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Abstract: Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvi-
ronment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase
signaling networks in coordinating immunosuppressive tumor microenvironments. This has led
to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune
responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common
FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they
inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease
when used as a monotherapy. On the other hand, cancer immunotherapies, including immune
checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and
lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment
of other solid cancers. Here, we review the recent literature on oncogenic kinases that regulate tumor
immunogenicity, immune suppression, and anti-tumor immunity. Furthermore, we discuss current
efforts in clinical trials that combine kinase inhibitors and immune checkpoint inhibitors to treat
breast cancer and other solid tumors.

Keywords: kinase signaling; breast cancer; solid tumors; anti-tumor immunity; immunosuppression;
kinase inhibitors; cancer immunotherapy

1. Introduction

The host immune system has multiple cellular machineries to eradicate malignant
lesions. However, tumors develop multiple mechanisms to escape the host anti-tumor
immune response. Immunotherapy, which re-engages immune surveillance pathways,
has become one of the pillars of cancer treatment today. However, the ability of tumors
to perpetuate an immunosuppressive microenvironment, combined with their ability to
avoid being recognized as ‘non-self’, continues to impede the success of immunotherapy
for many solid malignancies. Small-molecule kinase inhibitors represent an opportunity to
overcome these key hurdles.

Over the past decades, studies have established that oncogenic kinases are fundamen-
tal in driving tumorigenesis and shaping the immune milieu to affect cancer progression
and responsiveness to therapy. As of February 2021, at least 53 inhibitors (small-molecule
or antibody-based) targeting more than 24 tyrosine/serine/threonine kinases have been
approved by the FDA to treat various solid cancers. In line with the tumorigenic role of
these kinases, many of these kinase inhibitors elicit anti-tumor immune responses, enhance
tumor immunogenicity by regulating antigen processing and presentation and reduce
immune suppression, which ultimately improves tumor killing. Many critical kinases are
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shared by tumor cells and immune cells, and the genetic or pharmacological inhibition of
these kinases affects the function of both cell types. This has important implications in the
clinical success of said inhibitors and warrants deeper understanding and attention as the
research community explores ways to co-opt host immunity for cancer treatment.

Here, we provide a brief overview of the host immune responses mounted against
malignant lesions, tumor immune evasion mechanisms, and challenges associated with
immunotherapy and kinase inhibitors. We then review the mechanisms by which tumor-
intrinsic oncogenic kinases shape the immune microenvironment, with a specific focus
on the role of receptor and non-receptor kinases and their immediate molecular effectors.
Preclinical studies and clinical trial results demonstrating that genetic and chemical pertur-
bations of kinases can elicit anti-tumor immune responses to eradicate tumors, especially
in combination with immunotherapy, are summarized. We spotlight on breast cancer
as a model of recent advancements. Based on the evidence provided in this review, we
posit that a rational, evidence-based combination of kinase inhibitors and immunotherapy
may overcome some of the hurdles faced by both therapeutic modalities and improve the
treatment of cancer patients.

2. Cancer Immunosuppression and Anti-Tumor Immunity

The true appreciation of the immune response in suppressing tumor formation came
when mice lacking adaptive immunity (RAG2 knock-out) showed an increased tumor
incidence upon carcinogen exposure [1]. Numerous immune cell types collaboratively me-
diate tumor cell killing through multiple mechanisms, including the recognition of tumor-
associated or tumor-specific antigens by the adaptive immune system and non-antigen-
dependent killing by the innate immune system. Cytotoxic T lymphocytes (CD8+ CTL) are
part of the adaptive immune system and induce tumor cell apoptosis through (1) recog-
nition of antigens presented in the context of MHC class I leading to perforin/granzyme
B secretion and (2) recognition of Fas on tumors via FasL, leading to caspase-mediated
cell death. CTLs also release cytokines such as TNFα and IFNγ to promote cell cycle
arrest in tumors [2–6]. While CTLs mount their attacks via T cell receptor (TCR) mediated
recognition of antigen-MHC complexes, natural killer (NK) cells induce similar cytotoxic re-
sponses, but in an antigen-independent manner. Instead, the cytotoxic potential of NK cells
is controlled by the net balance of stimulatory versus inhibitory receptors on the surface of
NK cells themselves, combined with particular classes of ligands expressed by the target
cells [7,8]. In oncology, immunogenic cell death (ICD) represents a type of non-microbial
death that can be initiated, either due to endoplasmic reticulum stress or in response to
cytotoxic treatments, such as anthracyclines or radiotherapy. These various stressors lead
to the release of damage-associated molecular patterns (DAMPs), which prime the innate
immune system to educate potent anti-tumor immune responses. B cells of the adaptive
immune system have also emerged as playing anti-tumorigenic roles through (1) release of
tumor antigen-specific antibodies (once B cells differentiate into plasma cells) that trigger
antibody-dependent cellular cytotoxicity (ADCC) by NK cells or complement-dependent
cytotoxicity (CDC), and (2) B cell receptor-mediated antigen presentation to CD8+ or naïve
CD4+ cells for tumor killing [9–11]. During ADCC, membrane-bound antigens on the sur-
face of tumor cells are recognized by specific antibodies. NK cells expressing Fc receptors
then bind the Fc portion of these antibodies, leading to NK cell activation and subsequent
release of cytotoxic granules that elicit tumor cell lysis [12]. Finally, beyond immune cells
with direct tumoricidal properties, infiltrating dendritic cells into tumors are central for
activating CTL-driven anti-tumor immunity, as professional antigen-presenting cells that
educate both Th and CTL immune responses (reviewed in [13]).

