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Cell morphology 
and mechanosensing can 
be decoupled in fibrous 
microenvironments and identified 
using artificial neural networks
Edward D. Bonnevie1,2, Beth G. Ashinsky2,3, Bassil Dekky4, Susan W. Volk4, 
Harvey E. Smith1,2 & Robert L. Mauck1,2,5* 

Cells interpret cues from and interact with fibrous microenvironments through the body based on 
the mechanics and organization of these environments and the phenotypic state of the cell. This 
in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. 
Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to 
produce a large morphologic data set, across multiple cells types, while simultaneously measuring 
mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset 
describing a large dynamic range of cell morphologies and responses was coupled with a machine 
learning approach to predict the mechanobiological state of individual cells from multiple lineages. We 
also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating 
contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we 
developed further models that incorporate biochemical cues for single cell prediction or identify 
individual cells that do not follow the established rules. The models developed here provide a tool for 
connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and 
identifying aberrant cell behavior at the single cell level.

Fibrous microstructural elements comprising the extracellular matrix (ECM) of most tissues convey critical 
biophysical and biomechanical cues to resident cells. Cells continuously interrogate this local microenviron-
ment via contractile cytoskeletal proteins, and this information is relayed to the nucleus via the mobilization of 
mechanosensitive factors1–3. For many cells, these mechanical signals dictate their subsequent behaviors, such as 
differentiation (e.g., progenitor/stem cells) and/or activation (e.g., myofibroblasts)4. For many cells, cell–matrix 
feedback is mediated by Rho/ROCK and acto-mysosin based contractility. In such circumstances, mechanical 
properties of the cellular environment tunes this contractile behavior, where stiff microenvironments promote 
the emergence of pro-fibrotic phenotypes through increased contractile activity5,6, and soft microenvironments 
do the reverse.

While these findings hold in general, cell-to-cell variation is evident when populations are assessed at the 
single cell level. For example, we recently showed that, in unconstrained two-dimensional culture, sister cells 
that had recently divided take on markedly different morphologies and RNA copy numbers within a few hours 
of division7. This cell-to cell-variation within a population can be attenuated or amplified by imposing bound-
ary constraints or contact guidance cues8,9. For example, cells on small adhesive islands have a lower overall 
cytoskeletal contractility, a regular geometry, and reduced activity of mechanosensitive factors, such as YAP/TAZ 
(Yes-associated protein/transcriptional coactivator with PDZ binding motif)10. Conversely, when boundaries 
are not constrained (e.g., in two-dimensional (2D) culture) cells adopt a variety of cell shapes and sizes. In this 
context, natural variations in cell shape and activity result in significant variation in cellular behavior, and can 
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promote changes in fate and activity of a subpopulation of the cells, such as invasive behavior11–15. This natural 
variation can be amplified as well. For example, in fibrous networks, increases in structural variation in disorgan-
ized compared to aligned fiber microenvironments drive cell mechanosensing2. These data indicate that physical 
factors and microenvironmental cues are integrated through cellular processes to dictate cell function. Further, 
conditions that enable or promote cell-to-cell variation can accentuate heterogeneous cell behaviors within an 
otherwise homogeneous population.

As noted above, when cells integrate cues from their microenvironment, they adopt a wide range of shapes, 
sizes, and orientations1,2,14, and a number of descriptors or metrics are reported (e.g., area, roundness, aspect 
ratio) to describe this phenomenon. These include both descriptors of the cell body as well as the nucleus, 
yielding complex, multidimensional data sets, where multiple measures have weak correlations with functional 
outcomes. To better integrate these multiple inputs, machine learning can translate and simplify these data15–18, 
and dimensional reduction, clustering, predicting, and classifying can reveal how populations of cells integrate 
microenvironmental cues to dictate function.

Here, we utilize machine learning approaches to establish how cells in heterogeneous microenvironments 
regulate mechanosensing on a single cell basis. To do so, we fabricated fibrous biomaterials with tunable organiza-
tion based on stretch-mediated fiber organization. Cell morphology was heterogeneous in these environments, 
but dimensional reduction using a neural network-generated self-organizing map identified subsets of cell shapes 
by identifying four clusters of cell and nuclear morphology. Quite interestingly, these clusters represented dif-
ferent mechanobiological states (i.e., YAP/TAZ localization), and such states were predictable on an individual 
cell basis. The model further identified atypical cellular behaviors, when morphology and mechanobiologic state 
were decoupled (for example by pharmacologically altering cellular contractility). Moreover, the model could 
identify cases where the morpho-mechanobiologic relationship changed, during developmental specification of 
lineage (in skin cells) and in disease (transformation to an invasive phenotype in cancer cells).

