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Genotype by environment interaction for somatic cell score in 
Holstein cattle of southern Brazil via reaction norms
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Objective: The objective of this study was to evaluate the genetic behavior of a population 
of Holstein cattle in response to the variation of environmental temperature by analyzing 
the effects of genotype by environment interaction (GEI) through reaction norms for the 
somatic cell score (SCS). 
Methods: Data was collected for 67,206 primiparous cows from the database of the Paraná 
Holstein Breeders Association in Brazil, with the aim of evaluating the temperature effect, 
considered as an environmental variable, distinguished under six gradients, with the 
variation range found being 17°C to 19.5°C, over the region. A reaction norm model 
was adopted utilizing the fourth order under the Legendre polynomials, using the mixed 
models of analysis by the restricted maximum likelihood method by the WOMBAT 
software. Additionally, the genetic behavior of the 15 most representative bulls was 
assessed, in response to the changes in the temperature gradient. 
Results: A mean score of 2.66 and a heritability variation from 0.17 to 0.23 was found in 
the regional temperature increase. The correlation between the environmental gradients 
proved to be higher than 0.80. Distinctive genetic behaviors were observed according to 
the increase in regional temperature, with an observed increase of up to 0.258 in the breeding 
values of some animals, as well as a reduction in the breeding of up to 0.793, with occasional 
reclassifications being observed as the temperature increased. 
Conclusion: Non-relevant GEI for SCS were observed in Holstein cattle herds of southern 
Brazil. Thus, the inclusion of the temperature effect in the model of genetic evaluation of 
SCS for the southern Brazilian Holstein breed is not required. 

Keywords: Dairy Cattle; Environmental Effects; Genetic Evaluation; Mastitis; Somatic Cell 
Count

INTRODUCTION 

Mastitis is one of the main diseases affecting dairy herds, causing major losses in the milk 
production chain [1]. It is responsible for most involuntary disposal cases due to inflam-
mation of the mammary gland and losses in animal productivity caused by the disease 
[2]. The susceptibility of this gland to pathogens causing the disease is largely dependent 
on physiological, genetic and environmental factors [3]. As such, the search for more ge-
netically resistant animals becomes an interesting point in the dairy production chain [4].
  Despite the search for genetically superior animals regarding this trait being a reality, 
the advances are still small and obtained mainly by correlation with the somatic cell score 
(SCS) [5]. Although these somatic cells include epithelial cells and white blood cells, the 
greatest variations between animals (and even in the same animal in test repetitions) are 
caused by immune cells that migrate to the milk in response to infections by pathogens 
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that cause mastitis [4], characterizing SCS as a strong candi-
date for the indirect selection for resistance to mastitis because 
of the high correlation with the trait [6].
  Although environmental influences have been observed 
in the manifestation of the mentioned trait, they are not 
taken into account in the genetic analysis models applied 
in the southern Brazil (one of the main milk basis in the 
country), which can lead to biases in the genetic informa-
tion and reduce the response to selection [7]. Such a bias in 
the information may underestimate or overestimate the 
genetic values in accordance with the environment under 
analysis, failing to capture the actual genetic variation of 
animals in environmental changes, assuming their genetic 
values as constant in affirming a robustness of the trait for 
all animals. Genetic variation in environmental changes is 
known as the genotype by environment interaction (GEI) 
and informs the possibility of performance of a certain geno-
type with regard to environmental changes [8] . Reaction 
norms are one of the methodologies that may inform on 
the existence of these interactions, whether they are relevant 
or not. 
  Reaction norms are a powerful and flexible tool for mod-
eling the effects of the GEI [9]. From their perspective, the 
genetic behavioral response of the individual can be visual-
ized as a function of the assumed environmental gradient 
[10]. With this, it is possible to establish which animal geneti-
cally responds better according to the environment in which 
this animal is exposed, evaluating possible reclassifications, 
in addition to establishing the persistence and genetic varia-
tion of the trait in the course of the environmental gradient. 
  The objectives of this study were therefore: i) verify the 
existence of a GEI through reaction norm models using ran-
dom regression for the SCS trait in animals of the Holstein 
breed according to the regional temperature; ii) estimate the 
genetic variance and the heritabilities of the SCS according 
to changes in the temperature gradient; and iii) analyze the 
genetic performance of the main bulls used in the region re-
garding the SCS in accordance with changes in the regional 
temperature gradient.

