact, 
atypical carcinoid histology is an independent variable of 
adverse prognosis even in lung cases at the metastatic stage 
[7]. However, this classification scheme has been designed 
for resected primary tumors to predict the risk of recurrence 
or metastasis, whereas the clinical impact of these categories 
in metastatic setting is undetermined. Indeed, mitotic 
index cut off values per se have been recently called into 
question in a large series of over 700 well-differentiated 
lung neuroendocrine tumors [8]. Furthermore, the impact of 
Ki-67 labeling index as an adjunct in the subclassification of 
pulmonary carcinoids into distinct prognostic subgroups has 
been a matter of long debate [9, 10]. Even recently, models 
that combine histology and proliferation index evaluation 
have been proposed [11], although not reaching a consensus 
that allows a definitive clinical application.

The Grey Zone Between Thoracic Neuroendocrine 
Tumors and Neuroendocrine Carcinomas

As a matter of fact, several pathological and clinical 
evidences suggest that typical and atypical carcinoid 
tumors should not be considered as distinct histotypes; they 
rather represent a unique group of lesions, the prognosis 
of which is driven by the presence or absence of a set 
of pathological features of aggressiveness. Moreover, 

the border between neuroendocrine tumor groups and 
thoracic neuroendocrine carcinomas (especially with 
large cell neuroendocrine carcinoma) is not clear cut, 
and a grey zone where morphology does not fully match 
with proliferation has been recognized. On the one side, 
a growing body of studies indicates that a subset of lung 
neuroendocrine tumors that are classified as pulmonary 
carcinoids based on mitotic index (therefore not above 
10 mitotic figures in 2mm2) have a significantly higher 
Ki-67 proliferation rate than the mean of overall carcinoid 
tumors [12, 13]. These cases, although maintaining a well 
differentiated morphology, have Ki-67 proliferation index 
close to large-cell neuroendocrine carcinomas and display 
a more aggressive clinical behavior than those with lower 
proliferative rates, irrespective of the carcinoid histotype 
assessed by the WHO classification [14, 15] (Fig. 1). On the 
other side, some lung neuroendocrine neoplasms classified 
as large-cell neuroendocrine carcinomas based on the high 
mitotic rate maintain a well-differentiated morphology, 
with a well-preserved organoid structure, focal necrosis—if 
present—and inconspicuous nucleoli [16]. These tumors, 
apart from classification issues, raise also the possibility 
of a direct progression from neuroendocrine tumors to 
neuroendocrine carcinomas. Although rarely demonstrable 
in the clinical practice [17], this possibility has been 
hypothesized based on clinical and molecular data [18].

Similar to neuroendocrine tumors elsewhere, the 
morphologic classification alone may fail to capture 
the heterogeneous spectrum of thymic neuroendocrine 
neoplasms. One of the best examples is the occurrence 
of thymic neuroendocrine tumors that show morphologic 
features of an atypical carcinoid but have a mitotic activity 
that is over 10 mitoses per 2mm2 [19, 20] (Fig. 2). Similar 
to neuroendocrine tumors of the lung, limited evidence 
suggests that the morphologic classification of thymic 
neuroendocrine tumors might not accurately predict the 
outcome of all of these tumors. Specifically, there appears 
to be overlap between atypical carcinoid tumors and large-
cell neuroendocrine carcinomas.

Fig. 1   Atypical pulmonary 
carcinoid with high proliferation 
index. A well-circumscribed 
lung lesion (a) with spindle cell 
morphology—well differenti-
ated—with mitotic index of 5 
per 2 mm2 (b) displays hetero-
geneous “clonal” proliferation, 
as assessed by means of Ki-67, 
with up to 40% proliferation 
index in hot spots (c)
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Molecular Sub‑classification of Thoracic 
Neuroendocrine Neoplasms

In the last years, a more accurate description of genomic, 
epigenetic, and gene expression profiles in thoracic 
neuroendocrine tumors, with special reference to those in the 
lung, has been achieved. Overall, the available data not only 
provided prevalence rates of molecular alterations in distinct 
histological subtypes of neuroendocrine tumors of lung and 
thymus, but also supported the existence of intermediate 
molecular classes of thoracic neuroendocrine tumors that 
parallel the pathological observation of lesions that do 

not completely fulfill the mitotic index/necrosis-based 
classification. A descriptive graph illustrating the spectrum 
of pulmonary neuroendocrine neoplasms according to 
diverse developmental pathways and putative natural history 
of disease is reported in Fig. 3. In this scenario, two subsets 
of neuroendocrine carcinomas are identified [21]. Primary 
neuroendocrine carcinomas feature undifferentiated tumor 
cells characterized by severe gene alterations (e.g., biallelic 
inactivation of RB1 and TP53) responsible for de novo 
pathogenetic mechanisms. They are characterized by a very 
short preclinical phase and high clinical aggressiveness with 
extensive disease at presentation. These tumors account for 

Fig. 2   Thymic neuroendocrine tumors with morphologic features of 
an atypical carcinoid tumor but with increased mitotic activity. The 
tumor shows a nested growth pattern and lacks large areas of necro-
sis (a). High magnification reveals bland appearing round to oval 

cells with a fair amount of cytoplasm and nuclei with inconspicuous 
nucleoli, lacking prominent nucleoli. Mitotic activity is increased (17 
mitoses per 2mm2, arrows) (b)

