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Inhibition of interferon-signalling halts cancer-associated
fibroblast-dependent protection of breast cancer cells from
chemotherapy
Robyn V. Broad1, Stacey J. Jones1,2, Melina C. Teske1, Laura M. Wastall3, Andrew M. Hanby1,3, James L. Thorne 4 and
Thomas A. Hughes 1

BACKGROUND: Triple negative breast cancers (TNBC) have poor prognoses despite aggressive treatment with cytotoxic
chemotherapy. Cancer-associated fibroblasts (CAFs) are prominent in tumour stroma. Our hypothesis was that CAFs modulate
chemotherapy sensitivity.
METHODS: TNBC cells and breast fibroblasts were cultured; survival after chemotherapeutics was assessed using luciferase or
clonogenic assays. Signalling was investigated using transcriptomics, reporters, recombinant proteins and blocking antibodies.
Clinical relevance was investigated using immunohistochemistry.
RESULTS: Breast CAFs dose-dependently protected TNBC cell lines MDA-MB-231 and MDA-MB-157, but not MDA-MB-468s, from
chemotherapy. CAF-induced protection was associated with interferon (IFN) activation. CAFs were induced to express IFNβ1 by
chemotherapy and TNBC co-culture, leading to paracrine activation in cancer cells. Recombinant IFNs were sufficient to protect
MDA-MB-231 and MDA-MB-157 but not MDA-MB-468 cells. In TNBC patients, IFNβ1 expression in CAFs correlated with cancer cell
expression of MX1, a marker of activated IFN signalling. High expression of IFNβ1 (CAFs) or MX1 (tumour cells) correlated with
reduced survival after chemotherapy, especially in claudin-low tumours (which MDA-MB-231 and MDA-MB-157 cells represent).
Antibodies that block IFN receptors reduced CAF-dependent chemoprotection.
CONCLUSIONS: CAF-induced activation of IFN signalling in claudin-low TNBCs results in chemoresistance. Inhibition of this
pathway represents a novel method to improve breast cancer outcomes.

British Journal of Cancer (2021) 124:1110–1120; https://doi.org/10.1038/s41416-020-01226-4

BACKGROUND
Breast cancer is the most common malignancy in women and the
second most common overall, causing ~600,000 deaths annually
worldwide.1 Breast cancers are classified clinically into different
molecular subtypes,2 based mainly on expression of oestrogen
receptor, progesterone receptor and HER2, and this classification
defines suitable therapeutic options, including agents targeting
oestrogen or HER2 function. Triple negative breast cancers (TNBC),
which make up ~15% of breast cancers, do not express these
markers, and accordingly cytotoxic chemotherapy is the only
appropriate systemic therapy.2 However, TNBC outcomes are
relatively poor despite this aggressive treatment.3

The tumour microenvironment has potent and complex
influences on breast cancer behaviour.4 Cancer-associated fibro-
blasts (CAFs) are a major cellular component of breast tumour
microenvironment,5 and have been shown to promote cancer
proliferation, invasion and metastases through paracrine signal-
ling pathways, such as secretion of VEGF, FGF2, TGFβ, CXCL12 and
IL6, as well as indirectly through modifications to extracellular
matrix.6 Accordingly, the presence of CAFs is significantly
associated with poor outcomes from breast cancer generally,7

and in TNBC specifically.8 An alternative explanation for this
correlation is that CAFs directly influence therapy response,
potentially inducing therapy resistance.9 The predominant model
that links CAFs to therapy response involves CAF-modified
extracellular matrix6,10 that changes physical tissue properties11,12

and therefore drug permeability.6 Direct paracrine influences of
CAFs on therapeutic response, particularly to cytotoxic che-
motherapy in TNBCs, have received relatively little study.
Interestingly, some CAF-secreted paracrine mediators of che-
motherapy response in TNBC have been identified, for example
FGF5 and CXCL12 have been shown to promote resistance to
docetaxel in mouse-models10 and to paclitaxel in 3D-culture
models13 respectively. Identification of specific examples of
molecular crosstalk between CAFs and TNBC cancer cells, such
as these, presents opportunities for inhibition of the interactions
and therefore chemo-sensitisation to improve TNBC outcomes.10

Our hypothesis was that CAFs directly modulate responses of
TNBC cells to cytotoxic chemotherapy, and therefore that the
differential responses of tumours may be driven in part by impact
of variable CAF activity. We aimed to identify molecules
responsible for such cellular crosstalk and to determine whether
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the signalling could be inhibited to improve chemotherapy
responses.

METHODS
Ethics and patients
Ethical permissions for use of fibroblasts from breast cancer
resections, and of archival tissue and associated clinicopathologi-
cal data from patients was granted by Leeds (East) REC
(references: 09/H1326/108, 06/Q1206/180). Patients were diag-
nosed and treated within Leeds Teaching Hospitals NHS Trust;
they were recruited, and informed consent was taken in line with
these permissions. For tissue microarrays, patients were diagnosed
between 01/01/2008 and 30/03/2013; inclusion criteria were
clinically defined as ER, PR, HER2 negative, lack of neoadjuvant
therapies, availability of suitable archival (FFPE) tumour tissue, and
availability of at least 2 months follow up.