Results
Strain‑mediated reorganization and contact guidance in fibrous microenvironments.  Many 
tissues exist in a prestressed state (e.g., skin, tendon, ligament, and the annulus fibrosus of the intervertebral 
disc)19–21. We recently reported that loss of this prestressed state, associated with disease or injury, can alter 
fiber organization in these tissues. This disorder in the fiber topography instigates the emergence of atypical 
phenotypes, such as pro-fibrotic, α-smooth muscle actin (αSMA) positive cells2. As topography is tied to the 
state of strain in a fiber environment22,23, we first explored how organization relates to the state of stretch in 
these networks. To do this, we developed a fiber mechanics model to include a state variable governing fiber 
organization24. The development of the model is described in detail in the methods section, and results in the 
expression:

where the axial stress (S11) is described by the strain-mediated (ε) fiber organization (R) and material constant 
fitting parameters. We tested this model on aligned and non-aligned electrospun scaffolds that were subjected 
to different levels of strain (Figs. S1, S2) and found that for low strain (within the toe region), the model fit 
exceptionally well (R2 > 0.9) for both the aligned and non-aligned networks (Fig. S1).

Given the relationship between fiber topography and state of strain, we next assessed how this fiber reor-
ganization regulates the morphological state of cells that typically reside in a highly aligned, prestressed fiber 
environment. For this, bovine annulus fibrosus cells (bAFC) were seeded on aligned and non-aligned fiber net-
works that were stretched to 0, 3, 6, or 9% strain prior to cell seeding. Fluorescent imaging the actin cytoskeleton 
and nucleus revealed that cell spreading was heterogeneous (Fig. S1), but that cell and nuclear shape descriptors 
generally had positive or negative correlations with fiber organization (Fig. S3). Notably, many descriptors in this 
multidimensional data set were statistically inter-related to one another (Fig. S3), making direct predictors of 
how topography dictates cell shape and size difficult to identify without a more sophisticated method to analyze 
the multidimensional data.

Unsupervised clustering of morphologic states in fibrous microenvironments.  Due to the com-
plexity of this 14-dimensional data set, we turned to a neural network approach for dimensionality reduction 
using an unsupervised learning algorithm. To do this, we developed a self-organizing map neural network com-
posed of 2 neurons that classifies cells onto a 2 × 2 grid via a competitive learning algorithm (Fig. 1a)25. This 2 × 2 
map identified 4 groups of morphologies that are distinguishable by eye (Fig. 1a). Generally, the 14 morphology 
parameters of cell and nuclear descriptors distinguished these clusters, and comparing several of these metrics 
highlighted the differences between the groups (Fig. 1b). Notable distinctions occurred between the clusters: 
group 1 represented cells spreading off the fiber axis with low solidity and low aspect ratios, group 2 represented 
cells with high area, high perimeter, and low circularity, group 3 represented cells with high circularity and low 
nuclear aspect ratio, and group 4 represented cells with low area and high aspect ratio (Fig. 1b,c). While many 
studies modulate cell shape and size through surface modifications of 2D substrates8–10, the heterogeneity of 
these fiber environments engendered considerable cell-to-cell shape variations. As expected2,26,27, there was a 
strong connection between the fiber organization and cell shape, both in terms of the baseline fiber organization 
and degree of strain on the fiber network (Fig. 1c, Fig. S4).

Because morphology and mechanically-driven phenotypes are linked in many cell types, we next tested 
whether the shape clusters identified via the neural network represented different mechanobiologic states. 

(1)S11 =
ε11
∫
0

π/2

∫
−π/2

R(θ , ε) cos2 θAB exp (Bε)dθdε + kmatrixε11.
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Individual cells were imaged in a subset of the fiber environments (aligned and nonaligned scaffolds at 0% and 
9% strain) for both cell and nuclear morphology and the localization of the transcription factors YAP/TAZ. 
These data showed pronounced differences in nuclear YAP/TAZ levels between shape clusters (Fig. 1d). To 
determine whether these shape clusters similarly predicted shifts in phenotype, we stained for αsmooth muscle 
actin (αSMA), which is indicative of a pro-fibrotic phenotype28. Results from this analysis showed that shape 
clusters indeed identified different propensities toward this pro-fibrotic phenotype (Fig. 1e). These data indicate 
that neural networks may have the capacity to identify subsets of cells that have differing mechanobiological 
states and phenotypes within a heterogeneous population, based on cell and nuclear morphology.

Neural network modeling using cell and nuclear morphology predicts mechanobiologic 
state.  Given the above connection between cell and nuclear morphology and mechanosensing, we next 
questioned whether mechanobiologic state could be predicted for single cells based solely on cell and nuclear 
shape descriptors. To accomplish this, we developed a supervised neural network of 4 hidden-layer neurons with 
sigmoid transfer functions trained through Bayesian regularization (Fig. 2a). In the model, nuclear/cytoplasmic 
levels of YAP/TAZ were predicted based on the shape descriptors described above (Fig. 1). Using a 75%–25% 
data split for training and testing, we found that greater than 50% of the variation in YAP/TAZ localization in 
single cells could be predicted by these shape descriptors (Fig. 2b,c). Consistent with previous studies8,10, the 
most important predictive parameters in the model were cell aspect ratio, cell area, and nuclear area (Fig. 2b, 
Fig. S5).