Fig. 3   Reappraisal of the lung 
neuroendocrine neoplasia 
spectrum according to diverse 
developmental pathways and 
putative natural history of dis-
ease. Green and yellow triangles 
with opposite slope indicate 
tumor aggressiveness and 
putative duration of preclinical 
phase, respectively. LCNEC 
large-cell neuroendocrine car-
cinoma, SCLC small-cell lung 
carcinoma, NET neuroendo-
crine tumor, P-HGNEN primary 
high grade neuroendocrine 
neoplasm, S-HGNEN second-
ary high-grade neuroendocrine 
neoplasm, I-NET indolent 
neuroendocrine tumor, TC 
typical carcinoid, AC atypical 
carcinoid, NSCLC non-small 
cell lung cancer
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the vast majority (approximately 70%) of neuroendocrine 
carcinomas.

In terms of morphologic and molecular characteristics, 
secondary neuroendocrine carcinomas, which are linked 
to tumor progression from pre-existing lesions, often show 
greater heterogeneity than primary ones. Similar tumors 
occur in both the lung and the thymus [20]. In this setting, 
secondary neuroendocrine carcinomas can develop through 
the acquisition of diverse genetic alterations either from 
neuroendocrine tumors (carcinoids) at high risk of progression 
or from non-small cell lung carcinomas. Duration of the 
preclinical phase is inversely related to tumor aggressiveness. 
Conversely, carcinoid-like large-cell neuroendocrine 
carcinoma would merge within the recently proposed category 
of neuroendocrine tumors with elevated proliferation rates in 
the lung (similar to gastro-entero-pancreatic neuroendocrine 
tumors with high grade proliferation; Grade 3 NET) [22] and 
might derive from neuroendocrine tumors (carcinoids) that 
have an increased risk of progression. These tumors would be 
characterized by a variably long preclinical phase (especially 
carcinoid-like large cell neuroendocrine carcinomas) and 
a clinical aggressiveness that is somewhat intermediate 
between de novo neuroendocrine carcinomas and indolent 
neuroendocrine tumors. These tumors would show lower 
propensity to metastasis formation at presentation. Finally, 
there are also indolent neuroendocrine tumors that are 
destined to remain unchanged over time and feature carcinoids 
with the longest preclinical phase and negligible clinical 
aggressiveness.

Genomic Profiling of Pulmonary Neuroendocrine 
Tumors (Carcinoid Tumors)

The genomic profiling of pulmonary neuroendocrine tumors 
(carcinoids) has been recently investigated by means of high-
throughput next-generation techniques [23]. Despite some 
heterogeneity of results in terms of prevalence of mutations 
in individual genes, molecular studies of pulmonary 
neuroendocrine tumors overall indicate that:

	 (i)	 Carcinoids are characterized by a low mutational 
burden, with a slight increase from typical to atypical 
carcinoids, but invariably lower than large-cell and 
small-cell neuroendocrine carcinomas;

	 (ii)	 G:C > A:T transitions, which are characteristic of 
smoking exposure, are less frequent in carcinoids as 
compared with neuroendocrine carcinomas;

	 (iii)	 Chromatin remodeling and histone modification-
related genes are mostly altered, whereas mutations 
in genes frequently altered in neuroendocrine 
carcinomas (such as RB1 and TP53) are very rare 
but not absent.

Globally, mutations in chromatin remodeling genes 
have been detected with variable frequencies, in up to more 
than 40% of pulmonary neuroendocrine tumors in some 
studies [24–27]. Lower rates of mutations in chromatin 
remodeling genes have been detected in other studies [28, 
29], probably as the result of differences in variant calling 
algorithms as well as different filtering parameters, thus 
emphasizing the need for standardization of bioinformatics 
and uniformity of quality control [30]. Genes involved 
in chromatin remodeling are divided in two main 
groups: those encoding for components of the covalent 
histone-modifying complexes (acetylation, methylation, 
phosphorylation, and ubiquitination) and those encoding 
for complexes of adenosine triphosphate–dependent 
chromatin remodeling (such as the SWI/SNF). Overall, 
MEN1 is the most frequently somatically mutated gene 
in neuroendocrine tumors (identified in 11–22% of 
carcinoids) [31, 32], which is usually associated to loss 
of heterozygosity [23, 24]. MEN1 is a histone modifier 
acting as a scaffold protein into a ternary complex 
composed of MEN1-MLL-PC4 and SFRS1 interacting 
protein 1 gene (PSIP1). Interestingly, PSIP1 has also been 
found to be mutated in a subset of neuroendocrine tumors 
(5%) lacking MEN1 gene alterations [24]. Interestingly, 
MEN1 gene mutations and reduced gene expression 
have been associated with poor prognosis in pulmonary 
neuroendocrine tumors, thus representing a prognostic 
molecular biomarker in these neoplasms [25, 33]. Other 
genes belonging to the chromatin remodeling pathway 
include those of the KMT2 (MLL) family of covalent 
histone modifiers whose mutation rate is up to 14% [25]. 
Genes of the SWI/SNF complex were also found to be 
mutated in more than 20% of neuroendocrine tumors of 
the lung, including genes of the ARID1 family, BCL11A, 
SMARCA1, SMARCA2, SMARCA4, SMARCB1, and 
SMARCC2 [24, 25].