Reagents
Epirubicin hydrochloride (Sigma; St Louis, USA); recombinant IFNα
and IFNγ (Peprotech; Rocky Hill, USA); mouse anti-human IFN Type
I R2 antibody (#MMHAR-2; PBL Assay Science; Piscataway, USA);
goat anti-human IFN Type II R1 antibody, mouse IgG2A control,
goat IgG control (#AF673, #MAB00, #AB-108-C 3; R&D Systems;
Minneapolis, USA); rabbit anti-IFNβ1 and anti-claudin-3 antibodies
(#PA5-20390, #PA5-16867; ThermoFisher; Waltham, USA); rabbit
monoclonal MX1 antibody (#D3W7I; CST; MA, USA).

Tissue culture
MDA-MB-231, MDA-MB-468 and MDA-MB-157 cells were pur-
chased from ATCC (Manassas, USA) and MDA-MB-231-luc from
Cell Biolabs (San Diego, USA). Cells that stably express GFP and
firefly luciferase (MDA-MB-231-GFP/luc), or GFP (MDA-MB-468-
GFP) were developed by transduction with lentiviruses.14 Breast
normal fibroblasts (NFs) or CAFs were extracted from breast
cancer resections from >1 cm outside tumour margins, or from
inside tumour masses, respectively. Fibroblasts were used as
primary lines (passage 5–10), or immortalised by viral transduc-
tion to over-express hTERT.15 CAF-GFP cells were developed by
lentiviral transduction.16 Cells were cultured (37 °C) in media
from Thermofisher (Waltham, USA) with 10% FCS (Sigma; St
Louis, USA) and 1% penicillin/streptomycin (final concentrations
100 U/ml and 100 μg/ml). MDA-MB-231, MDA-MB-468 and
immortalised fibroblasts were cultured in DMEM. Primary
fibroblasts were cultured in DMEM-F12 and 5 μg/ml Fungizone
(Sigma; St Louis, USA). MDA-MB-157 cells were cultured in
Leibovitz L-15. Cells were cultured in 5% CO2/air incubators,
except for MDA-MB-157 (sealed flasks in 100% air). Cells were
transfected in OptiMEM without serum using Lipofectamine-
2000 (Thermofisher; Waltham, USA). ISRE/GAS reporter plasmids
and renilla plasmid (pRL-TK) were gifts from Andrew Macdonald
(Leeds, UK).17

Fluorescence-activated cell sorting (FACS)
FACS was performed on cells from co-cultures or from matched
monocultures to allow separate assessment of epithelial and
fibroblast components by either colony forming assays or
expression analyses. Cells were removed from culture dishes
using trypsin/EDTA (Thermofisher; Waltham, USA) and resus-
pended in RPMI phenol red free media (Thermofisher; Waltham,
USA). An Influx 6-way cell sorter (BDBiosciences; San Jose, USA)
was used to identify GFP positive cells (488 nm laser), gating on
live cells on FSC/SSC. Typically, ~100,000 single cells of either GFP
positive, GFP negative or both separately were collected into ice-
cold RPMI phenol red free media. Representative flow plots
showing three different co-cultures (MDA-MB-231-GFP/luc and
CAF; MDA-MB-468-GFP and CAF; MDA-MB-157 and CAF-GFP) are
shown (Fig. S1).

Luciferase assays
Luciferase assays (survival assays—firefly only; reporter assays—
dual) were performed using Promega (Madison, USA) reagents
and were quantified by plate reader (Mithras-LB940, Berthold; Bad
Wildbad, Germany). For survival assays, epirubicin-treated read-
ings were normalised to untreated cultures of the same fibroblast-
epithelial proportions to determine relative survival excluding
differences in epithelial cell numbers from the differing propor-
tions. For reporter assays, MDA-MB-231 cells were reverse
transfected with ISRE or GAS reporters (firefly) and pRL-TK control
(renilla) for 18 h and were then replated in culture/co-culture with
varying proportions of CAFs. Firefly activity was normalised to
renilla.

Colony forming (clonogenic) assays
Mono-/co-cultures were established and treated with drugs/
controls as described in figure legends. To determine survival in
monoculture experiments (for example, recombinant IFN treat-
ments), cells were resuspended in fresh medium lacking drugs or
IFNs and replated in technical duplicate 10 cm dishes at 500 cells
per plate. Plates were incubated for 14 days undisturbed. Cells
were then fixed/stained using Crystal Violet (Sigma; St Louis, USA)
in 50% methanol/20% ethanol. Isolated colonies (>40 cells) were
counted manually. For experiments involving co-culture, all
cultures (including 0% fibroblast/100% epithelial cultures) were
sorted to isolate epithelial cells, which were then replated and
assessed as above. Reproducibility of colony counts was
confirmed: plates representing a range of different colony
numbers were counted by two independent scorers; counts were
compared; R2 correlation coefficient was 0.949, indicating near
perfect agreement.

