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Mapping the immune microenvironment for mandibular
alveolar bone homeostasis at single-cell resolution
Weimin Lin1, Qiwen Li1, Danting Zhang1, Xiaohan Zhang1, Xingying Qi1, Qian Wang1, Yaqian Chen1, Caojie Liu1, Hanwen Li1,
Shiwen Zhang1,2, Yuan Wang1, Bin Shao1, Li Zhang3 and Quan Yuan1,2

Alveolar bone is the thickened ridge of jaw bone that supports teeth. It is subject to constant occlusal force and pathogens
invasion, and is therefore under active bone remodeling and immunomodulation. Alveolar bone holds a distinct niche from long
bone considering their different developmental origin and postnatal remodeling pattern. However, a systematic explanation of
alveolar bone at single-cell level is still lacking. Here, we construct a single-cell atlas of mouse mandibular alveolar bone through
single-cell RNA sequencing (scRNA-seq). A more active immune microenvironment is identified in alveolar bone, with a higher
proportion of mature immune cells than in long bone. Among all immune cell populations, the monocyte/macrophage
subpopulation most actively interacts with mesenchymal stem cells (MSCs) subpopulation. Alveolar bone monocytes/macrophages
express a higher level of Oncostatin M (Osm) compared to long bone, which promotes osteogenic differentiation and inhibits
adipogenic differentiation of MSCs. In summary, our study reveals a unique immune microenvironment of alveolar bone, which
may provide a more precise immune-modulatory target for therapeutic treatment of oral diseases.
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INTRODUCTION
Due to tooth-derived inflammatory response and occlusal stress
stimuli, the metabolism and remodeling of alveolar bone are
considered to be the most active among the entire skeletal
system.1–4 Alveolar bones have a different developmental origin
and ossification process compared with long bones and other
bones.5 Craniofacial bone marrow mesenchymal stem cells (MSCs)
show higher proliferation rate and osteogenic differentiation
potential, but lower chondrogenic and adipogenic differentiation
capability.6,7 Interestingly, alveolar bone is more resistant to bone
loss and adipocytes accumulation than long bone in ovariecto-
mized rodents.8,9 Alveolar bone contacts with the external
microenvironment through the periodontal barrier, which exerts
important regulatory effects on immune homeostasis of alveolar
bone.10 Although accumulating evidence demonstrated unique
physiological characteristics of alveolar bone, there is a lack of
systematic description of alveolar bone cell heterogeneity and the
difference from long bone.
Single-cell RNA sequencing (scRNA-seq) makes it be possible to

analyze tissue heterogeneity at the level of individual cell and
explore the contribution of different cell subtypes to physiological
function and pathogenesis. Recently, two independent studies
constructed complete single-cell atlas of long bone stromal cells
with fluorescence-activated cell sorting (FACS).11,12 Baccin et al.
further explored the spatial heterogeneity of bone marrow
stromal cells with laser capture microdissection technique.13

Besides stromal cells, the skeletal system is also the largest
reservoir of haematopoietic lineages, which contains haematopoietic

stem cells, lymphoid/myeloid progenitors, and mature immune cells.
These immune cells interact with bone marrow stromal cells, thereby
regulating the homeostasis of skeletal system.14 The regulatory effect
of macrophages on bone stromal cells has been confirmed.15,16 Mice
depleted of macrophages showed an osteoporotic phenotype.17 In
aged mice that received bone marrow macrophages transplantation
from young mice, transplanted macrophage infiltration was
observed at the fracture site and the healing of fracture was
accelerated.18 Although previous scRNA-seq studies have con-
structed single-cell atlas of long bone marrow cells, study focusing
on the regulation of immune cell populations on bone marrow
stromal cells and bone homeostasis through scRNA-seq is still
lacking.
In this study, we perform scRNA-seq on mouse mandibular

alveolar bone and reveal that macrophages are the largest cell
population that interacts with MSCs. Compared with long bone
marrow (LBM), the proportion of activated macrophage subcluster
in alveolar bone marrow (ABM) is higher, and this subcluster is the
major group that secretes cytokine Oncostatin M (Osm). ABM
macrophage-conditioned medium more effectively promotes
osteogenic differentiation and inhibits adipogenic differentiation
of MSCs through an Osm-dependent pathway.