Other pathways are by far less commonly altered in 
pulmonary neuroendocrine tumors. Recurrent mutations in 
the kinase domain of PIK3CA (exon 9 and 20) have been 
described in 13% of typical carcinoids and 39% of atypical 
carcinoids by means of Sanger sequencing [34]. However, 
lower prevalence rates of mutations in gene belonging to 
the PI3K/AKT/mTOR pathway have been detected in more 
recent next-generation sequencing studies, in contrast to 
neuroendocrine carcinomas [25].

Rare pulmonary neuroendocrine tumors have been 
described to show a hypermutated profile associated with 
POLQ mutations, a gene involved in DNA double-strand break 
repair and homologous recombination mechanisms [25, 27]. 
Moreover, a panel of chromosomal rearrangements, including 
the TRIB2-PRKCE fusion that involves a tyrosine kinase 
gene, has been recently described and associated with disease 
recurrence in a cohort of 25 pulmonary carcinoids [29].
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Despite the relative abundance of studies, the 
comparative molecular characterization of typical vs 
atypical carcinoids is still incomplete. Overall, typical 
carcinoids have the lowest mutational burden and the 
lowest mutational rate for each altered gene [35]. The most 
frequently mutated genes are EIF1AX, ARID1A, LRP1B, 
and NF1. By contrast, atypical carcinoids show a higher 
rate of mutations for each altered gene and a similar but 
not identical set of mutations. In fact, although mutation 
rates of EIF1AX and ARID1A are in line with those of 
typical carcinoids, a higher prevalence of MEN1 mutations 
is observed in atypical carcinoids as compared with 
typical carcinoids, reaching 25%. Other genes which are 
significantly mutated in atypical as compared to typical 
carcinoids include SMARCA4, ATP1A2, and SPHKAP, 
all with a mutation frequency exceeding 10% [35]. 
Interestingly, mutations in genes implicated in chromatin 
remodeling and histone modification are exclusive (such 
as EIF1AX) or generally more frequent in carcinoids as 
compared with large-cell and small-cell neuroendocrine 
carcinomas. It is worth to notice that mutations of other 
genes involved in chromatin remodeling such as DAXX or 
ATRX are not detected in pulmonary carcinoids, in contrast 
to other neuroendocrine tumors of foregut origin (i.e., those 
in the pancreas) [36]. However, in an immunohistochemical 
study of over 100 cases, it has been shown that loss of 
ATRX protein is present in 20% of pulmonary carcinoids, 
with a significant association with atypical carcinoids and 
shorter disease-specific survival [37].

Molecular alterations that are typical of non-small cell 
lung cancer, including those that are targets for biologic 
therapy, are infrequent in pulmonary neuroendocrine 
tumors. ALK or NTRK fusions are very rarely detected in 
pulmonary carcinoids, with only single cases reported [38, 
39], including cases with well-differentiated morphology but 
high proliferative rate [40].

Finally, several molecular studies, in parallel to 
morphology as discussed above, suggest that a subgroup 
of carcinoid tumors (mainly atypical carcinoid tumors) 
and large-cell neuroendocrine carcinomas display a 
heterogeneity with some overlap between histological 
types, and that a molecular classification may allow a better 
prognostic and predictive stratification. For instance, a 
recent study aimed at the integrative analysis of genome, 
transcriptome, and methylome data showed that integrated 
molecular profiles depict specific survival outcomes in 
patients with carcinoid tumors of atypical morphology, 
segregating patients with good typical carcinoid-like 
survival and patients with worse clinical outcome similar to 
large-cell neuroendocrine carcinomas [27]. In this study, a 
specific subgroup of neuroendocrine tumors, termed supra-
carcinoids, was identified with morphological features of 
carcinoid tumors but with molecular characteristics similar 

to large-cell neuroendocrine carcinomas. These tumors 
were characterized by MKI67 gene expression levels higher 
than seen in other carcinoid molecular subtypes, high 
estimated levels of neutrophil infiltration, altered pathways 
related to chemotaxis and degranulation of neutrophil, high 
levels of expression of immune checkpoint receptors and 
ligands (such as PDL1 and CTLA4), and upregulation of 
other immunosuppressive genes (including HLA-G and 
interferon gamma). Moreover, a few small studies were 
specifically aimed at the molecular characterization of 
highly proliferative lung carcinoids. In a series of cases at 
advanced stage of disease, no alterations in RB1 or TP53 
were detected, whereas mutations on chromatin-modifier 
genes (MEN1, ARID1A, ARID1B, and KDM5C) were present 
in more than 50% of cases [41]. In another study [42], highly 
proliferative pulmonary neuroendocrine tumors displayed 
molecular alterations in tumor suppressor genes belonging 
to pathways commonly altered in both carcinoids and 
neuroendocrine carcinomas of the lung, including chromatin 
remodeling, DNA repair, and cell cycle. Moreover, based on 
data in cases with spatial and/or temporal heterogeneity, this 
study proposes an evolutionary model from clones of lower 
aggressivity through the accumulation of “neuroendocrine 
carcinoma-like” genetic alterations, such as TP53/RB1 
alterations.