RNA analyses
For genome-wide transcriptome analyses, 900,000 MDA-MB-231-
GFP/luc cells were sorted and RNA was prepared (ReliaPrep RNA
minipreps; Promega; Madison, USA). Affymetrix Clariom D micro-
array (Santa Clara, USA) analyses were performed by Paul Heath
(Sheffield University, UK). Affymetrix transcriptome analysis con-
sole v3.0 was used to identify significantly differentially expressed
genes (fold changes > ±2, ANOVA p < 0.05). Genes identified were
analysed in ToppGene (https://toppgene.cchmc.org)18 using
ToppFun. For qPCR of mRNAs, the GoTaq 2-Step RT-qPCR system
was used with random primers and GoScript RT (Promega;
Madison, USA) following the manufacturer’s protocol. qPCR was
performed with GoTaq qPCR master mix and CXR reference dye in
technical duplicates or triplicates using QuantStudio5 (Thermo-
Fisher; Waltham, USA) with SYBR settings. Primers were supplied
by IDT (Coralville, USA): OAS1 (#74007036), MX1 (#74007039),
IFNA2 (#74849839), IFNB1 (#74849836), IFNG (#74849833), ACTB
(#74007033). For qPCR of miRNAs, TaqMan miRNA assays were
used following the manufacturer’s protocols (ThermoFisher;
Waltham, USA). qPCR was performed in technical triplicates using
QuantStudio5 with TaqMan settings. Assays were supplied by
ThermoFisher (Waltham, USA): miR-155-5p (#4427975), RNU48
(#4427975) Expression was determined relative to ACTB (mRNA) or
RNU48 (miRNA) using δδct.19

Tissue microarrays (TMAs) and immunohistochemistry (IHC)
TMAs were constructed as previously.20 In brief, suitable tissue areas
(tumour with stroma, avoiding poorly cellular areas, necrosis,
sclerosis) were identified on haematoxylin/eosin stained slides by
histopathologist LMW and three separate 0.6mm cores of tumour
tissue were taken from resection blocks and inserted into grids in
recipient wax blocks. Clinicopathological data were collected
(Table S1); disease-free survival was defined as time from diagnosis
with primary cancer to diagnosis of recurrence, or for those without
an event, to last disease-free follow up. IHC was performed broadly
as previously.21 In brief, 5-μm sections were taken onto SuperFrost
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plus slides (Menzel-Glaser; Braunschweig, Germany). Sections were
dewaxed with xylene, rehydrated with absolute ethanol, and
washed in running tap water. Antigens were heat retrieved in 10
mM citric acid buffer (pH 6.0) using a 900W microwave (10min,
high power). Slides were treated with 0.3% hydrogen peroxide
(Thermo Fisher; Waltham, USA) followed by washes in Tris-Buffered
Saline (TBS) and incubation in antibody diluent (ThermoFisher;
Waltham, USA). Antibodies were diluted in antibody diluent at 1:800
(IFNβ1), 1:500 (claudin-3) or 1:50 (MX1) and were incubated on
slides overnight (4 °C). Antibody diluent only was used for no
primary controls. Slides were washed with TBS-T (0.1% Tween-20;
Sigma; St Louis, USA) and TBS. SignalStain Boost IHC detection
Reagent (HRP) and DAB substrate (Cell Signalling Technology; MA,
USA) were used according to the manufacturer’s protocols. Slides
were counterstained with Mayer’s Haematoxylin, followed by
washing in running tap water, Scott’s water and again in running
tap water. Slides were mounted under coverslips in DPX (Fluka;
Gillingham, UK). Stained sections were digitally scanned using
ScanScopeXT (20x) and manually scored using Webscope (Aperio;
Vista, CA, USA) with protocols developed by AMH (consultant breast
histopathologist). For IFNβ1, intensity of fibroblast staining was
scored as 1 (weak), 2 (moderate) or 3 (strong). For MX1, tumour cell
cytoplasmic intensity was scored as 0 (negative), 1 (weak), 2
(moderate) or 3 (strong). For claudin-3, staining of tumour cell
cytoplasm/membrane was scored as negative or positive. For each
antibody, only intensity was scored since proportions of cells
staining at these intensities were consistently the vast majority of
cells, therefore proportion was not informative. All cores were
scored by SJJ, with 10% scored by a second independent scorer
(AMH) to allow for statistical analysis of scoring reproducibility.
Interscorer concordance was determined using Cohen’s Kappa

statistics: 0.725 (MX1), 0.672 (IFNβ1) and 1 (claudin-3), indicating
near perfect, excellent or perfect agreement. For MX1 and IFNβ1,
scores for individual cases were means of the core scores for that
case, and expression was dichotomised into high and low groups
using ROC analyses.22 For claudin-3, cores for each case were
consistently positive or negative, therefore dichotomisation was
positive in all or negative in all.