Our engineered fiber environments generate a large dynamic range in cell and nuclear morphology (Fig. S1) 
and this provides a robust data set for models relating morphometry and mechanosensing. We further assessed 
the ability of this model to predict YAP/TAZ levels by inspecting the error histograms for cells in both train-
ing and testing sets (Fig. 2d,e; Fig. S6). In this analysis, the mean error (μ) describes whether or not the model 

Figure 1.   Dimensionality reduction predicts relationship between cell morphology and mechanosensing 
in engineered fiber environments. (a) Images of cells were segmented and 14 cell and nuclear morphology 
parameters were collected for each. These data were simplified via a neural-network-based self-organizing 
map approach to dimensional reduction that identified four shape groups. (b) The distinction between groups 
is highlighted by relationships between cell and nuclear descriptors of size, shape, and orientation. (c) Shape 
clusters were related to both baseline fiber organization and degree of stretch-mediated reorganization. (d) 
YAP/TAZ imaging on a subset of cells revealed a connection between shape clusters and mechano-sensing, 
as indicated by nuclear/cytoplasmic levels of YAP/TAZ. (e) These same clusters also represented different 
propensities of adopting a pro-fibrotic α-smooth muscle actin + phenotype (numbers denote number of cells 
identified as being αSMA stress fiber + over total cells identified in that cluster). (*** denotes p < 0.001, n = 1043 
cells for initial cluster analysis, n = 338 cells for YAP, number for αSMA cells given above bars as positive over 
total cells per cluster).
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systematically over (μ < 0) or under (μ > 0) predicts YAP/TAZ levels, and the standard deviation (σ) of the errors 
describes precision of the predictions. Further, these errors can be visualized by constructing prediction images 
using vector graphic software (Fig. 2f) to compare predictions and measured values. This error analysis and 
visualization supports that the model can predict localization of mechanoactive transcription factors.

To evaluate how generalizable this approach was, we next evaluated cells in the simpler microenvironments 
of 2D substrates of differing stiffness (5 kPa and 55 kPa polyacrylamide, and glass). In this context, the model 
again provided good agreement with predicted YAP/TAZ levels compared to measured values (Fig. S7). Here, 
we do not present YAP/TAZ levels qualitatively as nuclear or cytoplasmic, but as a continuous and quantitative 
metric that encompasses low, medium, and high activation states. Thus, to support the model predictions of 
mechanobiologic state, we used the model to compare functional outcomes of cellular traction forces and nascent 
matrix deposition at the single cell level with the predicted YAP/TAZ levels. For this, annulus fibrosus cells were 
seeded on an intermediate substrate stiffness (10 kPa polyacrylamide) and shape parameters were extracted via 
phase contrast imaging, followed by post hoc analysis of traction forces and prediction of YAP/TAZ localiza-
tion for individual cells. These predicted values from the model were compared against contractile force (Fig. 
S8), with a strong correlation between predicted YAP/TAZ and total contractile force (R2 = 0.66) Additionally, 
single cell matrix deposition was measured as previously reported2 via functional non-canonical amino acid 
tagging and compared to predicted YAP/TAZ levels (Fig. S9). Again, this single cell functional outcome of YAP/
TAZ activation correlated with the predicted levels (R2 = 0.422) providing insight to the spectrum of YAP/TAZ 
activation levels.

Figure 2.   A neural network uses cell morphology to predict mechanobiologic state. (a) A neural network was 
constructed by segmentation of individual cells to quantify cell and nuclear size, shape, and orientation and 
trained by Bayesian regularization based on measured YAP/TAZ levels. (b) The neural network consisted of 
14 inputs and a 4 neuron hidden layer to predict the nuclear/cytoplasmic ratio of YAP/TAZ. (c) Both training 
and testing data sets maintained predictability with R2 between predicted and measured states above 0.5. Error 
histograms for training (d) and testing (e) sets were centered close to zero error (µtrain = − 0.0005 and µtest = 0.051) 
with associated standard deviations of σtrain = 0.44 and σtest = 0.42. (f) Predicted values for cells from the testing 
set provide a visual depiction of different error values.
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The original model formulation was established in a single cell type (bovine annulus fibrosus cells, AFCs), 
and consequently, we were curious to see whether the morphology-mechanobiology relationship that was deter-
mined for those cells could be applied more generally to other cell types. To address this, we evaluated bovine 
marrow-derived mesenchymal stromal cells (bMSCs) in both organized and disorganized fiber environments. 
Testing this data set in the established neural network developed based on annulus fibrosus cells showed similar 
accuracy between MSCs and the AFCs (Figs. S6 and S10). Thus, this morphology-mechanobiology relation-
ship held across mesenchymal lineage cells. However, it remained unclear as to whether this model captures a 
universal rule set for cell spreading in general.