Gene Expression Profiling of Pulmonary 
Neuroendocrine Tumors (Carcinoid Tumors)

Gene expression profiling in pulmonary carcinoids has 
been assessed mainly in two different settings. The first was 
tailored to identify gene signatures specific to carcinoid 
histotypes. A study by Toffalorio et al. [43] identified 273 
genes to be upregulated in the atypical vs typical histotype, 
and among those GC (encoding for a vitamin D-binding 
protein) and CEACAM1 (encoding for a carcinoembryonic 
antigen family member) were validated by quantitative 
PCR and immunohistochemistry and proposed as potent 
diagnostic markers.

In another setting, gene expression profiling analysis 
was applied to identify signatures associated with 
specific biological and clinical behavior. In pulmonary 
neuroendocrine tumors with poor prognosis, a set of genes 
was found to be upregulated, including the proto-oncogene 
RET and other genes involved in cell cycle control, such as 
ASPM, BIRC5, BUB1, CEP55, FANCA, and others, whereas 
OTP, PCK1, ASB4, FOLRI1, CD44, and others were 
downregulated [44]. Interestingly, BIRC5, BUB1, CD44, 
IL20RA, KLK12, and OTP were independent predictors of 
patient outcome. Larger and independent series confirmed 
the negative prognostic value of the loss of OTP and 
CD44, proposing them as relevant clinical biomarkers of 
aggressiveness [45–47].
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In line with genomic data, recent transcriptional 
studies supported the existence of a grey zone between 
atypical carcinoid tumors and large-cell neuroendocrine 
carcinomas. In one study, atypical carcinoid tumors and 
large-cell neuroendocrine carcinomas have been clustered 
into three groups. Two groups were enriched for atypical 
carcinoid tumors or large-cell neuroendocrine carcinomas, 
respectively, and the genomic findings and outcome of 
the patients were as would be expected for the respective 
histotype. A third group was composed of mixed histologies, 
intermediate molecular features, and a survival similar to 
atypical carcinoid-type cluster [48]. In another study, 
neuroendocrine tumors or large-cell neuroendocrine 
carcinomas were analyzed by RNA sequencing and data 
matched with clinical and pathological features [49]. 
The study included four samples classified as borderline 
neuroendocrine tumor because of the presence of well-
differentiated neuroendocrine morphology and increased 
Ki-67 or mitotic rates. Clustering analysis revealed two 
distinct molecular groups characterized by low or high 
proliferation, the former including seven carcinoids and 
three borderline tumors, and the latter including seven large-
cell neuroendocrine carcinomas and one borderline tumor.

Epigenetic Molecular Mechanisms in Pulmonary 
Neuroendocrine Tumors (Carcinoid Tumors)

In line with the overall low mutation rates and the few 
recurrently mutated genes, neuroendocrine tumors are 
characterized by chromatin remodeling and epigenetic 
changes, which seem to represent the most relevant 
molecular mechanisms underlying the pathogenesis of 
these tumors. Although most of the available data have 
been obtained in pancreatic and intestinal neuroendocrine 
tumors, DNA methylation, histone modification, and 
miRNA expression have also been described in pulmonary 
carcinoids.

In detail, promoter hypermethylation of RAS-association 
domain family 1 (RASSF1) gene has been reported to be 
a frequent event in typical and atypical carcinoids, with a 
significant association between higher degrees of promoter 
methylation and higher tumor grade [50]. Intriguingly, in 
the same study, a non-linear correlation between mRNA 
and protein levels was observed, suggesting that post-
transcriptional events may regulate the function of RASSF1 
gene [50].

Another gene showing promoter hypermethylation in 
pulmonary carcinoids is CDKN2B, coding for a cyclin-
dependent kinase inhibitor p15Ink4b which is functionally 
similar to the tumor-suppressor gene CDKN2A (encoding 
for the p16INK4a protein), but less well characterized 
in its tumorigenic potential. It has been shown that the 
expression of the p15INK4b gene product (p15) was 

significantly lower in lung neuroendocrine neoplasms, 
especially in neuroendocrine tumors, as well as in the 
adjacent normal lung, compared with non-neoplastic 
control lungs. This finding was at least partially associated 
with aberrant methylation at the 5′-region of the gene 
[51]. However, the real role of CDKN2B gene promoter 
hypermethylation in the pathogenesis of pulmonary 
carcinoids is still a matter of debate [52].

Methylation levels of the MCAM gene (a protean 
modulator of a number of cellular functions, including 
cell motility and matrix invasion) were demonstrated to 
be significantly higher in lung carcinoids than in other 
neuroendocrine neoplasms, supporting its role as a site-
specific molecular biomarker [53]. More recently, the 
KEAP1 gene silencing by promoter methylation was reported 
in about 50% of typical and atypical lung carcinoids, which 
correlated with reduced protein expression [54, 55].