Statistics
Data were analysed in Prism (v8) (GraphPad; San Diego, USA),
except for IHC correlations and survival analyses, which were
performed using SPSS (v19) (SPSS; Chicago, USA).

RESULTS
Breast CAFs, but not NFs, consistently protect MDA-MB-231 cells
from chemotherapy
Our first aim was to determine whether breast normal fibroblasts
(NFs) or CAFs were able to influence sensitivity of TNBC cells to
cytotoxic chemotherapy. Initially, we used a short-term co-culture
survival assay with luciferase-expressing variants of the TNBC cell
line, MDA-MB-231. These were cultured alone (0% fibroblasts) or
were co-cultured with either immortalised breast NFs or CAFs in
proportions ranging 8–55% fibroblasts. The same total cell
number was seeded in each case to achieve comparable overall
confluency. Cultures were treated for 24 h with different doses of
the anthracycline epirubicin, which is typically used in breast
cancer chemotherapy, or with vehicle control; doses approxi-
mated to EC50, EC20 and EC10. Relative epithelial cell survival was
assessed using luciferase assays (Fig. 1a). As expected, epirubicin
reduced epithelial survival dose-dependently (compare y-axis
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Fig. 1 Breast CAFs, but not NFs, protect some TNBC lines from chemotherapy. a MDA-MB-231-luc cells were cultured alone (0% fibroblasts)
or with increasing proportions of immortalised breast NFs (left panel) or CAFs (right panel). Cultures were treated with three different doses of
epirubicin as shown, or with vehicle control for 24 h. Cultures were incubated for a further 48 h in fresh medium, before survival of MDA-MB-
231 was assessed using luciferase assays. Data represent survival after epirubicin relative to matched vehicle control cultures, and are means
(±SE) of three independent experimental replicates. b MDA-MB-231-GFP/luc (top panels) or MDA-MB-468-GFP cells (bottom panels) were
cultured alone (0% fibroblasts) or with increasing proportions of immortalised breast NFs or CAFs. Cultures were treated with 10 nM epirubicin
or vehicle control for 24 h. Epithelial cells were then collected by FACS and clonogenic survival was determined. Data are presented as colony
counts (left panels) or relative survival after epirubicin (colony counts after epirubicin relative to matched untreated cultures; right panels).
Data represent means (±SE) of three independent experimental repeats. c MDA-MB-231-GFP/luc cells were cultured alone (0% fibroblasts) or
with increasing proportions of primary (p) breast NFs or CAFs cultured from a triple negative breast cancer resection. Cultures, cells and data
were treated as for part B. Data represent means (±SD) of technical duplicates from one experimental repeat. Statistics: linear regression was
carried out for analyses in A and B, with selected significant differences in the overall trend across the fibroblast proportions shown (ns not
significant). ANOVA tests were performed in addition; these also demonstrated that CAFs provided significant protection from epirubicin in
MDA-MB-231 cells (p < 0.01; lowest dose Fig. 1a and Fig. 1b right panel) and not in MDA-MB-468 cells.
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positions for different drug doses with 0% fibroblast cultures). The
presence of CAFs significantly protected epithelial cells from
chemotherapy at the lowest dose of drug (p= 0.002) and showed
trends for similar protection at both higher doses (p= 0.057 and
p= 0.058), with increasing proportions of CAFs giving increasing
protection. Notably, 55% CAFs provided complete protection from
the lowest epirubicin dose. NFs, however, showed no significant
protection at any dose.
Next, we extended this using an alternative end-point assay,

clonogenic survival assays. These assays are more sensitive to
lesser degrees of chemotherapy-induced damage, as for cells to
count as ‘having survived’ they must be capable of repeated cell
divisions. As before, we seeded cultures of TNBC cells either alone
or with increasing proportions of breast NFs or CAFs. We used
MDA-MB-231 cells, or a second TNBC line, MDA-MB-468, both of
which had been transduced to over-express GFP. Cultures were
treated with epirubicin or vehicle control for 24 h. Epithelial cells
were then separated from fibroblasts by cell sorting on GFP
fluorescence and were replated to assess clonogenic potential.
Importantly, cultures without fibroblasts were also sorted to allow
proper comparison with cells from co-cultures. Data are expressed
both as numbers of colonies (Fig. 1b, left), and relative survival
after epirubicin (colony numbers after epirubicin treatment
relative to matched untreated cultures; Fig. 1b, right). First, it is
worth highlighting an unexpected observation in the colony
number data in the absence of epirubicin. Although not significant
(p= 0.087), clonogenicity of MDA-MB-231 cells increased after co-
culture with increasing proportions of CAFs, while NFs significantly
decreased MDA-MB-231 clonogenicity (p= 0.038). CAFs did not
confer this increased clonogenicity on MDA-MB-468 cells,
although NFs significantly decreased clonogenicity (p= 0.04).
We concluded that fibroblasts influenced epithelial clonogenicity
in a manner unrelated to chemotherapy response. Next, focusing
on chemotherapy responses, epirubicin reduced clonogenic
survival by ~50% in both MDA-MB-231 and MDA-MB-468 cells in
the absence of fibroblasts (Fig. 1b, right; note y-axis position of
open bars). CAFs, but not NFs, significantly protected MDA-MB-
231s from epirubicin in a proportion-dependent manner (p=
0.027), with the greatest proportion of CAFs increasing survival to
83% compared to <50% without CAFs. However, CAFs did not
protect MDA-MB-468 cells. Moreover, we repeated this experiment
with MDA-MB-231 cells and a matched pair of primary breast NFs
or CAFs cultured from a triple negative cancer mastectomy
specimen (Fig. 1c). We again found that CAFs, but not NFs,
provided dramatic protection from chemotherapy.