Incorporation of biochemical cues can restore predictive capacity.  The model above proved robust 
for capturing cells following established ‘rules’ between spreading and mechano-response. This motivated us to 
ask whether and when this relationship might be disrupted. AFCs were cultured on organized and disorganized 
fiber environments and their cytoskeletal contractility was manipulated via ROCK inhibition (with fasudil) and 
RhoA activation (with lysophosphatidic acid (LPA)). In general, YAP/TAZ nuclear localization decreased with 
reduced contractility and increased with higher contractility (Fig. S11). While slight variations in cell spread-
ing and shape accompanied these shifts, they did not account for the changes in YAP/TAZ (Fig. S6). Because of 
this disconnect, nuclear YAP/TAZ levels were overestimated following fasudil treatment (μfasudil_original = − 0.60, 
σ Fasudil_original = 0.50) and underestimated following LPA treatment (μLPA_original = 0.69, σ LPA_original = 0.64) using 
the model developed above (Fig. 3b, Fig. S12). As could be expected, this observation highlights that biochemi-
cal signaling can be a potent mediator of the model linking morphology and mechanosensing. Consequently, 
we aimed to develop a new model that is capable of incorporating this information to more accurately predict 
mechanobiologic state by incorporating biochemical cues as a model input (Fig. 3a). In this model, 15 inputs 
were fed through a 4 neuron hidden layer to predict state based on morphology and knowledge of contractil-

Figure 3.   (a) To account for the role that biochemical signaling can play in YAP/TAZ localization, a neural 
network was constructed that incorporates cell and nuclear morphology in addition to information on 
biochemical signaling. Line thicknesses correspond to connection weights. (b) Using a morphology-only neural 
network provides either over (fasudil, ROCK inhibition) or under (LPA, rhoA activation) predictions of YAP/
TAZ state. (c) Incorporating biochemical signaling into the model increases model accuracy with no loss of 
predictability for control group cells. Example cells from the (d) Fasudil and (e) LPA groups along with visual 
depictions of the model predictions for both models (new model: nLPA-train = 73, nLPA-test = 16, nFasudil-train = 112, 
nFasudil-test = 30, ncontrol-train = 299, ncontrol-test = 39 cells).
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ity modulation. Incorporating this input data significantly enhanced predictive power by reducing the errors 
associated with independent testing of cells treated with either Fasudil (μfasudil_adapted = 0.01, σ Fasudil_adapted = 0.35) 
or LPA (μLPA_adapted = − 0.01, σ LPA_adapted = 0.51) with no loss of predictive power for cells in control media condi-
tions (Fig. 3c,d,e; Fig. S12). The adaptation of a morphology-mechanosensing model to incorporate biochemical 
signals highlights the utility of harnessing the ability of neural networks to translate complex, multidimensional 
input data into a single quantitative output. Additionally, the accuracy of this model also supports that such 
models may be used to identify when cells, either individually or as a population, may deviate from the expected 
cell behavior.

Neural networks to identify distinctly contractile cell populations.  With this in mind, we 
next examined a case where altered contractility is expected in cell populations, namely, embryonic wound 
healing29,30. Mid-gestational murine dermal wounds heal in a scarless fashion (prior to E16.5 in the mouse)31,32, 
with embryonic murine dermal fibroblasts (mDFs) maintaining lower contractility when isolated from scar-less 
healing (i.e., E15) compared to scar-forming (i.e., E18) stage embryos33. This is in agreement with the concept 
of highly contractile, mechanosensitive myofibroblasts as key mediators of scarring28. Thus, we next queried 
whether embryonic dermal cells alter their morphology-mechanosensing rules with development. To do so, 
adult, mid-gestational, and late-gestational embryonic (E15 and E18, respectively) dermal fibroblasts were iso-
lated from mice, and cultured in fibrous environments. Both morphology and YAP/TAZ levels differed in cells 
from these different stages in development (Fig. 4a). We then expanded the neural network above by further 
including ground truth data of mesenchymal cells (bMSCs) and adult dermal fibroblasts (adult mDFs) (Fig. 4b, 
Fig. S6). This updated model showed robust predictability of adult (µadult = − 0.24, σadult = 0.29) and late-gesta-
tional (E18) mDFs (µe18 = − 0.21, σe18 = 0.90). In contrast, mid-gestational embryonic mDFs (E15) diverged from 
this model (µe15 = − 1.17, σe15 = 1.32), with YAP/TAZ levels considerably overestimated on the single cell level 
(µe15 <  < 0). These cells, which are associated with low contractility and scarless healing (E15), were decoupled 
in their morphology and mechanosensing, and the model found significantly increased prediction errors for 
these cells compared to adult and E18 cells (Fig. S6). These data confirm that, for certain cell populations a 
morphology-mechanosensing neural network can identify conditions when cells or populations of cells do not 
act as expected.