The importance of the regulation of DNA methylation 
in the pathogenesis of pulmonary neuroendocrine tumors 
is also reflected by the finding of the overexpression in 
these tumors of enzymes active in DNA methylation. For 
example, nuclear overexpression of the protein arginine 
methyltransferase-5 (PRMT5), which is a chromatin-
modifying enzyme, was reported to be more frequent in 
pulmonary carcinoids than in neuroendocrine carcinomas, 
suggesting different epigenetic regulatory mechanisms 
controlling oncogenesis in carcinoids as compared 
with high-grade pulmonary neuroendocrine neoplasms 
[56]. Conversely, tumor grade has been shown to be 
inversely correlated with expression levels of the histone 
methyltransferase enhancer of zeste homolog 2 (EZH2), 
being identified in neuroendocrine carcinomas of the lung, 
but lacking in pulmonary carcinoids [57].

A few systematic studies are available regarding histone 
modifications in pulmonary carcinoids. The expression 
of histone H4 acetylation at lysine 16 (H4KA16) and 
trimethylation at lysine 20 (H4KM20) was analyzed in a 
series of 32 pulmonary neuroendocrine neoplasms, showing 
a progressive loss of H4KM20 and H4KA16 along the 
spectrum of neuroendocrine neoplasms. Namely, typical 
carcinoids showed no alterations of histone H4, whereas 
early changes were observed in atypical carcinoids, and 
widespread loss of H4KM20 and H4KA16 was present in 
neuroendocrine carcinomas [58].

Concerning non-coding RNAs, the analysis of miRNAs 
expression profile in pulmonary neuroendocrine tumors 
demonstrated peculiar features which are different from 
neuroendocrine carcinomas of the lung and more similar 
to digestive neuroendocrine tumors [59–62]. Interestingly, 
typical and atypical carcinoids have been reported to 
differentially express specific miRNA subsets and, in 
addition, distinct miRNA expression profiles have been 
described in metastatic cases [59, 60].
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Long non-coding RNA profiling in pulmonary 
neuroendocrine neoplams has only been explored in a 
single study. In that study, the expression of HOX transcript 
antisense RNA (HOTAIR), maternally expressed 3 (MEG3), 
and prostate cancer antigen 3 (PCA3) has been found to be 
significantly lower in pulmonary carcinoids as compared with 
neuroendocrine carcinomas. The functional significance of 
this observation still needs to be explored [63].

Overall, our current knowledge of epigenetic changes 
involved in the molecular pathogenesis of pulmonary 
neuroendocrine tumors not only represents additional and 
complementary information to better understand tumor 
development and progression but also provides useful 
diagnostic tools in the distinction between carcinoids and 
neuroendocrine carcinomas. In addition, several epigenetic 
mechanisms are potential therapeutic targets in view of a 
tailored target therapy.

Molecular Background of Thymic Neuroendocrine 
Tumors (Carcinoid Tumors)

Using low-coverage whole-genome sequencing and copy 
number instability (CNI) scoring, Dinter et al. showed that 
the average CNI ranges from 5.25 in typical carcinoids 
to 18.3 in atypical carcinoids and 44.4 in neuroendocrine 
carcinomas [19]. However, outliers were observed 
specifically in cases of atypical carcinoids and large-cell 
neuroendocrine carcinomas. Overall, based on CNI, the 
authors were able to identify three clusters in which all 
thymic neuroendocrine neoplasms fell. CNIlow (CNI < 9), 
CNIint (CNI 9- < 30), and CNIhigh (CNI ≥ 30). CNIlow and 
CNIint comprised typical and atypical carcinoid tumors 
and 44% of large-cell neuroendocrine carcinomas. CNIhigh 

contained all small-cell carcinomas, 56% of large-cell 
neuroendocrine carcinomas, and 10% of atypical carcinoids. 
Interestingly, the CNI clusters correlated with survival. 
However, the CNI clusters could not be predicted by any 
morphologic feature, mitotic count, or Ki-67 labeling 
index. Therefore, the authors proposed a “morphomolecular 
grading system” for thymic neuroendocrine neoplasms 
to better predict the prognosis of these tumors (Table 1). 
The authors also showed that at least in a subset of 
neuroendocrine neoplasms of the thymus, there might 
be progression from low- to higher-grade histologies and 
found some additional focal chromosomal gains and losses 
in metastatic disease.

Interestingly, in contrast to pulmonary carcinoids, 11q13 
deletions were not identified in thymic neuroendocrine 
tumors [64, 65]. Gross chromosomal imbalances, as 
detected by means of comparative genomic hybridization 
(CGH), occur in 31–88% of cases [65, 66]. Similar to the 
study by Dinter et al. [19], an earlier study by Stroebel 
et al. [66] using CGH has shown an incremental increase 
of genetic alterations from typical to atypical carcinoid 
to neuroendocrine carcinomas with mean numbers of 
aberrations per tumor of 0.8 in typical carcinoids, 1.1 
in atypical carcinoids, 4.7 in large cell neuroendocrine 
carcinomas, and 15.5 in small-cell carcinomas. The most 
common findings of CGH studies of thymic neuroendocrine 
tumors are summarized in Table 2. Frequent overlapping 
genetic alterations were found in both neuroendocrine 
tumors and neuroendocrine carcinomas [66]. In that study, 
a cut-off of 2.5 chromosomal imbalances correlated with a 
higher rate of recurrence and death rate.