CAF-induced chemotherapy protection is associated with
upregulation of epithelial IFN signalling
Our next aim was to identify gene expression changes induced by
CAFs in MDA-MB-231 cells that could be responsible for CAF-
induced chemoresistance. MDA-MB-231 cells were cultured on
their own (0% fibroblasts) or with 20% immortalised CAFs, were
treated with epirubicin, and epithelial cells were collected by cell
sorting, exactly as previously. RNA was extracted. This experiment
was performed three times over separate weeks to provide robust
biological replicates, and gene expression was profiled in the
three pairs of samples. Supervised hierarchical clustering was
performed to display differences in epithelial expression between
the conditions (Fig. 2a), demonstrating that triplicates within each
group were similar, and that substantial differences between
groups were evident. Paired ANOVA tests were performed to
identify significant differences in gene expression of at least
2-fold; 127 genes were significantly more highly expressed in
cultures with 20% CAFs, while 57 were more highly expressed in
0% CAF cultures. To define molecular pathways involved, all 184
differentially expressed genes were analysed for pathway enrich-
ment using ToppGene.18 The most significantly over-represented
pathway was interferon (IFN) signalling, with 12 of the 69 genes

annotated as pathway components by the analysis platform
included in our input of 184 (p= 5.1 × 10−13). The 12 differentially
expressed IFN-related genes are listed with fold changes in each
replicate in Table S2; these included canonical IFN-target genes
MX1 and OAS1,23 which were upregulated at least 15-fold by CAFs
in all three replicates. It was also notable that miR-155, a
downstream target of24 and positive-feedback regulator of IFN
signaling,25 was similarly upregulated in MDA-MB-231 cells by
CAFs (18.6-fold, ±SD 2.5), as determined by qPCR using the same
input RNAs. Overall, these data suggest that IFN signalling was
upregulated in MDA-MB-231 cells by CAFs during epirubicin
treatment.
Next, we examined whether CAF-dependent upregulation of

IFN-related genes differed with or without epirubicin. Therefore,
cultures of MDA-MB-231 cells with or without CAFs were
established as before, and treated with either epirubicin or with
vehicle control, and qPCR was used to assess relative expression of
IFN-regulated genes MX1, OAS1 and miR-155 in epithelial cells
(Fig. 2b upper panels). We also assessed whether expression of
these markers was influenced by CAFs in MDA-MB-468 cells
(Fig. 2b lower panels). OAS1, MX1 and miR-155 all demonstrated
dramatic CAF-induced upregulation in MDA-MB-231s, with expres-
sion potentially further increased by epirubicin treatment
(although the effect of epirubicin was not statistically significant).
In contrast, MDA-MB-468 showed no CAF-dependent induction,
with only minor variation in low basal levels (note the reduced y-
axis scale). We concluded that these two cell lines showed
differential abilities to respond to CAF-dependent upregulation of
IFN signalling, which mirrored their abilities to receive CAF-
dependent protection from epirubicin (Fig. 1).
MDA-MB-231 and MDA-MB-468 can be classified as claudin-low

or claudin-high, respectively.26,27 In order to test whether effects
of CAFs were potentially related to claudin subtype, the
experiment was repeated with a second claudin-low TNBC line,
MDA-MB-157. MDA-MB-157s were cultured alone, or with 20%
CAFs, and treated with epirubicin or control as before. Epithelial
cells were again purified by cell sorting and expression of IFN
markers was measured by qPCR (Fig. 2c). Expression in MDA-MB-
157 cells was very similar to MDA-MB-231s, with CAF-dependent
activation of all three genes. We concluded that CAFs were
capable of upregulating IFN signalling in both representatives of
claudin-low TNBCs.