Neural network modeling of morphology and mechanobiology can identify invasive pheno‑
types in breast cancer cells.  Machine learning techniques to both understand and identify invasive can-
cer cells have emerged over the past several years15,16,18. While invasive cancer cells are generally more con-
tractile than non-invasive cancer cells34, recent evidence also suggests that progression (i.e., proliferation) and 
invasion represent different mechanobiological states35. Specifically, YAP-mediated Hippo pathway activation 
is not present in progression, but downstream Hippo pathway targets are upregulated in invasive phenotypes35. 
Given that the neural network developed to predict YAP/TAZ localization can identify disconnects between 
morphology and mechanosensing, we next tested whether this approach could likewise identify the differential 
mechanobiology associated with cancer progression and invasion. To do so, we first exposed non-tumorigenic 
mammary epithelial cells (MCF-10A) to disorganized fiber environments with and without 10 ng/mL TGF-
β1 to instigate epithelial to mesenchymal transition (EMT)36,37; this ground truth data was then incorporated 
into the morphology-only neural network described above (Fig. 5a). With this retrained model, we found high 
predictability both prior to (µ10A = − 0.036, σ10A = 0.14) and following the initiation of EMT (µ10A+TGF = − 0.059, 
σ10A+TGF = 0.28) (Fig. 5b,c; Fig. S6). We then tested whether non-invasive (MCF-7) and invasive (MDA-MB-231) 
breast cancer cells also act in a predictable manner. Non-invasive cancer cells were well predicted both in the 
presence and absence of TGF- β1 (μMCF7 = 0.021, σMCF7 = 0.33; μMCF7+TGF = 0.18, σMCF7+TGF = 0.42; Fig. 5d,e; Fig. 
S6). In contrast, the highly metastatic, invasive cancer cell line (MDA-MB-231) deviated markedly from model 
predictions, with YAP levels being substantially higher than expected based on cell and nuclear morphology 
(μ231 = 1.52, σ231 = 0.88, Fig. 5f, Fig. S6). These data suggest a disconnect between matrix mechanosensing and cell 
morphology during cancer cell invasion.

Based on the above observation, we developed another neural network that was tasked with sorting cells 
into either the non-invasive or invasive class (MCF-7 versus MDA-MB-231). This sorting was based on cell and 
nuclear morphology, YAP/TAZ state, or a combination of both morphology and mechanobiological state. While 
it is clear that the non-invasive and invasive cancer cells adopt differing morphologies (Fig. 6a), there is also a 
significant difference in matrix mechanosensing via YAP/TAZ (Fig. 6b). To determine whether cell morphol-
ogy or mechanosensing alone are sufficiently robust predictors of cancer invasiveness, we first developed neural 
networks to classify cells based solely on these parameters. Using morphology alone, the neural network main-
tained 80% accuracy in classifying cells as either invasive or not (Fig. 6c,d). However, testing this model on cells 
not included in the training step revealed a 14% false negative rate. Using YAP/TAZ levels alone for classifying 
invasiveness increased the overall accuracy to 90%, with a lower false negative rate of 6.9% (Fig. 6d). Notably, a 
third model that incorporated both morphology and YAP/TAZ (exploiting the morphology-mechanosensing 
disconnect identified, Fig. 5f) increased the accuracy of the model to 95% and reduced the false negative rate to 
2% (Fig. 6d). Of note, the utility of fibrous networks in modulating mechanosensing and increasing the dynamic 
range in cell responses was further evidenced in this study. Recent evidence suggests that even soft 2D substrates 
can activate the Hippo pathway in MCF-7 cells while this YAP/TAZ-activated pathway remains inactive in 3D 
environments35. Thus, when these same cells were seeded onto 2D glass substrates, the model predictions were 
significantly worse, with morphology alone at 87%, YAP/TAZ alone at 63%, and their combination at 86% 
accuracy (Fig. S13). Thus, the difference in mechano-signaling between the invasive and non-invasive cancer 
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cells was lost in the stiff 2D environment, highlighting the importance of the physiological microenvironment 
in regulating and accentuating cell behavior and classification.