MATERIALS AND METHODS 

Using the database of official milk recording from the Paraná 
Holstein Breeders Association, Brazil (APCBRH), data on 
somatic cell count from 67,206 primiparous females born 
between 1990 and 2015, daughters of 936 distinct bulls, were 
recorded. The relationship matrix was composed of 92,637 
animals belonging to 398 herds from 88 cities in southern 
Brazil. The somatic cell count were transformed to SCS to 
achieve normality and homogeneity of variance, following 
the formula: SCS = log2 (somatic cell count/100,000)+3.
  From an a priori survey based on the methodology of 

Alvares et al [11], the average annual temperatures of the 
southern Brazil regions were 17°C in the southern portion 
and 19.5°C in the northern portion of the covered area. Thus, 
the evaluated regions could be divided into six environmen-
tal gradients separated at every 0.5°C of the average annual 
temperature. In the present study, these divisions were uti-
lized as control variables and the genetic behaviors of the 
animal population were verified by various changes through 
the environmental gradients.
  The statistical software SAS [12] was used to adjust the 
raw data and remove possible abnormal information. Be-
yond the random additive genetic effect, the effects in the 
reaction norm model adopted in the analysis included the 
fixed effects of contemporary group and calving age as a co-
variate (linear and quadratic). The contemporary groups 
were created considering the interactions of herd-year-season, 
with four seasons of calving being considered (i.e., December 
to February, March to May, June to August, and September 
to November). The data were checked and animals of un-
known parentage, progenies of bulls that only pertain to one 
herd, and contemporary groups containing fewer than three 
animals were removed.
  Among the environmental gradients, herd connectivity 
was observed through the genetic presence of the bulls in at 
least three gradients. Since the animals were of unknown 
parentage, bulls that had been represented in less than three 
gradients or bulls that featured only once in the herd were 
removed from dataset. Finally, each environmental gradient 
contained included a minimum of 1,000 animals for analysis.
  A random regression model was adopted to analyze GEI 
through reaction norms while assuming the residual variance 
to be heterogeneous in as many as eight classes of variance. 
Lastly, the fourth class was used because it presented the best 
fit under the Legendre polynomials. These polynomials were 
recently selected to promote the improved convergence of 
data in orthogonal regressions, as seen in the work of Schaeffer 
[13]. 
  The reaction norms model, via random regression, is de-
scribed as follows:
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Tij, average temperature; ϕm(Tij), mth Legendre polynomial 
order; CGij, contemporary group effect; IPij, age at first calv-
ing as a covariate; βm average regression coefficient of order 
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m for additive genetic effect of animal i; εij, error associated 
to variance class. The matrix representations are given as fol-
lows:

  y = Xb+Zu+e
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assuming that:
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RESULTS 

The general descriptive mean and the mean by temperature 
gradient are presented in Table 1 and the genetic, environ-
mental, and phenotypic variances, and heritability for SCS 
are presented in Table 2. The overall SCS mean (2.66) pre-
sented by animals of the Holstein breed in southern Brazil 
represents about 79,000 cells/mL of somatic cell count. There 
was a variation between 2.50 to 2.93 in the SCS during the 
regional temperature increase, which represents about 70,500 
cells/mL to 95,000 cells/mL of milk regarding the number 
of somatic cells. Animals were found with scores equal to 0 
in all regions, which corresponds to productions with so-
matic cell quantities smaller than 12,500 cells/mL of milk. 
The region with temperatures around 17.5°C were those 
showing the lowest score in the evaluation, while the region 
with temperatures around 19.5°C had the highest score in 
the evaluation. 

Table 1. Descriptive statistics for somatic cell score in southern Bra-
zilian Holstein cattle

Items n Mean SD Min Max

Overall 67,206 2.66 1.48 0.00 8.52
Temperature (ºC) 

17.0 19,150 2.78 1.51 0.00 8.52
17.5 29,072 2.50 1.42 0.00 8.34
18.0 1,954 2.70 1.44 0.00 7.35
18.5 1,138 2.83 1.50 0.00 7.91
19.0 14,350 2.80 1.51 0.00 8.42
19.5 1,542 2.93 1.48 0.00 8.07

n, number of bulls included in the analysis; SD, standard deviation; Min., 
minimum yield; Max., maximum yield.