Recent studies have suggested that mRNA transcript 
analysis in blood can identify thymic neuroendocrine tumors 

Table 1   Modified proposal 
for a “morphomolecular 
grading system” of thymic 
neuroendocrine tumors ( 
Modified from Dinter et al. 
[19])

NEC neuroendocrine carcinoma
a Proposed morphomolecular thymic neuroendocrine tumor grade
b Carcinoid morphology subtypes also include typical and atypical carcinoids as well as NET G3; the latter 
is similar to grade-discordant gastroenteropancreatic tract neuroendocrine tumors that are characterized by 
a well-differentiated (carcinoid) morphology and mitotic count like G2 tumors but increased Ki-67 index 
(> 20%) equivalent to G3 tumors [107]
c Pos, expressed
d Neg, not expressed
e EZH2 neg defined as < 25% of tumor cell staining

Thymic 
NET 
gradea

Morphology WHO 
subtype

Mitotic Index
(mitoses per 
2mm2)

Ki-67 (%) CNI score Immunohistochemistry

G1 Carcinoids  < 10 < 9 < 9 Chromogranin posc

EZH2 negd,e

G2 Carcinoidsb

Large-cell NEC
10–29 9–47 9–29 Chromogranin pos

EZH2 neg
G3 Large-cell NEC

Small-cell NEC
 ≥ 30 ≥ 48 ≥ 30 Chromogranin pos/neg

EZH2 pos
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[5]. Three non-secretory atypical carcinoid tumors (i.e., no 
production of serotonin or ACTH) with low chromogranin 
A levels were found to have detectable expression of genes 
that have been linked to neuroendocrine tumor pathobiology 
in the circulating blood using the NETest [5, 67]. However, 
these findings need to be validated in larger cohorts and their 
clinical utility in identifying progressive tumors, confirming 
complete tumor resection, and predicting treatment response 
has to be established.

Mutational burden is low in thymic neuroendocrine 
tumors with < 1 chromosomal alteration per tumor which 
occurs in less than a third of patients [66]. Approximately 
25% of patients with thymic carcinoid tumors harbor a 
MEN1 germline mutation [68] and 8% of MEN1 patients 
develop thymic neuroendocrine tumors [69]. However, loss 
of heterozygosity of the MEN1 locus on chromosome 11q13 
has not been described in thymic carcinoids [65, 70]. One 
sporadic thymic carcinoid was reported to harbor a nonsense 
mutation in MEN1 (Q393X) [71].

Evidence suggests that PAK3 (p21-activated kinase 3) 
might play a role in the progression of ACTH-producing 
thymic carcinoids [72]. Complementary DNA profiling of 7 
ACTH-producing thymic carcinoids identified 5 adhesion-
related genes to be downregulated and 5 to be upregulated 

including a remarkable overexpression of PAK3 in all tumors. 
Its upstream regulator, RAC1, was also overexpressed. The 
authors showed that PAK3 overexpression was associated 
with enhanced cell migration and invasion. Interestingly, 
PAK3 expression levels were higher in tumors with 
progressive disease than tumors without. ACTH-secreting 
tumors were also found to express elevated beta-catenin 
and decreased NOTCH2 levels, genes involved in the Wnt 
signaling pathway. Not surprisingly, the neuropeptide 
signaling pathway was also upregulated, but it was thought 
that this might have been a consequence of the tumor.

In thymic neuroendocrine tumors, there are currently 
no potential prognostic biomarkers or targetable molecular 
alterations known [73]. Furthermore, circulating tumor DNA 
has not been studied. Therefore, future studies concerning 
prognostic biomarkers that might better predict the behavior 
of an individual tumor and targetable molecular aberrations 
or neoplastic cell proteins are important for the management 
and treatment of patients with thymic neuroendocrine 
tumors.

Germline Variants in Lung and Thymic 
Neuroendocrine Tumors

Most pulmonary and thymic neuroendocrine tumors 
(carcinoid tumors) are associated with sporadic disease; 
thus, only a small fraction is currently linked to germline 
susceptibility [74]. The age of the patient at time of diagnosis, 
personal, and/or family history for inherited endocrine tumor 
syndromes or tumors that may be seen in association with 
various neuroendocrine neoplasms, cytomorphological 
findings, and molecular immunohistochemical biomarkers 
are all important parameters that might prompt 
diagnosticians to search for a potential underlying germline 
disease in neuroendocrine neoplasia [74]. Similar to other 
anatomic sites, the accurate distinction of paragangliomas 
(non-epithelial neuroendocrine neoplasms of paraganglia) 
from their epithelial counterparts is of significance since 
primary pulmonary and mediastinal paragangliomas are 
more frequently associated with germline alterations 
[75] compared with thoracic (pulmonary and thymic) 
neuroendocrine tumors. For this reason, diagnostic 
immunohistochemical biomarkers of paraganglia (e.g., 
tyrosine hydroxylase, dopamine beta-hydroxylase, 
and GATA3) should be applied to all keratin-negative 
neuroendocrine neoplasms [75–77].