Discussion
As cells integrate microenvironmental cues through their contractile machinery, mechanosensitive transcription 
factors such as YAP/TAZ dictate downstream cellular responses. In this study we revealed that microenviron-
ment-mediated cell spreading can predict the localization of these factors for a variety of cell types, including 
differentiated fibroblasts (bAFCs and mDFs), mesenchymal stromal/progenitor cells (bMSCs), and human mam-
mary epithelial cells (e.g., MCF-10A). Despite differences in baseline phenotype between these cells, there was 
a notable conservation of the rules that govern how they translate cell spreading to mechanoactivation. While 
the relationship between cell spreading and contractility has been previously explored2,10,38,39, the power of the 
present model resides in its ability to identify time-varying and/or aberrant cell behavior. It is also important to 
note that these rule sets are not universal for all cells at all times. For instance, pharmacologically altering con-
tractility shifted the model predictions in a manner where decreased contractility decreased YAP/TAZ nuclear 
levels in an unpredictable manner, and increasing contractility caused the opposite to occur. As such, another 
powerful use of such a model is to incorporate biochemical cue data into the input data set to account for this 
disconnect. In a more natural deviation from the expected cell behavior, mid-gestational (E15) mDFs and invasive 
breast cancer cells (MDA-MB-231) exhibited mechano-signaling that was decoupled from cell spreading. Thus, 

Figure 4.   Developing murine dermal fibroblasts have emergent morphology-mechanosensing relationships. 
Murine dermal fibroblasts from adults and embryonic days 15 and 18 were isolated and seeded onto organized 
and disorganized fiber environments. (a) Staining for actin, the nucleus, and YAP/TAZ revealed heterogeneity 
and developmental stage specific morphology and mechanosensing. (b) The neural network described above 
(Fig. 3) was updated and retrained based on AFCs, MSCs, and adult murine dermal fibroblasts (mDFs) and 
tested on the remaining dermal fibroblast groups (c). In general, YAP/TAZ levels were predictable for (d) adult 
and (e) E18 cells (µadult = − 0.24, σadult = 0.29; µe18 = − 0.21, σe18 = 0.90). (f) However, YAP/TAZ levels were largely 
overestimated for dermal fibroblasts isolated from the mid-gestational fetus (E15), which is a stage associated 
with scarless healing (µe15 = − 1.17, σe15 = 1.32), (nDF-train = 65, nDF-test = 18, nE18 = 95, and nE15 = 47 cells).
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while this model framework is useful to understand the mechanobiologic state of a cell based on its morphology, 
an even more useful application lies in its ability to identify aberrant or atypical cell signaling at the single cell 
level. In practice, such a tool could be utilized to understand the differentiation and/or invasive potential of cell 
populations, or even as a screening tool for testing the efficacy of drug treatments to restore a healthy morpho-
mechanobiologic relationship in aberrant cells.

Methods
Fibrous scaffold fabrication.  Fibrous scaffolds were fabricated by electrospinning as previously described2. 
Briefly, 19% w/v poly(ε-caprolactone) was extruded through a needle charged to + 15 kV and collected onto a 
rotating mandrel (1 kV/cm voltage gradient to grounded mandrel). Both aligned and nonaligned scaffolds were 
fabricated based on surface speed of the collecting mandrel (aligned: 14 m/s; nonaligned: 2.3 m/s)2. Following 
collection, scaffolds were rehydrated using 30 min steps of progressively weaker ethanol (100%, 70%, 50%, 30%) 
prior to being allocated to mechanical analysis or cell seeding. Following 2 × 30 min incubations in phosphate 
buffered saline, scaffolds for cell analyses were functionalized overnight at 37 °C in 20 µg/mL fibronectin.

Mechanical analysis and modeling.  We sought to model the mechanical behavior of fibrous tissue given 
a fiber organization22,24:

where R(θ) represents the fiber angle distribution for a given angle θ. Under the assumption that the stress of 
the fiber network is equal to stresses on individual fibers that are oriented along each fiber’s axis, the stress can 
be described by:

(2)
π/2

∫
−π/2

R(θ)dθ = 1

Figure 5.   Non-tumorigenic breast epithelial and non-invasive breast cancer cells are predictable, while 
invasive breast cancer cells are not. (a) The neural network model was updated to include ground truth data on 
epithelial cells with and without TGF-β1 to instigate epithelial-to-mesenchymal transition (EMT). (b,c) Non-
tumorigenic breast epithelial (MCF-10A) and (d,e) non-invasive breast cancer (MCF-7) cells showed predictable 
morphology-mechanosensing relationships, and this predictability remained when these cells were pushed 
towards EMT using TGF-β1. (f) In contrast, invasive breast cancer cells (MDA-MB-231) showed unpredictable 
YAP/TAZ levels based on cell and nuclear morphology (nMCF-10A-train = 37, nMCF-10A-test = 12, nMCF-10A+TGF-train = 45, 
nMCF-10A+TGF-test = 21, nMCF-7 = 177, nMCF-7+TGF = 105, and nMDA-MB-231 = 115 cells).
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where S is the second Piola Kirchoff tensor. Here, S11f. denotes a fiber stress along the axis of the fiber under a 
given strain, ε. Fiber mechanics models often rely on a non-linear fiber stress term to account for fiber recruit-
ment and reorientation such as:

where A and B are terms that govern fiber stiffness and nonlinearity, respectively. To represent this mechanical 
model, we fabricated aligned and nonaligned, electrospun poly(ε-caprolactone) (PCL) scaffolds. While other 
models use theoretical approaches to account for fiber reorganization, we tracked fiber organization as a func-
tion of strain using an in situ stretch device housed within an environmental scanning electron microscope (Fig. 
S1a, b), and found that R(θ) follows a trend of increasing organization as a function of increased strain (Fig. S2). 
This fiber organization was then input into the fiber kinematics model. Assuming a fiber angle distribution that 
is dependent on the state of strain provides:

where the fiber angle distribution, R(θ), is described by a Gaussian distribution and the standard deviation of 
this distribution, σ, is dictated by the state of strain, the original angular spread, σ0, an organization saturation 
point, σ∞, and a fitting parameter, α. Consequently, the resulting stress–strain relationship can be described by 
(presented earlier in the results section):

(3)S =
π/2

∫
−π/2

R(θ)S
f
11(ε)[N ⊗ N]dθ

(4)dS
f
11(ε) = AeBεdε

(5)R(θ , ε) =
1

2πσ(ε)2
e
−(θ−θ0)

2

2σ(ε)2

(6)σ(ε) = σ0e
−αε + σ∞

(7)S11 =
ε11
∫
0

π/2

∫
−π/2

R(θ , ε) cos2 θAB exp (Bε)dθdε + kmatrixε11

Figure 6.   (a) Non-invasive and invasive cancer cells showed different, yet heterogeneous, morphologies on 
non-aligned fibrous templates, and this difference was highlighted by (b) different YAP/TAZ states. (c) A 
neural network was constructed to classify cells as invasive or non-invasive based on morphology and/or YAP/
TAZ levels. (d) Using morphology to classify cells resulted in 80.4% accuracy, while YAP/TAZ predicted cell 
classification with 90.2% accuracy. Using both morphology and mechanosensing increased accuracy to 95.1%, 
highlighting the utility of exploiting both morphology and mechanosensing in invasive cancer cells (**** 
p < 0.001, nMCF-7 = 177 and nMDA-MB-231 = 115 cells).
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For mechanical analyses, scaffolds were cut into rectangular strips 10 mm wide and 40 mm long. Thickness 
was measured using a non-contact laser based method. Scaffolds were clamped into an Instron 5848 mechanical 
testing frame and stretched at a constant rate of 1 mm/min until failure. Stress and strain were calculated based 
off initial cross sectional area and initial gauge length of 10 mm. For fiber organization analyses, scaffolds were 
viewed in a scanning electron microscope (FEI Quanta 600 FEG Mark II). Following imaging, fiber organiza-
tion was evaluated using a fast Fourier transform approach in the directionality plug-in in ImageJ. The resulting 
fiber angle distribution was fit to a Gaussian curve (Eq. 4) through root-mean-square error minimization using 
the Excel solver plug-in. Scaffolds were stretched in the microscope to quantify strain-mediated fiber organiza-
tion, as recently described2. These data were then used to determine the values for (Eq. 5) through root mean 
square error minimization. The resulting model stress was then determined through a numerical integration of 
3° steps for R(θ) and 0.016% strain steps. The fitting parameters were determined through root-mean-square 
error minimization.

Cell seeding.  Fibrous scaffolds were seeded with several cell types (bovine annulus fibrosus cells, bovine 
mesenchymal stem/stromal cells, murine dermal fibroblasts from E15, E18, or adults), and cell lines of normal 
and cancerous human mammary epithelium (MCF-10A, MCF-7, and MDA-MB-231). Supplemental Table 1 
describes media formulations and isolation techniques for each cell type. Bovine annulus fibrosus cells were 
obtained from adult caudal discs as recently described2 and bovine MSCs were obtained from juvenile femoral 
bone marrow as previously described40. These cell types were expanded through passage 1 prior to seeding on 
scaffolds for analysis. Murine dermal fibroblasts were cultured from dermal explant cultures41 and utilized prior 
to P4. Human cell lines were obtained from ATCC and were handled and expanded as recommended by the 
supplier. Facilities were routinely tested for mycoplasma and all tests have been negative. In all cases, cells were 
seeded onto fibrous scaffold through drop seeding of 5,000 cells in 0.05 mL growth media onto the scaffold. Cells 
were allowed to attach for 45 min prior to introducing the culture media to the system. No live animals were 
directly involved in this study.