IFNβ1 is upregulated in CAFs after co-culture with MDA-MB-231
cells
Based on these data, our next hypothesis was that CAFs secrete
IFNs, stimulating chemoresistance in receptive cells. Therefore, we
tested whether we could detect IFN expression using qPCR for
IFNα2, IFNβ1 or IFNγ. Monocultures of MDA-MB-231 or CAFs, and
co-cultures of MDA-MB-231 and CAFs were established and were
treated with epirubicin or vehicle control as before. Co-cultures
were separated, using fluorescence-activated cell sorting as
previously, to provide purified epithelial and fibroblast samples
derived from the co-culture, while the monocultures were also
sorted to allow comparison. IFNα2 was undetectable in MDA-MB-
231 cells under all conditions, while it was expressed at levels
bordering on the limit of detection in CAFs (consequently, there is
substantial technical variation); levels in CAFs did not appear to
respond to either epirubicin treatment or the presence of
epithelial cells (Fig. S2A). Similarly, IFNγ was expressed at very
low levels; in CAFs, levels again did not appear to respond to
either epirubicin or co-culture, while in MDA-MB-231 cells IFNγ
was at least detectable in most samples (Fig. S2B). IFNβ1 was
undetectable in MDA-MB-231 cells under all conditions, and in
CAFs in monoculture without epirubicin (Fig. 3a, left). However,
CAFs were stimulated to express detectable IFNβ1 levels by either
epirubicin or co-culture with MDA-MB-231 cells, while epirubicin-
treated co-cultures showed dramatic upregulation in CAFs to
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levels more than three orders of magnitude higher than any
detected expression of IFNα2 or IFNγ. Furthermore, we repeated
this analysis of IFNβ1 using primary breast CAFs (Fig. 3a, right). Co-
culture with MDA-MB-231 cells also stimulated a dramatic increase
in IFNβ1 expression in primary CAFs (pCAFs), although epirubicin
had little additional effect. We concluded that co-culture with
MDA-MB-231 cells stimulated breast CAFs to produce IFNβ1,

which may act back on epithelial cells to upregulate IFN signalling
(see Fig. 2).

CAFs, but not NFs, stimulate IFN signalling in co-cultured MDA-
MB-231 cells
To confirm that this signalling crosstalk was specific to CAFs, we
used IFN activity luciferase reporters in MDA-MB-231 co-cultured
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with either NFs or CAFs. MDA-MB-231s were transiently trans-
fected with luciferase reporters for activity of ISREs (representing
type I IFN signalling) or GAS elements (representing type II IFN
signalling), before being placed in monoculture (0% fibroblasts), or
co-culture with increasing proportions of either immortalised NFs
or CAFs, and treated with epirubicin. Relative luciferase activities
were determined (Fig. 3b). NFs did not stimulate either reporter,
whereas CAFs induced a proportion-dependent upregulation of
both ISRE and GAS activity of up to 30-fold. We concluded that
CAFs stimulate IFN signalling in co-cultured MDA-MB-231 cells, but
NFs lack this ability.

Recombinant IFNs are sufficient to protect MDA-MB-231 and MDA-
MB-157 cells, but not MDA-MB-468 cells from chemotherapy
Our next aim was to determine whether upregulation of IFN
signalling in claudin-low TNBC cells was sufficient to induce
chemoprotection. To test this, initially we treated MDA-MB-231
cells with a range of doses of a type I IFN (IFNα, which signals
through the same pathway as IFNβ1 identified above) or a type II
IFN (IFNγ) and determined epirubicin sensitivity using clonogenic
survival assays as previously (Fig. 4a). Both IFNs recapitulated
effects seen by co-culture with CAFs, in that both provided
significant dose-dependent protection from epirubicin (p < 0.001).
It is interesting to note that both also appeared to increase
clonogenicity in the absence of epirubicin (Fig. 4a, left), as was
seen previously with CAFs (Fig. 1b, upper left).
Next, we examined effects of recombinant IFNα or IFNγ

individually, or in combination, on chemoresponse of MDA-MB-
231, MDA-MB-157 or MDA-MB-468 cells (Fig. 4b). IFNα and IFNγ

again provided significant chemoprotection to MDA-MB-231 cells,
with additive effects when in combination (p < 0.001). Similarly, in
MDA-MB-157 cells, IFNα and the combination, although not IFNγ
alone, provided significant protection (p < 0.01). However, there
was no significant change in chemoresponse in MDA-MB-468
cells. We concluded that IFNs were sufficient to protect both
claudin-low TNBC cell lines, and therefore IFNs were strong
candidate mediators of CAF-dependent protection.