The ability of malignant cells to escape from such anti-tumor immune responses
through promoting immunosuppression has been established as a critical hallmark of
cancer [14]. Malignant cells achieve this by organizing into a complex structure composed
of diverse cell types, including stromal cells, immune cells, and endothelial cells, all of
which are in constant communication [15]. Tumors develop multiple tiers of immunosup-
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pressive mechanisms to escape the host immune response, which has been extensively
reviewed [16,17]. Briefly, this involves (1) secretion of immunosuppressive cytokines that
inhibit anti-tumor adaptive (e.g., CTLs) and innate immune cells (e.g., NK cells) and
polarize immune cells to pro-tumorigenic subtypes (e.g., T regulatory cells; Treg), (2) se-
cretion of chemokines that recruit immunosuppressive stromal and immune cells (e.g.,
myeloid-derived suppressor cells, tumor-associated fibroblasts, and macrophages) that in
turn secrete immunosuppressive cytokines (e.g., IL-10, TGFβ), (3) promotion of anergy and
tolerance in anti-tumor immune cells through expression of surface inhibitory ligands (e.g.,
PD-L1) and persistent self-antigen presentation, (4) suppression of antigen presentation
through, e.g., epigenetic mechanisms [18], to avoid detection by adaptive immunity and
(5) upregulation of signaling pathways that reduce necessary metabolites (e.g., ATP) for
immune cell (e.g., immature DC) activation in the tumor microenvironment [16].

Tumors can be classified as (1) immune cold (lack of immune infiltration) due to a
lack of tumor antigens, deficiency in antigen presentation, absence of T cell priming, and
impaired T cell trafficking, or (2) immune hot (high immune infiltration and increased mu-
tational burden providing an abundance of tumor-specific neoantigens) [19]. Furthermore,
not only the number of tumor-infiltrating lymphocytes (TIL; especially CD8+ T cells) but
their spatial organization contribute to prognostic and predictive stratification in breast
cancer [20–24]. This is also observed in ovarian cancer [25] and early-stage non-small cell
lung cancer [26]. Thus, spatial, quantitative, and qualitative differences in the type of
immune infiltrates in the tumor microenvironment are prognostic of disease outcome.

3. Cancer Immunotherapy and Challenges

In recent years, cancer immunotherapy has revolutionized the treatment of cancer. It
aims to reinstate immune surveillance, turning cold tumors into hot tumors to eradicate
cancer [19]. Numerous cancer immunotherapy modalities have been developed, and
they are extensively reviewed [27]. Many solid tumors establish immune suppression
by upregulating the expression of key immune checkpoint receptors (e.g., PD-1, CTLA4)
on infiltrating T cells as well as immunosuppressive ligands (e.g., PD-L1, PD-L2, B7-H4),
either on tumor cells or other cell types in the tumor microenvironment. [28,29]. Normally,
PD-1 expressed on T cells restricts peripheral tissue damage and inflammation through
limiting TCR-mediated effector T cell function and maintaining self-tolerance [29]. Tumors
co-opt this pathway and promote immunosuppression by expressing PD-L1 downstream
of oncogenic signaling pathways (e.g., STAT3, STAT1, Myc, 9p24.1 amplification, CD44 [30])
or following exposure to IFNγ secreted by T cells [29].

In this regard, the advent of immune checkpoint inhibitors (ICIs) targeting either
CTLA-4, PD-1, or PD-L1 has revolutionized the field of cancer therapy, resulting in sus-
tained clinical remissions in patients otherwise refractory to standard of cancer therapies in
many cancer types, including melanomas and lung cancers. Indeed, there are currently one
CTLA-4 and six PD-1/PD-L1 inhibitors approved across ten tumor types and numerous
stages of cancer [31]. Unfortunately, while checkpoint inhibitors have resulted in strong
and durable responses in some cancers, a large proportion of tumor types remain refractory
to this treatment modality [32]. While a high mutational burden and increased density
of infiltrating TILs are often predictive or response to ICIs, key questions remain. First,
what other cell types dictate immunotherapeutic responsiveness (e.g., composition and the
landscape of immune cells in the tumor microenvironment, unique tumor-specific signaling
mechanisms) or lack thereof? Second, what are the predictive biomarkers for therapeutic
responsiveness beyond the drug target itself? Third, what are the resistance mechanisms,
conferred either by tumor cells or those within the local microenvironment? Based on the
molecular understanding of how tumor-intrinsic signaling alters the immune response,
a rational combination of chemotherapy, targeted therapy, and cancer immunotherapy
methods need to be explored. Indeed, chemotherapy has already been shown to improve
the sensitivity of immune checkpoint inhibitors (as reviewed in [33]).
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In breast cancer, immune checkpoint inhibitors as single-agent or in combination
with other therapies have been explored [34,35]. Stanton et al. examined 13,914 patient
samples and determined that 5–26% of breast cancers have high infiltration of lymphocytes
while 16% of cancers showed no infiltration. A median of 20% triple-negative (TNBC), 16%
HER2+, and 6% ER+/PR+/HER2- (HR+) breast cancers show predominant lymphocyte
infiltration (defined as >50% lymphocytic infiltrate) [36]. CD8+ CTLs indicative of anti-
tumor immune responses, as well as FOXP3+ Treg cells indicative of a tumorigenic immune
response, were most prominent in TNBC (60% infiltrated with CTLs and 70% infiltrated
with Treg) and HER2+ (61% and 67%) tumors compared to HR+ breast cancers (43% and
38%) [36]. These data indicate that subsets of breast cancers, especially within the TNBC
and HER2+ subtypes, are relatively more immunogenic and contain high TILs [37,38].
Importantly, high infiltration of TILs has been associated with improved prognosis in early-
stage TNBCs and HER2+ breast cancers [21,39–41], while the opposite is true in luminal
breast cancer [42]. Based on these findings, immunotherapy approaches have been explored
mostly in TNBC and HER2+ subtypes. As of January 2021, two immune checkpoint
inhibitors have been approved by the FDA for breast cancer: (1) atezolizumab (PD-L1
inhibitor) with protein-bound paclitaxel for locally advanced, non-removable TNBC or
metastatic TNBCs that are PD-L1 positive (IMpassion130 trial) [43], and (2) pembrolizumab
(PD-1 inhibitor) for locally recurrent unresectable or metastatic TNBCs that are PD-L1
positive (KEYNOTE-355) [44]. Several important insights have been made from these
and other preclinical studies. First, tumor mutational burden predicts prolonged survival
associated with high (and not low) immune infiltration in breast cancer [45], especially
in TNBC and HER2+ subtypes [34]. This is consistent with observations made in lung
cancer and melanoma [46]. Second, only a subset of metastatic breast cancer patients,
especially those expressing high tumor PD-L1, benefit from immune checkpoint blockade
therapy [47]. Third, multiple layers of immunosuppressive mechanisms exist in the tumor
microenvironment to impede treatment responsiveness [48]. Indeed, the single-agent
activity of avelumab (PD-L1 inhibitor) [49], atezolizumab [50], and pembrolizumab [51]
have shown limited activity in breast cancer patients, underscoring the need for rationally
designed combination approaches [35].