Table 2. Parameters estimation at different temperature gradients 
for somatic cell score of Holstein cattle in southern Brazil

Temperature (ºC) σ2
p σ2

e σ2
a h2 SE

17.0 1.81 1.45 0.36 0.20 0.146
17.5 1.64 1.32 0.32 0.19 0.019
18.0 1.67 1.37 0.30 0.18 0.008
18.5 1.78 1.48 0.31 0.17 0.019
19.0 1.75 1.41 0.34 0.19 0.017
19.5 1.84 1.43 0.40 0.23 0.033

σ2
p, phenotypic variance; σ2

e, environmental variance; σ2
a, genetic variance; 

h2, heritability; SE, standard error.
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  Table 2 and Figure 1 shows the heritability changes accord-
ing to the regional temperature increase. As can be seen, the 
heritability estimates tended to decrease until the 18.5°C gra-
dient with an increase in the heritability estimation occurring 
after this threshold. The genetic correlation between the en-
vironmental gradients used to verify the existence of genotype 

environment interaction is shown in Figure 2. All the gradi-
ents had a correlation above 0.80, with the lowest correlation 
found being 0.89, between the regions of 17°C and 18.5°C. 
Correlations close to 1.00 (0.99) were found between the gra-
dients 17.5°C and 18°C and 18.5°C and 19°C. Additionally, 
based on the t-test for the variance of the slope, no statisti-

Figure 1. Heritabilities for somatic cell score among the environmental gradients. The x-axis denotes the temperature gradient (°C), and the y-axis 
represents the heritability estimate. The heritabilities estimates ranges from 0.17 to 0.23 among the temperature gradients.

Figure 2. Genetic correlations between the environmental temperature gradients for somatic cell score in the Holstein cattle of southern Brazil. 
The x-axis denotes the environmental gradient (°C), and the y-axis represents the genetic correlation. The genetic correlation ranges from 0.89 to 
0.99 among the environmental gradients.
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cally significant G×E was observed for SCS (p>0.05). 
  The breeding values of the 15 main bulls used in the south-
ern Brazil and their interaction with the advance of the 
environmental gradients are presented in Figure 3. It was 
observed an increase of up to 0.258 in the breeding values 
of some animals, as well as a reduction in the breeding val-
ue of up to 0.793, as well as an increase of up to 0.258, with 
the changes in the temperature gradient. Most breeding val-
ues were close to the score of 3.20, highlighting four bulls 
with breeding values around this amount in the lower or 
higher temperature gradient. Bulls A and B had the highest 
overall breeding values for SCS, while the bulls N and M had 
the lowest genetic values for SCS as showed in Figure 3.
  Lower genetic differences were observed among the animals 
in the regions close to 19.5°C, demonstrating an approxi-
mation of the animal's breeding values when temperature 
increases. Changes of specific positions occurred with some 
animals. Such as in the case of the animal E, which was in 
fifth position and went to the eighth position along with 
the bull J, who was in tenth position in the 17°C gradient. 
The greatest variations in the genetic value of the animals 
were found for the animals E, F, G, H, I, J, and K, the other 
bulls had greater stability of their genetic values when the 
environmental temperature increased.

DISCUSSION 

The means of SCS presented by the Holstein breed in south-
ern Brazil were lower than those established by Brazilian [16] 

and international legislation [17] for the categorization of 
type A milk. This indicates that the various producers under 
study were of high quality, regardless of the region. The score 
values of “0” identified in all regions highlight the care ad-
opted by the breeders, indicating that values of less than 12,500 
cells/mL of milk are found regardless of the temperature un-
der study. 
  As can be seen, the producers more to the south of the 
evaluated region (lower temperatures) had the lowest SCS 
rates. This fact may be related to the existence of traditional 
dairy basins in these regions [18] with the presence of coop-
eratives that encourage quality production through bonuses 
and discounts, which is not so common in the rest of the coun-
try. This creates an extra incentive for production with lower 
SCS rates and higher quality products.
  The heritabilities seem to be mostly in the low magni-
tudes, indicating greater environmental interferences in the 
manifestation of the trait. Such heritabilities are consistent 
with recent studies in Brazil [19] and other countries, such 
as South Korea [20], Iran [21], and Germany [22]. Although 
these heritabilities are still low, the parameter can be im-
proved not only for SCS, but also indirectly for the resistance 
to mastitis.
  When looking more closely at Figure 1, one can see that 
the extremities were responsible for the highest heritability 
rates, different from the common results for the trait in ani-
mals of the Holstein breed. This factor may be associated with 
the use of high-order orthogonal regressions for the analysis 
of the trait, since these have greater difficulty in estimating 