IFNβ1 expression in CAFs and tumour cell expression of MX1
correlate with each other and with poor survival after
chemotherapy in TNBC patients
Next, we determined whether expression of the molecules we have
implicated in chemoresistance correlated with survival after
chemotherapy in patients. We collected 109 TNBC resection
samples, supported by clinicopathological data including length
of disease-free survival. We constructed tissue microarrays contain-
ing triplicate cores of cancer tissue and assessed expression of
IFNβ1 in fibroblasts and MX1 as a marker of active IFN signalling in
tumour cells using immunohistochemistry. We also determined
whether individual cases could be classified as claudin-low, using
immunohistochemistry for claudin-3. Representative images are
shown in Fig. 5a. High expression of IFNβ1 in fibroblasts was weakly,
but significantly, positively associated with high MX1 expression in
the tumour cells (Spearman’s correlation r= 0.210; p= 0.028),
suggesting that signalling between the cell types was active. High
expression of IFNβ1 in fibroblasts, and MX1 in tumour cells were
each significantly associated with poorer disease-free survival (by
means of almost 800 days; p < 0.02 for both; Fig. 5b).
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The cohort was also divided into claudin-low (claudin-3
negative; n= 49) and claudin-high (claudin-3 positive; n= 60)
subgroups. Interestingly, IFNβ1 expression was significantly
different between these two groups, with claudin-low tumours
expressing overall higher levels (mean scores 2.6 [SD 0.59] vs 2.0
[SD 0.52]; Mann–Whitney p= 0.001). The correlation between
fibroblast IFNβ1 and tumour cell MX1 was strengthened in the
claudin-low group (r= 0.375; p= 0.008) while it was lost in
the claudin-high cohort (r= 0.113; p= 0.389), mirroring our tissue
culture observations that claudin-low cancers are most receptive
to CAF-induced IFN signalling. Similarly, correlations between
survival and expression of each of IFNβ1 in fibroblasts and MX1 in
tumour cells were maintained in claudin-low cases (p < 0.05;
Fig. 5c) but lost in claudin-highs (Fig. S3). We also carried out
multivariate analyses to assess whether IFNβ1 in fibroblasts and
MX1 in tumour cells provided prognostic insights that were
independent of the standard prognostic factors, lymph node
status and tumour grade. In the whole cohort, lymph node status
and fibroblast IFNβ expression were significant independent
predictors of disease-free survival (with hazard ratios of 2.24
[p= 0.007] and 2.99 [p= 0.001], respectively). In the claudin-low
subgroup, both these factors remained significant, with increased
hazard ratios (3.77 [p= 0.034] and 3.52 [p= 0.015], respectively).
In the claudin-high subgroup, none of the factors were
significantly associated with outcome, although lymph node
status demonstrated borderline significance (hazard ratio 2.52
[p= 0.052]). We concluded that correlations between IFNβ1 and
MX1 and survival in breast cancer patients exactly reflect
relationships identified in vitro, with CAF-induced IFN activity
correlating with chemoresistance and consequently poor survival,
specifically within claudin-low cancers.

IFN-blocking antibodies inhibit CAF-dependent chemoprotection
of cancer cells
Having defined molecular mechanisms involved in CAF-
dependent chemoprotection, we wished to test whether these
mechanisms could be inhibited, thereby potentially allowing
chemo-sensitisation. We selected antibodies that have previously
been used for blocking either type I or type II IFN receptors.28,29

MDA-MB-231 or MDA-MB-157 cells were again cultured with or
without CAFs, and cultures were treated with type I or type II
blocking antibodies, or appropriate isotype controls. Cells were
then treated with epirubicin or vehicle control, and epithelial
survival was determined (Fig. 6). MDA-MB-231 cells were
significantly protected from epirubicin by CAFs as previously
(p < 0.05), and this protection was significantly reduced by either
blocking antibody (p < 0.05; Fig. 6a, left); notably, CAF-dependent
protection was completely inhibited with the type I antibody.
MDA-MB-157 cells behaved similarly, although only the type I
antibody significantly inhibited protection (p < 0.01; Fig. 6a, right).
Importantly, we also used qPCR to assess MX1 expression as a
marker of IFN-signalling activity (Fig. 6b). We again confirmed
CAF-dependent upregulation of MX1 (as previously in Fig. 2), but
also established that blocking antibodies successfully inhibited
this upregulation in every case in which blocking antibodies also
halted CAF-dependent protection (p < 0.05), but not in the one
example where blocking antibody was ineffective (type II
antibody, MDA-MB-157). We also repeated the experiment using
primary breast CAFs, MDA-MB-231 cells and the type I blocking
antibody and demonstrated the same significant ability to block
CAF-dependent protection (p < 0.05; Fig. 6c). We concluded that
CAF-dependent protection of breast cancer lines required induc-
tion of IFN signalling, and, excitingly, that this can be inhibited in
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order to chemo-sensitise cancer cells. However, it should be noted
that the data shown represent only one selected dose of
epirubicin, and we have not assessed the formal impact of CAFs
and IFN-blocking antibodies on a chemotherapy dose-response.