The true incidence of germline susceptibility is currently 
difficult to determine since clinical studies focusing on 
germline variants in pulmonary and thymic neuroendocrine 
tumors are scant. This is partially due to the lack of 
appreciation of germline disease in apparently sporadic-
appearing thoracic neuroendocrine neoplasms given the 
discovery of germline DNA repair defects in non-syndromic 

Table 2   Results of comparative genomic hybridization studies in 
thymic neuroendocrine tumors (carcinoids) [19, 62]

Subtype of thymic neuroendocrine tumor Molecular alteration

Typical carcinoid tumors Large copy number altera-
tions including

Gains on chromosomes 
1q, 5, 6q, 7q, 8q, 10, 
11q, 12q, 13q, 18q, 20, 
21q, 22q

Losses on chromosomes 
1, 2p, 4p, 6q, 8, 10p, 
10q, 11p, 13q, 15q, 17p, 
18p, 22q

Deletions in gene loci on 
chromosomes 1p, 3q, 8p, 
11q, 17p

Atypical carcinoid tumors Large copy number altera-
tions including

Gains on chromosomes 
1q, 7p, 7q, 10, 12q, 20q, 
21, 22, Xp

Losses on chromosomes 
1p, 2p, 3p, 4p, 4q, 6q, 
10p, 11p, 13q, 17p

Deletions in gene loci on 
chromosomes 1p, 3p, 
3q, 5p, 6p, 6q, 9p, 10q, 
13q, 17p

Amplifications in gene 
loci on chromosomes 
8q, 14q
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thoracic neuroendocrine tumors [78]. Ideally, a whole-
exome sequencing of germline DNA from all young patients 
with thoracic neuroendocrine neoplasm and/or any patient 
with pulmonary neuroendocrine disease either in the form 
of pulmonary neuroendocrine cell hyperplasia-to-neoplasia 
sequence or multifocal pulmonary neuroendocrine disease 
(e.g., solitary pulmonary neuroendocrine tumor in a 
background of widespread pulmonary neuroendocrine cell 
hyperplasia, or pulmonary neuroendocrine microtumors—
also known as carcinoid tumorlets, or multifocal pulmonary 
neuroendocrine tumors) should be integrated into clinical 
management guidelines.

Among syndromic manifestations, pathogenic MEN1 
variants that cause MEN1 syndrome account for the most 
well-defined inherited syndrome that can feature thoracic 
neuroendocrine tumors [79–81]. Among patients with 
MEN1 syndrome, thymic neuroendocrine neoplasms, which 
are considered an important source of morbidity, were 
reported to occur in 3.7% of MEN1 patients in a recent meta-
analysis [79, 80, 82], whereas pulmonary neuroendocrine 
neoplasms have been noted in approximately 2–13% 
of MEN1 patients [79, 81, 83–87]. The histopathology 
of MEN1-related lung disease includes more common 
multifocal neuroendocrine proliferations such as pulmonary 
neuroendocrine micro-tumors (carcinoid tumorlets) that 
can be seen in association with pulmonary neuroendocrine 
cell hyperplasia [81]. The pulmonary neuroendocrine 
cell hyperplasia-to-neuroendocrine neoplasia progression 
sequence in MEN1 syndrome can also be screened 
using molecular immunohistochemistry. For instance, 
diffuse loss of nuclear menin (protein encoded by MEN1) 
immunostaining in multifocal pulmonary neuroendocrine 
(micro)tumors or thymic neuroendocrine tumors should 
alert diagnosticians to the possibility of MEN1 syndrome 
even in the absence of a family history [88] (Fig. 4). The 

diagnosis is further justified by demonstrating MEN1 defect 
in the germline DNA (e.g., blood).

A small fraction of patients with a negative germline 
MEN1 testing but with MEN1-like clinical and pathological 
features present with MEN4 syndrome. Affected patients 
frequently harbor germline pathogenic CDKN1B defects [79, 
89]. The true incidence of MEN4 syndrome in the context 
of well-differentiated thoracic neuroendocrine tumors is 
currently unknown. However, diffuse loss of nuclear p27 
(protein encoded by CDKN1B) expression in the appropriate 
clinical and morphological setting can help rationalize 
genetic screening to rule out germline CDKN1B-related 
thoracic neuroendocrine neoplasia [88].

The identification of pathogenic germline RAD51AC 
defects in a thymic neuroendocrine tumor [78], as well 
as a germline APC variant harboring breast carcinoma 
patient with a pulmonary neuroendocrine tumor [90] and a 
germline MSH2 variant of unknown significance in another 
breast carcinoma patient with well-differentiated pulmonary 
neuroendocrine tumor [90], expands the spectrum of non-
syndromic manifestations of germline disease in well-
differentiated thoracic neuroendocrine neoplasms.