Figure 3. Reaction norms for somatic cell score of the 15 most representative bulls used in southern Brazil region. The x-axis denotes the temper-
ature gradient (°C), and the y-axis represents the breeding value. It was observed an increase of up to 0.258 in the breeding values of the bulls, as 
well as a reduction in the breeding value of up to 0.793.
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values near the extremities of the intervals [23,24]. Meyer [23] 
mentioned that the tails of the distribution tend to be elevated 
when compared to the more central information in the dis-
tribution. The properties of the polynomials used as those in 
reaction norms tend to place a large amount of emphasis on 
the extremes, resulting in inflated estimates. Assuming that 
the environmental variation sensitivity properties are not 
constant, we would lose the sensitivity to environmental 
gradient change properties if the values are regressed lin-
early on certain environmental gradients, failing to indicate 
a more accurate representation of the existing variation [25]. 
Despite this mentioned obstacle, the applied model is indi-
cated for being flexible and able of modeling the changes of 
the means and variances in a continuous scale [26], better 
revealing the true behavior in accordance with the change 
of the environmental gradient.
  The correlations, shown in Figure 2, are all above 0.80, 
indicating the absence of a relevant genotype-environment 
interaction according to the criteria established by Robertson 
[27]. This means that the different temperatures evaluated 
had no effect on the manifestation of the SCS in animals of 
the Holstein breed in southern Brazil. According to Kolmo-
din et al [28], it would be hard for dairy cattle factors within 
a single geographical region to exert effects on the mani-
festations of characteristics, including on SCS, as we can 
see here. However, even in the absence of this relevant in-
teraction, it is possible to notice the presence of modifications 
in the genetic behavior of animals according to the increase 
in temperature.
  As can be seen in Figure 3, distinctive behaviors were 
observed according to the increase of the environmental 
gradients. There were bulls who kept their breeding value 
more constant as the temperature increases, characterizing 
these animals as more robust regarding the trait [29], which 
was the case of the animals B, K, M, and N, bulls of greater 
robustness in the population with nearly zero variations 
when moving in the environmental gradients. As a coun-
terpoint, the animals with higher variations in the genetic 
expressions according to the increase of temperature were 
taken as plastic as they showed modifications to their ge-
netic performances with increases in temperature [30]. 
  In these cases, the animals A, G, H, I, J, and O had the 
greatest variations in gene expression for the SCS. These variations 
in gene expression, and even the maintenance of performance 
according to the increase in temperature, are adaptive responses 
of the organism to the breeding environment [31] or even of 
genes that are being expressed in a certain temperature and 
not in others [30], which affects the genetic behavior of ani-
mals over the gradients. The re-ranking occasioned by the 
changes of the environmental gradients occur depending on 
the interaction of the animal's genotype to a particular envi-
ronment. This is the case of the changes in position of the 

bulls E, F, G, H, where the temperature had a positive effect 
on Bull E, decreasing his genetic potential in comparison to 
the 17°C environment. Different from what was shown for 
the animals F, G, and H, where the temperature had a nega-
tive effect on the genetic performance of the characteristic, 
increasing the genetic value of animals for SCS.
  Despite the small reclassification in the sire ranking and the 
high genetic correlation observed, first indicating a non-rele-
vant GEI for SCS, a slight change in the heritability estimates 
thru the gradients were verified. At this moment, the inclusion 
of the temperature effect in the model of genetic evaluation 
of SCS is not required, but a constant monitoring of a pos-
sible impact of GEI in this trait, for the southern Brazilian 
Holstein breed, can be recommended.
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