RESULTS
Characterization of mandibular alveolar bone single-cell atlas
The mouse mandibular alveolar bones were dissected for enzymatic
digestion and subjected to droplet-based scRNA-seq (Fig. 1a). A total
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number of 10 224 cells were obtained with 29 053 genes of each cell.
We preprocessed the dataset with Seurat package. The median value
of feature_RNA is between 1 000 and 2 000, and cells with
mitochondrial gene expression higher than 25% are filtered out
(Fig. S1a, b). After quality control, 2 000 genes with the most variable
value from 29 053 genes were selected for subsequent analysis

(Fig. S1c). Then the UMAP method was applied to reduce the
dimensionality (Fig. S1c). Cells were divided into 12 subgroups based
on classic cell surface markers (neutrophil—S100a8, myeloid progeni-
tor—Mpo, macrophage—Csf1r, dendritic cell—Siglech, B cell—
Cd79a, pro-B cell—Vpreb1, T cell—Cd3g, natural killer cell—Klrd1,
megakaryocyte—Ms4a2, erythrocyte—Hbb-bt, hematopoietic stem
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Fig. 1 Characterization of the single-cell atlas of alveolar bone. a Flow chart of preparation of scRNA-seq samples from mouse mandibular
alveolar bone. b Cells identified by scRNA-seq were visualized with UMAP. Different cell populations were defined and distinguished by color.
Each point represented an independent cell. c Specific expression of marker genes in different cell types. d The expression levels of marker
genes were projected onto UMAP atlas
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and progenitor cell—Cd34, and mesenchymal cell—Col1a1) (Fig. 1c, d).
The top 5 expressed genes expressed in each defined cell type
were identified and compared (Fig. S1d).
Since non-immune cells (mesenchymal stromal cells) accounted for

only 1.74% of all identified cells, these cells were divided into a small
cluster for identification. They are divided into four subclusters (Fig.
S2a), categorized as MSCs (Lepr+), osteoblasts (Bglap+), endothelial
cells (Cdh5+), and neurological cells (Plp1+) (Fig. S2b, c). As expected,
chondrocyte was not identified in alveolar bone stromal cells, which is
different from that of long bone.

Identification of cell–cell interaction in alveolar bone
microenvironment
Using CellPhoneDB2, a cell ligand/receptor pairing-based data-
base,19 we identified a close interaction between the monocytes/
macrophages and MSCs (Fig. 2a). To further identify the regulatory
effects of macrophages on stromal cells, we plotted the essential
cytokines that involved in macrophage-MSC crosstalk, including
Tgfb,20 Osm,21 Lrp118, Igf122, and Bmps23 (Fig. 2b). We found that
Osm/Osmr and Osm/Lifr pathways were the most significantly
enriched in monocyte/macrophage-MSC crosstalk. Tgfb and Lrp1
related pathways also have a strong interaction with MSCs.
However, the expression of Bmp2, Bmp4, and Igf1 in alveolar bone
monocyte/macrophages was barely detectable (Fig. 2c), indicating
a limited role of these pathways in regulating monocyte/
macrophage-MSC crosstalk. The expression of corresponding
receptors in different types of stromal cells was also shown.
Bmpr1a and Mdk were mainly expressed in MSCs, while other
receptors were widely expressed in various cell types (Fig. 2d).

Comparative analysis of the heterogeneity of monocytes/
macrophages
To unveil the unique characteristics of alveolar bone-derived
monocytes/macrophages, we retrieved published scRNA-seq datasets
of immune organs (bone marrow, peripheral blood mononuclear
cells, peritoneum, and spleen) for comparative analysis (Fig. 3a, Fig.
S3a). The Csf1r-positive cell population was extracted and identified as
monocyte/macrophage (Fig. S3b). The monocyte/macrophage popu-
lation was divided into four subclusters (Fig. 3b). Clusters 0 and 1
expressed universal markers of monocytes/macrophages, such as
Csf1r, Cd68, and Cd14 (Fig. 3c). For cluster 1, the polarized macrophage
markers, such as Stat1, Il1b, and Ccr2, were highly expressed (Fig. 3c).
For cluster 2, markers of alternatively activated macrophages, such as
Mrc1 and Cd209f, were highly expressed.
Next, we performed GO enrichment analysis and found that