Confocal microscopy and feature identification.  Cells seeded on fibrous scaffolds were fixed in 10% 
neutral buffered formalin for 18 min following 24 h of culture. Following fixation, scaffolds were washed twice 
in PBS followed by 10 min of permeabilization in PBS containing 0.5% Triton X100 supplemented with 0.108 g/
mL sucrose. Following 2 washes in PBS, primary antibodies were applied overnight. Primary antibodies used in 
this study were against YAP/TAZ (mouse anti-YAP/TAZ, Santa Cruz Biotechnology, sc-101199, 1:200 dilution 
in PBS containing 1% BSA) and α-smooth muscle actin (mouse anti-αSMA, Sigma, A2547, 1:400 dilution in PBS 
containing 1% BSA). The images for YAP/TAZ for the bAFCs included newly collected images and a subset of 
re-analyzed images from a recent study, and the images of αSMA staining were images re-analyzed from a recent 
study2. Following two washes in PBS, secondary antibody (AlexaFluor 488, goat anti-mouse, 1:200) and phal-
loidin (AlexaFluor 546, 1:000 in PBS with 1% BSA) incubation were conducted for 1 h at room temperature. Fol-
lowing PBS washes, scaffolds were mounted with DAPI gold anti-fade. For cases where scaffold autofluorescence 
hindered nuclear imaging, DRAQ-5 (1:500 dilution) was used to visualize nuclei. Scaffolds were imaged on a 
Nikon A1R confocal microscope with a 20X objective. For image analysis, z-stacks were imported into ImageJ. 
Using maximum intensity of collected z-stacks, cells and nuclei were manually identified and segmented. The 
cell and nuclear shape parameters were determined through internal functions within the software. The param-
eters collected for each cell were: cell area, cell perimeter, cell major axis length, cell minor axis length, cell 
bounding length, cell bounding width, cell aspect ratio, cell solidity, cell roundness, cell circularity, cell angle, 
nuclear area, nuclear aspect ratio, nuclear angle.

Neural network construction.  Three types of neural network models were constructed in this study. All 
models were constructed using the neural network toolbox in MATLAB (2018). The first model was constructed 
for dimensional reduction of morphology data by sorting the multidimensional (14 parameter) data into a self-
organizing 2 × 2 map determined using 2 neurons. Using this built-in unsupervised learning model, the network 
was constructed using a competitive learning algorithm on 1043 cells imaged and analyzed as described above. 
The second model was constructed to predict nuclear/cytoplasmic levels of YAP/TAZ based on the 14 morphol-
ogy measures. This model was also constructed in MATLAB using the neural network toolbox. Using a 4 neuron 
hidden layer with sigmoid transfer functions, the model was trained using Bayesian regularization on 75% of the 
cell data (253 cells) and the model was independently validated using the remaining 25% of cell data (85 cells). 
The initial model was developed using bovine annulus fibrosus cells seeded on aligned and nonaligned scaffolds 
that were stretched to either 0% or 9% strain (Fig. 3). This model was then updated by retraining with the annu-
lus fibrosus cells, bovine mesenchymal stem cells, and adult murine dermal fibroblasts (699 cells total, Fig. 4). 
Finally, this model was updated to include human epithelial cells both prior to- and following initiation of epi-
thelial to mesenchymal transition, using the MCF-10A cell line with and without addition of 10 ng/mL TGFβ1. 
This model was trained on 814 total cells (Fig. 5). In addition to the morphology-only model, another model was 
constructed that incorporated known biochemical cues into the input data as a 15th input. In this, a contractility 
agonist (LPA) was assigned a value of 1, control media was assigned 0, and a contractility inhibitor was assigned 
a value of − 1. This model was developed solely on bAFCs. Visual depictions of predicted states were constructed 
using Inkscape v0.92 vector graphics software. Images of cell and nucleus were imported and outlined, cytoplas-
mic levels of YAP/TAZ were recorded on a [0–255] scale and assigned to the cytoplasm, nuclear intensity was 
then assigned from the predicted YAP/TAZ levels on a [0–255] scale. The final model was constructed to classify 
cells into two classes (invasive versus non-invasive). Once again using the neural network toolbox in MATLAB, 
either the morphology, the YAP/TAZ data, or the combination of the morphology and YAP/TAZ data were used 
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to develop the model to classify cells as invasive (MDA-MB-231) or non-invasive (MCF-7). Using random data 
partitioning of 50% training, 15% validating, and 35% testing, the model was trained through scaled conjugate 
gradient backpropagation, with a 10 neuron hidden layer. Confusion matrices for the testing set are reported for 
each of the 3 sets of input data.

Statistical analyses.  For comparisons between model prediction errors for different groups a non-para-
metric test (Kruskal–Wallis) was used due to unequal variances between groups. Dunn’s post hoc test was used 
to find differences between groups. Significance was set at p < 0.05. Analyses were conducted using Graphpad 
Prism 7. Outliers were identified and removed from the initial training set YAP/TAZ values via a Grubb’s test.
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