4. Tumor-Intrinsic Kinase Signaling That Coordinate Cancer Immunosuppression

Since the proposal that cancer is a wound that never heals [52], studies in the 1990s
demonstrated that tumors co-opt inflammation for survival [53–56]. Malignant progression
not only relies on intrinsic signaling (loss of tumor suppressors and gain of oncogenes due
to genetic aberrations) but also on extrinsic cellular players from the local microenviron-
ment [57]. Today, it is fully established that tumor cell-intrinsic mechanisms continuously
shape the tumor immune landscape to favor cancer progression and therapeutic resis-
tance [57,58]. Oncogenic receptor and non-receptor kinases are crucial contributors of
tumor-intrinsic signaling that coordinate cancer immunosuppression through diverse
mechanisms (Figure 1).
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Figure 1. Pharmacological inhibition of kinase signaling relieves immunosuppression in solid ma-
lignancies. Deregulated activation of numerous kinases belonging to receptor tyrosine kinase, non-
receptor tyrosine kinases, and serine/threonine kinase families induce gene expression changes 
that potentiate the growth and metastatic spread of solid tumors. In addition to influencing tumor 
cell-intrinsic processes that are essential for malignant progression, kinase signaling networks 
allow solid tumors to evade anti-tumor immune responses through multiple mechanisms. These 
include: decreasing antigen processing and presentation, increased secretion of immunosuppres-
sive molecules, increased expression of immune checkpoint ligands, and stimulation of chronic 
inflammation. As such, pharmacological inhibitors of kinase signaling networks can relieve im-
mune suppression and improve the sensitivity of solid malignancies to immune checkpoint inhibi-
tors. Permission to use adapted figure elements originally published by Elsevier Press (Hallmarks 
of Cancer: The Next Generation) was obtained: License #5017191244575. 

5. Non-Receptor Kinases in Immunosuppression 
One of the first demonstrations of an oncogenic kinase directly impacting the im-

mune landscape came in 2004, whereby the H-RasG12V oncogene was shown to induce 
CXCL8 transcription in various cancer cell lines to promote macrophage infiltration and 
vascularization in vivo [59]. Numerous other studies have further linked deregulated ac-
tivation of serine/threonine kinases, including the Ras/Raf/Mek/Erk and PI3K/AKT path-
ways as well as cyclin-dependent kinases, to the establishment of chronic inflammation 
in solid tumors. For example, BRAFV600E, a constitutively active form of the BRAF ser-
ine/threonine kinase, drives melanoma and has been shown to promote IL-6, IL-10, and 
VEGF secretion in a STAT3 dependent manner [60]. This, in turn, could suppress LPS 
induced inflammation by dendritic cells. Indeed, combination therapies that include MEK 
inhibitors with immunostimulatory agonists induce profound immunogenic responses in 
preclinical models of K-Ras positive pancreatic cancer by limiting the activation of immu-
nosuppressive cell subsets, including M2 macrophages, myeloid-derived suppressor cells, 
and regulatory T cells [61]. In melanoma, the loss of PTEN (tumor suppressor that nega-
tively regulates AKT/PI3K activity) leads to decreased numbers of TILs, reduced respon-
siveness to PD-1 checkpoint inhibition, and increased secretion of immunosuppressive 
cytokines [62]. In breast cancer patients, inhibition of cyclin-dependent kinases 4 and 6 
(CDK4/6), which are fundamental drivers of cell cycle progression downstream of onco-
genic signaling pathways, induces significant anti-tumor immune responses [63]. Non-
receptor tyrosine kinases also contribute to cancer immune suppression. Indeed, 

Figure 1. Pharmacological inhibition of kinase signaling relieves immunosuppression in solid malignancies. Deregulated
activation of numerous kinases belonging to receptor tyrosine kinase, non-receptor tyrosine kinases, and serine/threonine
kinase families induce gene expression changes that potentiate the growth and metastatic spread of solid tumors. In
addition to influencing tumor cell-intrinsic processes that are essential for malignant progression, kinase signaling networks
allow solid tumors to evade anti-tumor immune responses through multiple mechanisms. These include: decreasing
antigen processing and presentation, increased secretion of immunosuppressive molecules, increased expression of immune
checkpoint ligands, and stimulation of chronic inflammation. As such, pharmacological inhibitors of kinase signaling
networks can relieve immune suppression and improve the sensitivity of solid malignancies to immune checkpoint
inhibitors. Permission to use adapted figure elements originally published by Elsevier Press (Hallmarks of Cancer: The
Next Generation) was obtained: License #5017191244575.