cluster 0 was enriched in phagocytic functions and antigen
presentation (Fig. 3d). Cluster 1 was related to cytokine secretion,
bacterial and intracellular pathogen immune response. Characteristic
features of alternatively polarized macrophages such as wound
healing and regulation of blood vessel formation, were found in
cluster 2. The biological functions of the cluster 3 were enriched in
cell division, DNA replication, and cell proliferation-related pathways.
In brief, cluster 3 was the main proliferative population of monocyte/
macrophage, and clusters 0, 1, and 2 were mature monocyte/
macrophage populations with different functions.
As monocytes/macrophages are highly plastic that can be

polarized to different states depending on the tissue microenvir-
onment,24,25 we compared the cell composition among mono-
cytes/macrophages from different origins (Fig. 3e). ABM and LBM
had the closest cell composition. Cluster 1 accounted for a high
proportion of ABM, LBM, and peripheral blood mononuclear cells
(PBMC). Interestingly, almost all the cells in PBMC were distributed
in cluster 1 and most cells in peritoneum were enriched in cluster
2. Monocytes/macrophages in the spleen were evenly distributed
in clusters 0, 1, and 2. Cluster 3 was almost exclusively distributed
in bone marrow tissue.
Through flow cytometry analyses of ABM and LBM, we verified

that the proportion of Cd86+ (a classical polarization marker)

macrophages in ABM (~28%) was about twice that of LBM
(~11%), while that of Cd206+ (alternatively polarization marker)
macrophages in ABM was slightly lower (Fig. 3f, Fig. S4).
Moreover, through the combined analysis of single-cell sequen-
cing of immune cells in ABM and LBM, we found that the ratio of
mature B cells and neutrophils is higher in ABM, and the
proportion of pro-B cells and myeloid prog cells is higher in LBM
(Fig. S5).
Based on the gene expression dynamics of monocytes/macro-

phages, we constructed a pseudotime developmental tree and
determined two independent branch points (Fig. 4a). The 4
monocyte/macrophage subclusters scattered at different branches
in the developmental tree (Fig. 4b). Cluster 3 had the lowest
pseudotime value and was located at the initial position of the
developmental tree, indicating a developmental origin for other
subclusters. This observation was consistent with the GO enrich-
ment of cluster 3 (as a proliferative population) (Fig. 3d). Cluster 0
and 1 located at two different branches, while cluster 2 distributed
more extensively, partially overlapping with clusters 0 and 1.
The gene expression pattern across pseudotime showed that

the expression curves of Cd68 and Csf1r were relatively smooth
(Fig. 4c). The increase in the expression of Apoe and Adgre1 was
accompanied by a decrease in the expression of Il1b and Stat1, but
the expression of Mki67 and Pcna was only upregulated in cluster
3. As shown in Fig. 4d, genes with the most significant changes in
the two branches were clustered.
Meanwhile, we found that the expression of Bmp2 and Igf1,

which was barely detectable in ABM-derived monocytes/macro-
phages (Fig. 2c), was significantly increased in other sources of
macrophages (in peritoneal macrophages) (Fig. S6a). The expres-
sion of several angiogenesis-related growth factors differed within
subclusters (Fig. S6b). Vegfa and Pigf were highly expressed in
cluster 1, and Vcam1 was mainly expressed in cluster 2, suggesting
that monocytes/macrophages from different subclusters have
different patterns of cytokine secretion.

Regulatory effect of monocytes/macrophages on MSCs
To compare the regulatory effects of ABM- and LBM-derived
monocytes/macrophages on MSCs, we supplemented these two
types of conditioned mediums into the MSCs culture, respectively
(Fig. 5a). Both conditioned mediums promoted the proliferation of
MSCs, and ABM-derived one induced a greater proliferation on
day 5 (Fig. 5b). Although both conditioned mediums enhanced
the colony-forming ability of MSCs, the effect of ABM was more
significant (Fig. 5c, d). In addition, scratch assay showed that ABM-
derived monocytes/macrophages conditioned medium more
efficiently accelerated the migration of MSCs (Fig. 5e, f).
Next, we sought to compare their effect on differentiation of

MSCs. Alkaline phosphatase (ALP) staining and Alizarin red
(ARS) staining proved that both conditioned mediums pro-
moted the osteogenic differentiation of MSCs (Fig. 5g–j). In
addition, the expressions of osteogenesis-related genes (Osx,
Runx2, Bglap, Col1a1) were significantly upregulated (Fig. 5k). As
for adipogenic differentiation of MSCs, both macrophage-
conditioned medium inhibited lipid droplet formation (Fig. 5l,
m) and downregulated the expression of adipogenic-related
genes (Pparg, Cebpa, Adipoq, Plin1) (Fig. 5n). Notably, the
conditioned medium from ABM-derived monocytes/macro-
phages exhibited an enhanced effect in promoting osteogenic
differentiation and inhibiting adipogenic differentiation of
MSCs, which indicated a different immune-modulatory poten-
tial between alveolar bone and long bone.