DISCUSSION
Outcomes for TNBC remain relatively poor,3 and much research is
aimed towards identifying novel therapeutic targets and agents in
this breast cancer subtype.30 An alternative approach is to use the
therapies already available more effectively, a strategy that drives
the need to understand mechanisms underpinning chemotherapy
resistance better.31 In this work, we identify a resistance
mechanism that acts in a subset of TNBC using in vitro models,
and we confirm its relevance using a patient cohort.
We show that breast CAFs protect claudin-low TNBCs from

chemotherapy through secretion of IFNβ1 leading to paracrine
activation of IFN signalling in the cancer cells, as denoted by
upregulation of MX1. Our data tie together previous reports
showing that CAFs are associated with poor outcomes in TNBC
patients,8 that breast CAFs can secrete IFNβ thereby activating IFN
signalling and influencing behaviour of breast cancer cells
in vitro,32,33 and that expression of MX1 in breast cancer cells is
significantly associated with poor outcomes in patients.34

Critically, we define the functional impact of this signalling on
cancer cells in terms of chemotherapy resistance (Figs. 1 and 4),
and indeed chemotherapy-treatment itself contributes to

induction of full paracrine activity (Figs. 2 and 3;33). This is in
contrast to much of the literature on CAFs that defines their
influence in terms of inducing proliferation, invasion or metas-
tases, and therefore poor outcomes.5,6 This distinction is important
clinically, since potential inhibition of CAF-induced chemoresis-
tance could be useful therapeutically,10,35 whereas potential
inhibition of CAF-induced invasion/metastases is more proble-
matic as these processes are thought to occur prior to breast
cancer diagnoses. A further previous study also identified
chemoresistance-associated crosstalk between fibroblasts and
claudin-low breast cancer cells,36 although there are key mechan-
istic differences with our work. Boelens et al. demonstrated that
immortalised lung fibroblasts protected both MDA-MB-231 and
MDA-MB-157 cells from chemotherapy via activation of NOTCH3
and STAT1, a key IFN-signalling intermediate, and this was
associated with upregulation of IFN response genes OAS1 and
MX1.36 However, by marked contrast with our work, the authors
determined that cellular crosstalk was mediated by RNA transfer
via exosomes, independently of IFN or IFN receptors. We
demonstrate by use of IFN-blocking antibodies that this action
of breast CAFs is entirely dependent on canonical paracrine IFN
signalling (Fig. 6), and we conclude that different fibroblasts signal
using different mechanisms. We also suggest our use of both
primary and immortal breast fibroblasts may be most relevant.
A key discussion point is how these insights could be used to

improve cancer outcomes. It is conceivable that alternative
treatments could be used for patients whose TNBC tumours
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display the characteristics identified here as associated with
potential anthracycline resistance, namely active IFN signalling
between CAFs and claudin-low tumour cells (CAF IFNβ expression/
cancer cell MX1 expression; Fig. 5). However, anthracyclines, often
combined with taxanes, are the mainstay of TNBC chemotherapy
and comprehensive alternatives are not available, although PARP
inhibitors and immune check-point inhibitors show potential in
some settings.37 A more practicable option may be to inhibit
crosstalk between CAFs and tumour cells in order to sensitise

cancer cells to the existing chemotherapy agents; we present
proof of this principle in Fig. 6. We have used receptor-blocking
antibodies experimentally since these not only inhibit the
pathway required but also specifically target the paracrine aspect
of the signalling we wished to prove. This approach also has
clinical potential, since a humanised type I receptor-blocking
antibody, Anifrolumab, is available and has undergone clinical
investigation in lupus.38 In addition, ruxolitinib is a small molecule
inhibitor of the JAK1/2 kinases, which are IFN-signalling
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intermediates, that has already been trialled at phase 2 in
combination with cytotoxic chemotherapy in metastatic breast
cancer.39 We conclude that available agents may present
opportunities for assessment of therapeutic chemo-sensitisation
in the relatively near-term.
The claudin-low breast cancer subtype was identified more than

a decade ago;40 however, claudin expression levels are not
assessed in routine breast cancer management since they have
not been found to be useful in directing treatment choices to
improve outcomes.41 Robust clinical identification of the claudin-
low phenotype would be required for therapeutic interventions
targeting the CAF-dependent chemoresistance we describe. It
remains unclear why claudin-high tumours fail to be protected
from chemotherapy by CAFs. Our data from patient samples
suggest that claudin-high tumours have lower CAF IFNβ1 levels,
therefore, one explanation is less IFNβ1 to activate the pathway.
However, we also show that the IFNβ1 present does not correlate
with IFN-target gene expression in claudin-high cancer cells, and
that the claudin-high cell line, MDA-MB-468, fails to respond to
either CAFs or recombinant IFNs in vitro, pointing to a more
profound signalling defect. MDA-MB-468 cells have previously
been shown to activate signalling downstream of the Type II
ligand IFNγ,42 although other published data for Type I signalling,
as stimulated by IFNβ1, are lacking. Therefore, candidate defects
include variation in expression/function of the Type I receptor,
IFNAR1, which is known to vary in breast cancer and this variation
correlates with prognosis,43 or aberrant expression of interferon
regulatory factors (IRFs), which act to modulate the range and
extent of IFN-target gene activation, and are also known to be
deregulated in breast cancer.44
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