5. Non-Receptor Kinases in Immunosuppression

One of the first demonstrations of an oncogenic kinase directly impacting the immune
landscape came in 2004, whereby the H-RasG12V oncogene was shown to induce CXCL8
transcription in various cancer cell lines to promote macrophage infiltration and vascular-
ization in vivo [59]. Numerous other studies have further linked deregulated activation of
serine/threonine kinases, including the Ras/Raf/Mek/Erk and PI3K/AKT pathways as
well as cyclin-dependent kinases, to the establishment of chronic inflammation in solid tu-
mors. For example, BRAFV600E, a constitutively active form of the BRAF serine/threonine
kinase, drives melanoma and has been shown to promote IL-6, IL-10, and VEGF secretion in
a STAT3 dependent manner [60]. This, in turn, could suppress LPS induced inflammation
by dendritic cells. Indeed, combination therapies that include MEK inhibitors with im-
munostimulatory agonists induce profound immunogenic responses in preclinical models
of K-Ras positive pancreatic cancer by limiting the activation of immunosuppressive cell
subsets, including M2 macrophages, myeloid-derived suppressor cells, and regulatory
T cells [61]. In melanoma, the loss of PTEN (tumor suppressor that negatively regulates
AKT/PI3K activity) leads to decreased numbers of TILs, reduced responsiveness to PD-1
checkpoint inhibition, and increased secretion of immunosuppressive cytokines [62]. In
breast cancer patients, inhibition of cyclin-dependent kinases 4 and 6 (CDK4/6), which are
fundamental drivers of cell cycle progression downstream of oncogenic signaling pathways,
induces significant anti-tumor immune responses [63]. Non-receptor tyrosine kinases also
contribute to cancer immune suppression. Indeed, nasopharyngeal carcinoma cells secrete
ISG15, an IFN-responsive gene, which activates Src family kinases in macrophages to
promote their M2 polarization and immunosuppressive properties [64]. In squamous cell
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carcinoma, nuclear focal adhesion kinase (FAK) regulates transcription of CCL5 to promote
T regulatory cell recruitment and exhaustion of CD8+ T cells to promote tumor growth,
and treatment with FAK inhibitors reactivates anti-tumor immune responses [65]. Together,
these studies suggest that targeting non-receptor kinase signaling networks may represent
a promising therapeutic strategy to relieve tumor immune suppression, particularly as part
of a rationally designed combination therapy.

6. Receptor Tyrosine Kinases in Immunosuppression

Overexpression or activating mutations in receptor tyrosine kinases leading to their
aberrant activation are critical drivers of various solid tumors [66]. Receptor tyrosine
kinases (RTKs) are single-pass transmembrane proteins expressed on the surface of various
cell types that regulate proliferation, differentiation, survival, metabolism, migration,
and invasion in cancer [66]. There are 58 known RTKs that fall into 20 subfamilies [66].
Upon binding to their cognate ligands, RTKs undergo conformational changes, leading
to receptor dimerization and activation of their tyrosine kinase domains. These activated
kinases then trans-phosphorylate key tyrosine residues in their cytoplasmic tails, leading
to the recruitment of adaptor proteins that initiate downstream signaling pathways such as
the mitogen-activated protein kinase (MAPK) and phosphoinositide 3- kinase (PI3K)/AKT
pathways [67].

Studies have reported essential roles for several RTKs, including CSF1R, VEGFR, RON,
and the TAM family, in promoting cancer immune suppression (reviewed in [68–71]). More
recent studies have further elucidated the prominent examples of EGFR, HER2, and AXL
signaling contributing directly to tumor-driven immunosuppression. For example, the
high activation status of EGFR and HER2 is associated with increased PD-L1 expression in
gastric cancer cells and patient tumor tissues [72]. Indeed, EGFR signaling in lung cancer
activates the PD-1 immune checkpoint to promote immune evasion [73]. Constitutively
active EGFR variants can induce immune suppression in lung cancers through their ability
to shed mutant EGFR-containing exosomes into infiltrating dendritic cells, abrogating
their ability to present tumor antigens [74]. Finally, increased Axl signaling stimulates
NF-κB signaling to potentiate chronic inflammation and subsequent immune evasion in
pancreatic cancer cells [75]. Together, these studies highlight an emerging role for RTKs in
the establishment and maintenance of immune suppression and highlight the therapeutic
potential for combining tyrosine kinase inhibitors with immunomodulatory agents (as
discussed below).

7. Adaptor Proteins in Immunosuppression

Adaptor proteins are critical integrators of downstream tyrosine kinases to initiate
oncogenic signaling cascades. They do so by nucleating signaling complexes through their
ability to engage in both phospho-tyrosine dependent and—independent interactions. For
example, the Shc1 adaptor protein is recruited to activated oncogenic RTKs and tyrosine
kinases (TKs), such as EGFR, ERBB2, ERBB3, ERBB4, INSR, IGF1R, VEGFR3, FGFR1,
TrkA, RET, MET, FGFR2, VEGFR2, c-kit, JAK3, EphA2, Src family kinases, Alk, PDGFRa,
Ron, TrkB, and Axl through phospho-tyrosine binding domains such as PTB or SH2
domains [76–83]. This subsequently allows Shc1 to become phosphorylated on key tyrosine
residues (Y239/240 and Y317, equivalent to Y313 in mice), which nucleates downstream
signaling complexes to activate PI3K/AKT and Ras/MAPK oncogenic pathways [84].
Indeed, Shc1 signaling downstream of ErbB2 and polyomavirus middle T antigen (PyMT)
oncogenes leads to suppression of CTL infiltration and IFNγ-driven immunity during the
early stages of mammary tumorigenesis [85]. Importantly, mammary tumor progression
of Shc1 deficient hyperplasias is significantly accelerated in athymic mice compared to
immunocompetent animals, suggesting that Shc1 signaling suppresses T cell immune
responses, ultimately facilitating tumor progression [85]. This is partially mediated by
tyrosine 239/240 and tyrosine 313 residues of Shc1, which activate STAT3-dependent
immunosuppression and inhibit STAT1-induced immune surveillance in breast cancer
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cells, respectively [86]. Loss of phospho-Y313-Shc1 signaling is associated with a STAT1
dependent increase of MHC class I surface expression. It is plausible that numerous tumor
intrinsic TKs may be implicated in regulating immunosuppression through Shc1. In line
with this, targeting the pathways closely upstream or downstream of Shc1 (e.g., ErbB2,
EGFR, MEK, ERK, PTEN, PI3K) by drugs or molecular manipulation has been shown to
enhance anti-tumor immune responses in various studies, as discussed later. Moreover,
Crk, another adaptor protein primarily known for its role in cell adhesion and growth
factor signaling, has been demonstrated to promote immunosuppression in the 4T1 murine
model of breast cancer [87]. Deletion of Crk enhances anti-tumor immune responses
and secretion of cytokines that favor immune surveillance, leading to reduced tumor
growth and metastasis. Loss of Crk also enhanced tumor clearance upon PD-1 checkpoint
inhibition [87]. Taken together, these studies demonstrate the immunosuppressive role of
oncogenic signaling pathways and how they may be targeted to elicit anti-tumor immunity.