Osm is highly expressed in ABM-derived monocytes/macrophages
Next, we explored the underlying mechanism by comparing the
expression of previously reported 59 cytokines.26 Osm was
identified as the most differently expressed cytokine between
ABM and LBM monocyte/macrophage (Fig. 6a). We found that the
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expression of Osm in ABM-derived macrophage was significantly
higher than other tissues (Fig. 6b, c). This observation was further
confirmed by qRT-PCR analysis and enzyme-linked immunosor-
bent assay (ELISA) (Fig. 6d, e).
Osm is a regulatory cytokine considered to be secreted by the

classically polarized macrophages.27,28 Among the four monocyte/
macrophage subclusters, we found that Osm was mainly
expressed in cluster 1 (Fig. 6f, g). Therefore, we supposed that

the higher proportion of activated macrophages in ABM led to the
increased expression of Osm, which subsequently regulate the
osteogenic and adipogenic differentiation of MSCs.

The regulatory effect of monocytes/macrophages on MSCs is
Osm-dependent
To test whether the effect of monocytes/macrophages condi-
tioned medium on the osteogenic differentiation of MSCs
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was Osm-dependent, we added Osm neutralizing antibody to
the conditioned medium. Osm antibody significantly weakened
the ALP activity and ARS staining induced by macrophage-
conditioned medium (Fig. 7a–d), and the expression of
osteogenesis-related genes was also downregulated (Fig. 7e).
Osm neutralization partially rescued the lipid droplet formation
of MSCs under macrophage-conditioned medium (Fig. 7f, g),
and increased the expression of adipogenesis-related genes
(Fig. 7h). Notably, after Osm neutralization, ABM and LBM
macrophage-conditioned medium showed similar osteogenic
and adipogenic potential, suggesting the higher expression
of Osm in ABM-derived monocytes/macrophages was a key
factor that led to the different effects between the ABM and
LBM.

DISCUSSION
The oral environment is resided with a complex microbial
community, and periodontal microorganism can penetrate the
periodontal barrier to alveolar bone.29 Therefore, the immune
homeostasis of alveolar bone might be directly affected by
microorganisms. Besides, alveolar bone is bearing mechanical
loads, whose force is two times higher than that of long
bones.30,31 A recent study showed that mechanical stimulation
could promote the conversion of myeloid-derived monocytes into
an activated status,32 suggesting that occlusal force might lead to
the difference of the immune microenvironment between alveolar
bone and long bone.
In this study, we constructed a single-cell atlas of the mouse

mandibular alveolar bone by 10x scRNA-seq, and found that
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immune cells in the mouse mandibular microenvironment
accounted for the majority of cell components. We conducted a
cell-to-cell communication analysis and found that among various
types of immune cells, monocyte/macrophage population had the
most interactions with MSC population. Based on previous studies
about the regulation of osteogenic differentiation by monocytes
and macrophages,18,22,23,33,34 we analyzed several previously
reported classic pathways for monocytes/macrophages to reg-
ulate MSCs, and found Tgfb, Osm, and Lrp1 were widely expressed
in alveolar bone monocytes/macrophages. As for the expression
of cytokine receptors in stromal cells, both Osmr and Lifr were
expressed in MSCs and osteoblasts, while Osmr was also highly
expressed in endothelial cells. Study has shown that Osm could
also promote angiogenesis in vitro and in vivo.35 In addition, we
found that in the monocyte/macrophage population, the expres-
sion of growth factors related to angiogenesis including Vegfa and
Pigf was also higher. Therefore, we suppose that macrophages
participate in the maintenance of bone homeostasis by regulating
both osteogenesis and angiogenesis.
The monocyte/macrophages were divided into four main

subclusters, and the proportions of each subcluster from
different tissues were quite different. Compared with long
bone, the proportion of the cluster 1 (classically polarized
monocyte/macrophage) in the ABM was relatively higher.
Interestingly, the proportion of cluster 2 (alternatively polarized