Germline NKX2.1 mutations (encoding TTF1) have 
been reported in patients and their adult family members 
with familial pulmonary neuroendocrine cell hyperplasia 
of infancy [91, 92]. Although the pulmonary involvement 
often shows significant improvement with age, rare 
examples of adult patients with familial neuroendocrine 
cell hyperplasia of infancy showed overlapping imaging 
findings with diffuse idiopathic pulmonary neuroendocrine 
cell hyperplasia (DIPNECH) [92]. Interestingly, an adult 
Japanese patient with Notch3-related cerebral autosomal 
dominant arteriopathy with subcortical infarcts and 
leucoencephalopathy developed DIPNECH as well as 
other non-neuroendocrine neoplasms including prostatic 

Fig. 4   MEN1 patient with a 
thymic neuroendocrine tumor 
that shows diffuse loss of 
nuclear menin expression, while 
the non-tumorous elements 
(internal control) retain nuclear 
staining for menin
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adenocarcinoma, renal cell carcinoma, and adenomatoid 
tumor (epididymis) [93]. In addition, the occurrence of 
DIPNECH in the setting of multiple epithelial neoplasms of 
various organs including papillary thyroid carcinoma, breast 
carcinoma, and carotid body paraganglioma in a patient with 
pathogenic PALB2 is also of great interest [94].

While germline variants in patients with DIPNECH require 
further studies, the documentation of a common breast 
carcinoma history and associated germline defects in patients 
with pulmonary neuroendocrine disease is an interesting 
pathogenetic association as seen in other neuroendocrine 
neoplasms [90, 94]. More importantly, these findings 
suggest that the spectrum of germline disease in thoracic 
neuroendocrine neoplasia is likely underestimated. Therefore, 
implementation of routine genetic screening protocols for 
germline screening is indicated to better understand its 
incidence and underlying molecular cellular mechanisms.

Implications for Therapy

Therapeutic strategies and lines of treatment in pulmonary and 
thymic neuroendocrine tumors in inoperable or progressive 
cases are poorly defined in current clinical guidelines [95]. 
In these patients, first-line treatment includes somatostatin 
analogs alone or in combination with other therapies, or 
cytotoxic chemotherapy. These same treatments are also the 
most adopted as second-line therapy, together with mTOR 
inhibitors and other regimens in a wide range of schemes and 
sequences that are heterogeneous even within single institutions 
[96]. Molecular predictive biomarkers in the clinical setting are 
mostly missing. Specific profiles of expression of somatostatin 
receptors (mainly loss of expression of somatostatin receptors 
type 1 and 2 and increased expression of somatostatin 
receptors type 3 and 4) have been associated with the presence 
of aggressive features and shorter survival in untreated patients 
[97]. However, although somatostatin analogs proved to be 
effective treatments in aggressive pulmonary carcinoids [98], 
somatostatin receptor expression has no role in predicting the 
response to somatostatin analogs in thoracic well-differentiated 
neuroendocrine neoplasms. Alkylating agents are the mainstay 
for chemotherapy, and deficiency of O6-methylguanine-
methyltransferase (MGMT) enzyme has been associated with 
a better response to these agents [99]. However, in lung well-
differentiated neuroendocrine tumors, despite MGMT being 
shown to be deficient in approximately 50% of cases [100], 
no data are available on a predictive role of MGMT status 
in chemotherapy-treated patients. Although some lines of 
therapy are based on the biological evidence of the disruption 
of specific pathways in thoracic neuroendocrine tumors, 
no clinically relevant molecular biomarker is used to select 
or predict patient’s response to a given treatment. Several 
molecular alterations in thoracic neuroendocrine tumors 

interfere with cell-cycle regulation, chromatin remodeling, 
apoptosis, intracellular cascades, and cell–cell interactions. 
However, molecular alterations in thoracic neuroendocrine 
tumors that might be considered as targets for treatment 
are very scarce, and treatment of pulmonary and thymic 
carcinoids on a personalized basis is still an unmet goal, 
despite a list of hypothetical biomarkers [101]. Among those, 
rovalpituzumab tesirine, which targets the inhibitory Notch 
ligand Delta-like protein 3 (DLL3), has been shown to be a 
promising therapeutic agent in pulmonary neuroendocrine 
carcinomas. Although to a lower extent as compared with 
small cell lung carcinoma, high DLL3 expression was 
observed in 37% of atypical carcinoids and 32.8% of typical 
carcinoids [102]. However, the impact of DLL3-targeted 
therapy in aggressive pulmonary neuroendocrine tumors is 
unexplored, so far. Chromatin-modifying genes could also 
be implicated in the treatment of thoracic well-differentiated 
neuroendocrine neoplasms. As an explicatory model, 
preliminary literature data showed that ARID1A alterations 
increase tumor cell sensitivity to agents targeting the ATR 
protein, EZH2 or the PI3K pathway [103–105]. Moreover, 
ARID1A alterations interfere with mismatch repair pathway 
and immunoregulatory mechanisms. In fact, ARID1A has 
been shown to recruit MSH2 to chromatin during DNA 
replication, and ARID1A inactivation therefore compromises 
mismatch repair mechanisms. Moreover, in vivo ARID1A-
deficient ovarian cancer models exhibit an increased number 
of tumor-infiltrating lymphocytes, a higher tumor mutation 
load, and elevated PD-L1 levels [106]. The supracarcinoid 
cluster described in the study by Alcala et al. [27] also showed 
peculiar immune-to-tumor response profiles that suggest a 
potential role for immunotherapy in aggressive carcinoids of 
the lung. However, all molecular data described in thoracic 
neuroendocrine tumors so far lack a direct impact in terms of 
therapy and still deserve both functional and clinical validation 
as biomarkers to be integrated to pathological characterization.
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