8. Kinase Inhibitors Potentiate the Tumoricidal Responses of Immunotherapy

Oncogenic kinases drive immunosuppression, and their inhibition elicits anti-tumor
immune responses, yet with inevitable resistance and recurrence. Despite the success of
immunotherapy in oncology, only select patients experience durable responses due, in part,
to persistent immunosuppression in the tumor microenvironment. Thus, a concomitant
reduction of immunosuppression by kinase inhibitors while unlocking the therapeutic
potential of tumoricidal immune cells has gained attention as a strategy to extend the
clinical benefit of the current standard of therapies. To this end, roughly 53 small molecule
kinase inhibitors and 12 antibody-based kinase inhibitors have been approved by the FDA
for cancer treatment, 11 of which are for being studied in breast cancer (Supplementary
Table S1). Kinase inhibitors have provided significant improvement in clinical outcomes
in various cancers. However, they often lead to acquired resistance and recurrence after
long-term exposure due to functional redundancy of the kinome and emergence of mutant
variants that are resistant to the kinase inhibitor. Clinical trials have been initiated for
various cancers to evaluate the efficacy of kinase inhibitors in combination with cancer
immunotherapy (summarized in Supplementary Table S1).

9. Tyrosine Kinase Inhibitors

Cancer cells rely on a large family of cytoplasmic and receptor tyrosine kinases to
initiate tumorigenic signaling pathways that ultimately activate downstream signaling
molecules, including serine/threonine kinases, which are effectors of their immunosup-
pressive properties. In particular, pharmacological inhibitors targeting the ErbB2 RTK
family (EGFR, ErbB2, ErbB3, and ErbB4) are standard of care for subsets of breast cancer
and NSCLC patients and have been shown to elicit potent anti-tumor immune responses in
the tumor microenvironment, thereby increasing the clinical impact of immune checkpoint
inhibitors (Supplementary Table S1 and as reviewed in [88]). Several other tyrosine kinase
inhibitors (TKI) also induce CTL-driven anti-tumor immune responses, including sunitinib,
a broad spectrum RTK inhibitor that targets VEGFR, PDGFRα, Ret, and Kit, which has
been shown to reverse immune suppression by inhibiting STAT3 signaling in renal cell
carcinoma [89]. BMS-777607/ASLAN002, a Ron-selective kinase inhibitor, reduces breast
cancer lung metastasis of breast cancer by promoting anti-tumor immune responses [90].

Recent studies have further elucidated the mechanisms of action by which small-
molecule tyrosine kinase inhibitors targeting the ErbB2 family evokes tumoricidal immune
responses. The treatment of EGFR and HER2 overexpressing gastric cancer cells with
Afatinib (a pan-ErbB2 family TKI) and lapatinib (EGFR, ErbB2 inhibitor) reduced PD-L1
expression levels [72]. Lapatinib treatment further decreased the secretion of immuno-
suppressive cytokines (e.g., CCL2, VEGF) from HER2-amplified tumor cells [72]. An
ErbB2-driven breast cancer mouse model (MMTV/Neu) also responded to lapatinib treat-
ment with increased IFNγ driven anti-tumor adaptive immune responses in a STAT1
dependent manner [91].
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Other solid tumors undergoing clinical trials to test the efficacy of kinase inhibitors in
combination with immunotherapy include non-small cell lung cancer [92], lung squamous
cell carcinoma [93], and advanced renal cell carcinoma [94,95], and breast cancer (Supple-
mentary Table S2). In hepatocellular carcinoma, immunotherapy has shown efficacy in the
second-line setting, while tyrosine kinase inhibitors have shown benefit both in the first-
(Sorafenib) and second-line (regorafenib, cabozantinib, and ramucirumab) settings [96–98].
Based on this, preliminary trials are ongoing in hepatocellular carcinoma patients to de-
termine how the combination of tyrosine kinase inhibitors and immunotherapy prolongs
survival compared to each as a single agent [99]. Additionally, promising safety profiles
and results were seen in NSCLC (erlotinib and nivolumab) [100], while high toxicities have
halted some trials [101]. In May 2019, a breakthrough randomized clinical trial in renal cell
carcinoma (JAVELIN Renal 101) showed avelumab in combination with axitinib resulted
in a significant survival benefit compared to standard of care sunitinib, leading to the FDA
approval of this regimen [102].