monocyte/macrophage) was very low in both ABM and LBM.
Monocytes/macrophages in bone marrow and peripheral blood
are mainly derived from bone marrow HSCs, while monocytes/
macrophages in peritoneum are generally considered as tissue-
resident macrophages. The different tissue sources and micro-
environment have significant effects on the state of monocyte/
macrophages.33,36 In this study, we found that the monocyte/
macrophage population in bone marrow microenvironment
participates in the regulation of MSCs and bone homeostasis by
expressing Tgfb, Osm, and Lrp1 rather than Bmps and Wnts.
Previous study revealed that monocyte/macrophage-condi-

tioned medium could promote MSCs colony formation
in vitro.18 In this study, we observed that ABM-derived
monocyte/macrophage-conditioned medium more effectively
promote the proliferation and migration of MSCs, meanwhile
enhancing osteogenic differentiation and inhibiting adipogenic
differentiation. Although the monocyte/macrophage popula-
tion may lose part of the cell heterogeneity during in vitro
culture, it can still reflect the different regulatory effects of
monocyte/macrophage derived from alveolar bone compared
to long bone. To explore the mechanism responsible for their
different regulatory effects, we compared the expression of
cytokines in ABM and LBM monocytes/macrophages through
differential gene analysis. We found Osm is most significantly
upregulated among the 59 cytokines.
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Osm is a cytokine secreted by monocytes/macrophages, and has
important regulatory role on bone homeostasis.37–40 Osm receptor
knockout mice exhibit decreased bone remodeling activity.34 In a
tibial defect model, Osm knockout led to a decrease in osteoblasts
number and delayed bone healing.41 Moreover, Osm inhibited the
adipogenic differentiation of MSCs.42 Osm knockout mice show
increased adipose tissue accumulation in bone marrow with age.43

Therefore, we speculate that the higher expression of Osm secreted
by monocyte/macrophage in ABM may regulate the fate commit-
ment of MSCs, leading to different biological characteristics of
alveolar bone and long bone. In addition, Osm has an indirect role
on osteoclasts, because it is one of the most important cytokines
that stimulates osteoblasts to secrete receptor activator of nuclear
factor-kappa B ligand (RANKL).44 We, therefore, speculate that the
high expression of Osm might induce more active osteoclasts in the
alveolar bone to participating alveolar bone remodeling. Further
study is expected to elucidate the role of Osm on osteoclast in ABM.
In summary, we constructed a single-cell atlas of mouse

mandibular alveolar bone through 10x scRNA-seq, and verified
the regulatory effect of monocytes/macrophages on MSCs. Our
study reveals a unique immune microenvironment of alveolar
bone, which might provide a more precise immune-modulatory
target for therapeutic treatment of oral diseases.

MATERIALS AND METHODS
Single-cell RNA sequencing
Eight 12-week-old male C57BL/6J wild-type mice (Chengdu
Dossy Experimental Animals CO.LTD) were combined to extract
single-cell suspensions. Mandible was carefully dissected under
a stereo microscope to obtain the mandibular alveolar bone
tissue. Soft tissues and molars are removed. Jaw bone around
the incisor and behind condyle was cut off. Subsequently, the
obtained alveolar bone tissue was cut into small pieces
(<1 mm3) and digested in 1 mg·mL−1 collagenase type I
(Worthington) and 1 mg·mL−1 Dispase II (Sigma-Aldrich) at
37 °C for 1 h (200 r·min−1). The sample was then collected into a
centrifuge tube through a 40-μm filter, and the supernatant was
removed after centrifugation. 1 mL of ACK lysis buffer was
added on ice for 5 min to lyse red blood cells, and the
supernatant was removed by centrifugation.
The centrifuged cells were resuspended in 0.4% BSA PBS solution.

Placenta blue stain was used to calculate the number of cells and
cell viability on a hemocytometer, and the cell concentration was
adjusted to 800–1 500 cells per μL. About 20 000 cells were loaded
to capture 10 000 cells. cDNA library was constructed using
Chromium single-cell v3.0 reagent, and sequenced on the Illumina
Nova-seq system.
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Preprocessing of scRNA-seq data
After obtaining the initial sequencing data, we compared them to
the mouse genome mm10, and folded the UMI with Cellranger
(version 3.1, 10x Genomics) software to obtain a single-cell gene
expression matrix. Then we imported the expression matrix into
the Seurat package (v 4.0) for further analysis. Genes expressed in
less than three cells are deleted, mitochondrial genes >25%, and
cells with genes <300 are filtered out. The FindVariableGenes
function in the Seurat package is used to select variable genes,
and then principal component analysis (PCA) was performed, and
UMAP dimensionality reduction and visualization were performed
based on PCA results. According to the specific genes of different
subgroups, we annotated the cell types of different subclusters.