Monoclonal antibody-based therapies targeting ErbB2 family signaling are also em-
ployed in cancer patients and rely, in part, on an intact immune system to achieve maximal
clinical benefit. EGFR-neutralizing antibodies combined with chemotherapy depend
on immunogenic cell death (ICD) to clear colorectal cancers [103]. Trastuzumab, a re-
combinant humanized monoclonal antibody directed against the human HER2 receptor
tyrosine kinase, mediates tumor-killing partially by inducing antibody-dependent cell-
mediated cytotoxicity (ADCC) against HER2 overexpressing tumor cells. Accordingly,
the therapeutic effect of trastuzumab is diminished in mice that lack NK cells or those
that have macrophages disabled to bind the Fc region of trastuzumab [104]. Similarly, NK
cell-derived IFNγ induced PD-L1 expression in tumors and enhanced cetuximab (EGFR
inhibitor)-mediated ADCC [105].

Finally, evidence suggests that cross-talk between cancer cells and immune cells
influences the therapeutic responsiveness of these targeted therapies. One high-throughput
immuno-oncology screen identified the EGFR inhibitor erlotinib as a potent enhancer of
antigen-specific CTL tumor cell killing, synergizing with anti-PD-1 checkpoint inhibition to
suppress colon cancer growth [106]. Preclinical studies in lung cancer show that the EGFR
pathway enhances immunosuppression through increased engagement of PD-1/PD-L1 and
CTLA4 in an ERK and NFkB dependent manner [107]. In line with this, erlotinib treatment
in transgenic mice that develop EGFRL858R-driven lung cancers induced the infiltration
of T cells, B cells, NK cells, and CD11c+MHC-II+ cells as well as immunosuppressive
CD11b+Gr1+ MDSCs [108]. Unlike the initial anti-tumorigenic immune infiltrates that are
induced by EGFR TKIs, these therapy-induced increases in MDSC populations persist and
are accompanied by increased levels of circulating immunosuppressive cytokines (IL-10,
CCL2) in serum [109]. Thus, identifying strategies to prevent and/or overcome such TKI-
induced immunosuppressive adaptive responses are required to achieve durable clinical
benefit with these classes of drugs, particularly in combination with immune checkpoint
inhibitors.

10. Serine/Threonine Kinase Inhibitors

Numerous signal transduction pathways, downstream of tyrosine kinases, bifurcate
on key serine/threonine kinases, which phosphorylate effector molecules to potentiate the
emergence of aggressive cancers and the establishment of an immunosuppressive tumor
microenvironment.

10.1. CDK4/6 Inhibitors

This family of inhibitors, including abemaciclib, palbociclib, and ribociclib, targets
CDK4 and CDK6, two serine/threonine kinases that are required for cell cycle progression.
There are currently over 200 clinical trials ongoing with CDK4/6 inhibitors across multi-
ple tumor types, including breast, lung, ovarian, colorectal, and prostate cancers. These
inhibitors have shown particular promise in treating metastatic breast cancers, particu-
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larly in ER-positive tumors in combination with hormonal therapies. Indeed, abemaciclib
has been approved by the FDA for the treatment of advanced HR+HER2- breast cancer,
based on the MONARCH 3 trial [110]. Abemaciclib, in combination with anastrozole (an
aromatase inhibitor), results in increased adaptive immune response signatures that are
phenotypic of increased T cell activation and antigen presentation even in early-stage
HR+HER2- breast cancer, providing optimism for ongoing clinical trials in HR2+HER2-
disease (Supplementary Table S2) [111]. Preclinical studies further show that CDK4/6
inhibitors delay colorectal cancer growth in syngeneic mice, in part, by stimulating tumori-
cidal immune responses. This includes increased T cell infiltration, T cell effector function,
antigen processing and presentation, macrophage and dendritic cell activation, combined
with a potent inflammatory response [112,113]. Indeed, abemaciclib further potentiated
the therapeutic benefit of PD-L1 inhibitors in colorectal tumors [112]. Unexpectedly, how-
ever, CDK4/6 inhibition increased PD-L1 protein stability in tumor cells by preventing
proteasome-mediated PD-L1 degradation [114]. These studies highlight the mechanistic
basis for combining CDK4/6 inhibitors and PD-1/PD-L1 inhibitors as this combinatorial
approach stimulates an immunogenic tumor microenvironment and primes cancers for
PD1/PD-L1 immune checkpoint blockade.

10.2. RAF/MEK Inhibitors

There has been significant interest in exploring RAF/MEK inhibitors as enhancers
of anti-tumor immune responses based on early preclinical studies showing that MEK
inhibitors potentiate CD8+ T cell responses by preventing an exhausted phenotype in
cancer models, leading to durable responses in combination with PD-L1 inhibitors [115].
Vemurafenib and dabrafenib are two selective V600 mutant BRAF inhibitors that have
been deployed for the treatment of V600E+ tumors, including melanoma, colorectal cancer,
and non-small cell lung cancers. Cobimetinib and trametinib are MEK1/2 inhibitors that
function downstream of BRAF and are indicated for treating both BRAF wild-type and
mutant tumors. Numerous clinical trials have reported on the efficacy of this family of
inhibitors in overcoming immune suppression. Recent clinical trials have evaluated the
safety and efficacy of triple therapies that combine a BRAF and MEK inhibitor together
with an immune checkpoint inhibitor. For example, a recent phase Ib study tested vemu-
rafenib and cobimetinib, combined with a PD-L1 inhibitor (atezolizumab), in patients with
BRAF V600E metastatic melanoma (NCT1656642). Durable anti-tumor responses were
observed in 40% of patients even 30 months following combination treatment, which was
associated with increased recruitment of activated TILs [116]. This is further supported by
a recent phase 3 COMBI-I clinical trial (NCT02967692) that examined the efficacy of a novel
PD-1 inhibitor (spartalizumab) in combination with dabrafenib and trametinib in patients
with unresectable and/or metastatic BRAF V600E mutant melanomas. A 78% objective
response rate was observed, whereby 44% of patients showed a complete pathological
response. Although 72% of patients experienced an immune-related adverse event, this
study suggested that combined inhibition of BRAF and MEK signaling together could
increase the efficacy of immune checkpoint inhibitors [117]. Preclinical studies in mouse
models of BRAF V600E mutant melanoma have begun to elucidate the mechanistic ba-
sis for improved immunological responses to combined treatment with BRAF and MEK
inhibitors. Combined dabrafenib and trametinib treatment increased the infiltration and
cytotoxicity of TILs, which was associated with decreased recruitment of tumor-associated
macrophages, T regulatory cells and increased antigen processing and presentation of
melanosomal antigens [118]. Trametinib has been associated with increased HLA expres-
sion, increased CD8+ T cell infiltration, and improved tumor control in combination with
checkpoint inhibitors [119–122]. In addition, dual BRAF/MEK inhibition further decreased
the production of immunosuppressive adenosine in BRAF mutant melanoma cells by
reducing the expression of components within the CD73 adenosinergic pathway [123].



Int. J. Mol. Sci. 2021, 22, 2608 10 of 23

10.3. PI3K/mTOR Inhibitors

The PI3K/AKT/mTOR signaling pathway is commonly activated in solid tumors and
is critical for tumor progression, metastatic spread, and therapeutic resistance [124,125].
PI3K proteins are phosphatidylinositol 3′ lipid kinases and are composed of heterodimers
with regulatory (p85) and catalytic subunits (p110). Four catalytic isoforms (p110α, p110β,
p110γ, p110δ) are activated downstream of tyrosine kinases, and G-protein coupled re-
ceptors, leading to the activation of multiple serine/threonine kinases, including several
AKT family members (AKT1, AKT2, AKT3) and mechanistic target of rapamycin (mTOR),
which functions within two distinct protein complexes (mTORC1 and mTORC2). Together,
these serine/threonine kinases phosphorylate hundreds of target proteins with oncogenic
functions. Indeed, PI3K/AKT/mTOR functions as a nutrient sensor to induce cancer cell
proliferation and survival under nutrient replete conditions [126]. It does so, in part, by
increasing the rate of protein synthesis by promoting the assembly of the eIF4F complex
(eIF4E/4A/4G), which potentiates cap-dependent translation initiation. Indeed, mRNA
translation of genes with oncogenic properties is selectively controlled by eIF4E availability,
the rate-limiting step for eIF4F complex assembly. Moreover, phosphorylation of eIF4E by
MNK1/2, another class of serine/threonine kinases, further potentiates the rate of mRNA
translation of eIF4E-sensitive genes [127].

Dysregulation of the PI3K/AKT/mTOR signaling pathway in solid tumors has been
implicated in the establishment of immunosuppression by numerous studies by stimulat-
ing the production of immunosuppressive cytokines, recruitment of immunosuppressive
cell types, and induction of immune checkpoint ligands on tumor cells (as reviewed
in [128,129]). Recent literature suggests that PTEN-deficient tumors show increased ex-
pression of immunosuppressive cytokines and genetic silencing of PTEN expression in
melanoma cells attenuated anti-tumorigenic T cell responses in vivo, leading to resistance
to PD-1 immune checkpoint blockade [62]. Intriguingly, another study found that PTEN
was essential to induce IFN-driven innate immunity and potentiate anti-viral responses
independent of its role in negatively regulating PI3K/AKT signaling. Instead, PTEN pro-
tein phosphatase activity was shown to control IRF3 nuclear import, a key transcription
factor that regulates type I IFN responses [130]. This study highlights potential novel and
unappreciated roles for PTEN in promoting immune surveillance in solid tumors. Having
said this, other preclinical studies clearly suggest the mTOR/MNK/eIF4E activation in
solid tumors promotes an immunosuppressive microenvironment. For example, mTOR
signaling in breast cancer cells increases G-CSF expression to stimulate the recruitment
of immunosuppressive MDSCs [131]. Deregulated PI3K signaling in tumor cells further
establishes an immunosuppressive niche by inducing activation of pro-inflammatory
mediators, including nitric oxide synthase and lipoxygenase, in the tumor microenviron-
ment [132]. Furthermore, drugs targeting the mRNA translation machinery, including
eFT508 (MNK1/2 inhibitor) and silvestrol (eIF4A inhibitor), reduce PD-L1 expression by
tumor cells in models of liver cancer and melanoma, sensitizing tumors to T cell-dependent
immune responses [133,134]. Finally, early preclinical studies suggested that combining
a pan-PI3K inhibitor with an immune adjuvant induces production of IFNγ and IL-17-
producing inflammatory T cells, leading to profound anti-tumorigenic immune responses
in mouse models of lung cancer and melanoma, paving the way for future studies looking
at combination therapy with immunotherapies [135].