Cell–cell interaction analysis
CellPhoneDB2 is a Python-based analysis tool for calculating the
interaction between ligands and receptors between different cell
populations. So far, CellPhoneDB2 only supports the input of
human genes. Therefore, we first mapped the mouse mgi_symbol
to human hgnc_symbol through the BioMart package, and then
used CellPhoneDB2 for cell–cell communication calculation and
analysis. To reveal the strength of the specific pathways between
macrophages and MSCs, we selected several common
macrophage-MSC-related pathways for visualization, including
Bmps, Wnts, Osm, Tgfb, and Lrp1.

Pseudotime analysis
To determine the differentiation trajectory of monocytes/
macrophages, we used Monocle2 package to calculate the
differentiation trajectory of these cells. After determining the
pseudotime value arrangement and differentiation trajectory,
we used the plot_genes_in_pseudotime function in the
Monocle2 package to show the changes of classic macrophage
marker genes in the differentiation trajectory. The clustered
heatmap of the expression pattern of the hub genes (P < 1e–8)
in branches 1 and 2 was displayed with the plot_pseudotime
heatmap function.

Flow cytometry analysis
The mouse mandibular alveolar bone and femur were obtained
according to the above manner. Then the alveolar bone and
femur were cut into pieces, digested in 1 mg·mL−1 collagenase
I, 1 mg·mL−1 dispase II at 37 °C for 30 min, centrifuged. After
lysis of red blood cells on ice, the samples were passed through
a 70-μm filter, centrifuged, and ready for staining. FITC anti-
mouse Cd11b, PE-Cy7 anti-mouse Cd86, and APC anti-mouse
Cd206 were purchased from BD Biosciences, and the permea-
bilization/fixation kit was purchased from eBioscience. All
staining processes were performed in 100 μL PBS. For cell
surface staining, after blocking the cell surface Fc receptors,
the flow cytometry antibody was directly added to the cell
suspension and stained on ice for 30 min. For intracellular
antibody staining, the fixed cells were permeabilized and then
stained with flow cytometry antibody for 30 min. The samples
were then tested using flow cytometry (BD Biosciences), and
the flow cytometry data were analyzed and visualized using
Flowjo software.

Culture of bone marrow MSCs
To isolate MSCs, we separated the femur and tibia from C57BL/6J
mice in PBS, the bone marrow was flushed out and transferred to
α-MEM medium containing 10% FBS (Gibco) and 1% penicillin/
streptomycin (Hyclone). After culturing in a petri dish with a
diameter of 100mm at 37 °C, a 5% CO2 constant temperature
incubator for 48 h, the medium was changed to remove non-
adherent cells.45 Afterward, the medium was changed every
3 days and digested when the confluence reached 80% for the
next experiment.

Isolation of monocytes/macrophages
To isolate macrophages from long bone, we dissected the femur
and tibia as described above and flush out the bone marrow to mix
with the culture medium. For macrophages from ABM, we
separated the alveolar bone as described above and then cut
the alveolar bone into small pieces in the culture medium. After
the bone pieces settled, the culture medium containing the bone
marrow cells was transferred. To balance the number of primary
cells extracted from mouse alveolar bone and femur, the
mandibular alveolar bones of 10 mice were combined. Then the
isolated cells were cultured with 10% FBS and 1% penicillin/
streptomycin αMEM medium, and 50 ng·mL−1 M-CSF (R&D
Systems) was added.46 The medium was changed three days later
to remove non-adherent cells.
To obtain the monocyte/macrophage-conditioned medium, the

medium was changed once every three days and the conditioned
medium was collected, centrifuged at 1 500 × g for 10 min. The
supernatant was stored for further use. For conditioned medium
treatment, the conditioned medium collected from the ABM and
LBM monocyte/macrophage directly mixed with the complete
culture medium, osteogenic induction medium, and adipogenic
induction medium at a ratio of 1:1. For wound healing analysis, 1%
FBS αMEM medium was used to eliminate the influence of serum
on cell migration.

Cell proliferation assay
The MSCs were seeded in a 96-well plate at a density of 5 000 cells
per well, and the conditioned medium for alveolar bone and long
bone was added as described above. After culturing for 1 d, 3 d,
and 5 d, 10 μL of CCK8 (Dojindo Laboratories) reagent was added
to each well and then placed in the incubator to continue
incubating for 1 h, and the absorbance at 450 nm was measured
with a microplate reader.

Colony formation test
MSCs were seeded in 6-well plate at a density of 500 cells per well.
ABM and LBM-derived macrophage-conditioned medium was
added as described above, and the medium was changed every
3 days. After 2 weeks of culture, cells were fixed with 4%
paraformaldehyde solution and stained with 1% crystal violet
solution. Colonies with more than 30 cells were included.

Scratch wound healing assay
MSCs were seeded in 6-well plate and cultured till 100%
confluence, and the 10% FBS medium was replaced with 1%
FBS medium for starvation culture 24 h before making scratches. A
20–200 μL pipette tip was applied to trace the center of the orifice
along a ruler, leaving a uniform and straight scratch.47 Subse-
quently, the medium was replaced with 1% FBS medium and
macrophage-conditioned medium. The wound closure was
observed and pictures were taken at 0/24/72 h. ImageJ software
was used to calculate the proportion of the healing area.

Osteogenic and adipogenic differentiation
MSCs derived from long bone marrow (femur and tibia) were used
for all subsequent studies. For osteogenic induction, MSCs were
seeded into a 24-well plate at a density of 2.5 × 105 per well.
Ascorbic acid (50 μg·mL−1), β-glycerophosphate (5 mmol·L−1), and
dexamethasone (100 nmol·L−1) were added to αMEM complete
medium.48 Conditioned medium was added at a ratio of 1:1.
After 7 days of induction, ALP staining and ALP activity

detection were performed. ALP staining was performed following
the recommended protocol with ALP staining kit (Beyotime). After
incubating for 15min, a scanner (EPSON) was used to collect
images. ALP activity was measured by ALP assay kit (Nanjing
Jiancheng) according to the recommended protocol.49

ARS staining was performed 21 days after induction. 1% Alizarin
Red Staining Solution (Solarbio) was used to stain the mineralized
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nodules. After fixing the cells for 15 min, the excess staining
solution was washed off with PBS, and the stained image was
obtained by scanning under the scanner. Subsequently, 10%
cetylpyridinium chloride was used to dissolve the mineralization,
and the absorbance was detected at 562 nm with a microplate
reader (Thermo Fisher).50

For adipogenesis induction, MSCs were seeded into 24-well plates
at a density of 2.5 × 105 per well. 3-isobutyl-1-methylxanthine (IBMX,
0.5mmol·L−1), dexamethasone (1 μmol·L−1), and insulin (10 μg·mL−1)
were added to the DMEM complete medium.51 The conditioned
medium was added at a ratio of 1:1. After 21 days of induction, the
cells were fixed with 4% paraformaldehyde solution, and then the
intracellular lipid droplets were stained with 1% oil red O solution.
The excess dye solution was washed away with PBS, and the images
were taken with an inverted microscope. Then isopropanol was used
to dissolve the Oil Red O dye, and the absorbance was measured at a
wavelength of 520 nm using a microplate reader.

qPCR
The total RNA was isolated with Trizol reagent (Invitrogen), and the
absorbance A260/A280 was measured with Nanodrop 2000 to
detect the concentration and purity. PrimeScript RT kit (TaKaRa Bio)
was used to reverse transcription of RNA into cDNA and added to a
PCR instrument (Bio-Rad) for real-time RT-PCR. Gapdh was used as
an endogenous control, and the relative expression level of mRNA
was calculated by the 2−ΔΔCt method. For adipogenesis-related
genes, 34B4 was used as an endogenous control.

ELISA
Osm levels in alveolar bone and long bone tissue were measured
by a mouse Osm ELISA kit (Cusabio). Briefly, mouse alveolar bone
and long bone were collected, cut into pieces, and weighed for
the same weight (100 mg). the samples were diluted into 1 mL
with buffer, frozen, and thawed three times in a −80 °C
refrigerator. After centrifugation at 200 × g for 5 min, 100 μL of
supernatant was added to a 96-well plate with high binding
capacity and incubated for 2 h.

Statistical analysis
All values were expressed as mean ± SEM. Statistically significant
differences were performed by two-tailed Student’s t test for
comparison between two groups, one-way or two-way analysis of
variance (ANOVA) followed by the Tukey’s post hoc test for
multiple comparisons. P value < 0.05 was considered to be
statistically significant.
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