In light of these observations, significant efforts by the pharmaceutical sector have
yielded numerous inhibitors that selectively target PI3K/AKT/mTOR signaling [136,137].
These include pan-PI3K and/or dual PI3K/mTOR inhibitors (buparlisib, bimiralisib, co-
panlisib, dactolisib, idelalisib, apitolisib, gedatolisib, tenalisib), isoform-specific PI3K in-
hibitors (taselisib, alpelisib, parsaclisib, serabelisib, umbralisib), AKT inhibitors (AZD5363,
MK2206), mTORC1-selective inhibitors (rapalogs, including temsirolimus, everolimus),
dual mTORC1/mTORC2 inhibitors (asTORi, including INK128, AZD8055, LXI-15029)
and MNK inhibitors (tomisvosertib). Several recent phase I clinical trials with these in-
hibitors demonstrate their therapeutic potential in reversing immune suppression. For
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example, a phase I study testing taselisib, a p110α-specific inhibitor, in women with triple-
negative breast cancer showed increased expression of genes associated with activated
T cell and NK cell responses, co-incident with anti-tumor responses [138]. Moreover,
SF2523, a pan-PI3K and dual BRD4 inhibitor, inhibited the growth of lung, melanoma, and
colorectal cancers in syngeneic models, which was associated with reduced infiltration
of MDSCs and restoration of CD8+ T cell function [139]. Indeed, in murine models of
metastatic breast cancer, buparlisib induced an inflammatory response and synergized
with PD-1 neutralizing antibodies [140]. Temsirolimus, an mTOR inhibitor, could enhance
anti-tumor immune responses in melanoma and renal cell cancer mouse models when
used with cancer vaccines [141]. In contrast, everolimus, a mTORC1-specific inhibitor,
has been shown to suppresses CTL and NK cell function and upregulate the presence
of regulatory T cells [142,143], which is in line with its use as an immunosuppressant in
organ transplantation [144,145]. These negative effects could be alleviated by combin-
ing cyclophosphamide with everolimus, leading to the depletion of Tregs and MDSCs,
co-incident with an increased level of CD8+ effector T cells in the blood of patients with
metastatic renal cell carcinoma [146]. This highlights the need for careful consideration into
drug combinations. Together, these studies establish that pharmacological targeting of the
PI3K/AKT/mTOR signaling pathway may synergize with immune checkpoint inhibitors
in eliciting tumoricidal immune responses in solid tumors.

11. Combination Strategies Targeting Kinase Inhibitors Improve the Efficacy of
Immune Checkpoint Inhibitors in Breast Cancer

Durable clinical responses to immune checkpoint inhibitors have only been observed
in cancer types, including melanoma and NSCLCs, which exhibit a high degree of genomic
instability and are immunologically “hot” tumors. In contrast, most breast cancers are
not infiltrated by abundant TILs and have low levels of microsatellite instability, result-
ing in the paucity of available tumor antigens. In this regard, clinical trials examining
whether rationally designed combination therapies can increase immunological responses
are ongoing. Many breast cancer clinical trials using immunotherapy combined with
chemotherapy or other targeted agents have mostly been in TNBC and HER2+ tumors as
these subtypes display the highest immunogenicity (PD-L1+ TIL, PD-L1+ tumor, mutation,
neoantigen load, and MHC expression) [34]. Other kinase inhibitors that have shown
promise include Raf/MEK inhibitors, PI3K/mTOR inhibitors, CDK4/6 inhibitors, and
HER2 inhibitors [35]. Current clinical trials combining kinase inhibitors with checkpoint in-
hibitors in breast cancer are summarized (Supplementary Table S2). Biomarkers associated
with immunomodulation are being assessed with a renewed focus for dual treatment of
lapatinib and trastuzumab (NCT02213042) or trastuzumab and pertuzumab (NCT03144947)
in the neoadjuvant setting in advanced HER2+ breast cancer patients, which may further
guide future combination strategies.

Beyond checkpoint inhibitors, cancer vaccines have also been tested in breast can-
cer clinical trials, albeit with limited success. Metastatic, trastuzumab-refractory HER2+
breast cancer patients were treated with lapatinib and a HER2-based cancer vaccine (a
recombinant protein with extracellular domain and part of the intracellular domain of
HER2 combined with an adjuvant) concurrently based on success in a preclinical model.
However, no objective clinical responses were seen [147]. Previously, a single-arm, non-
randomized feasibility study in HER2+ metastatic breast cancer patients (n = 20) was done
using a HER2+ whole-cell breast cancer vaccine and weekly trastuzumab. This showed a
6-month clinical benefit of 55%, which was supported by mouse model studies with control
groups [148]. While the results were encouraging, further studies with larger cohorts and
control arms are necessary to determine the true benefit of cancer vaccines to treat HER2+
breast cancers.

12. Kinase Inhibitors and Tumor-Intrinsic Antigen Processing and Presentation

Intriguingly, multiple studies have linked the efficacy of kinase inhibitors to high
MHC class I antigen presentation by tumor cells. Cabozantinib (targets RET and MET)
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has been shown to increase MHC class I (H-2Db) and Fas expression in colon cancer cell
lines [149]. In NSCLC, mutation or overexpression of EGFR promotes immunosuppression,
and the inhibition of EGFR using gefitinib or erlotinib can restore MHC class I expres-
sion, reduce PD-L1 expression or upregulate the expression of NKG2D ligands for NK
cell-mediated tumor killing [107]. Furthermore, CDK4/6 inhibitor abemaciclib induces
upregulation of antigen presentation in the context of MHC class I, leading to breast tumor
regression [63,112]. A similar increase in tumor cell surface MHC-I expression upon abe-
maciclib treatment was observed in a mouse colorectal tumor model [112] and RB positive
Ewing sarcoma preclinical model [113]. BRAF inhibitor vemurafenib has been shown to
upregulate MHC in BRAFV600E homozygous melanoma [150]. High-throughput shRNA
screens revealed that MEK, EGFR, and RET negatively regulate antigen processing and
presentation machinery and MHC class I expression in an ERK-dependent manner [151]. In
line with this, pharmacological inhibition of these kinases led to improved T cell-mediated
killing through antigen-MHC recognition [151]. FDA-approved tyrosine kinases that alter
antigen presentation pathways are noted in Supplementary Table S1. It was recently shown
that palbociclib (CDK4/6 inhibitor), in addition to increasing the MHC class I expression,
can alter the peptide-MHC repertoire in melanoma cell lines to reflect the intracellular
response to CDK4/6 inhibition [152]. How the quality and quantity of tumor-associated
antigen repertoires are impacted by kinase inhibitors will have important implications for
therapeutic cancer vaccine development and other cell-based immunotherapy modalities
that target tumor-specific antigens [153]. Together, these studies provide the basis for a
strategic combination of kinase inhibitors (small molecule inhibitor and antibody-based)
with synthetic immune-based therapy (engineered TCR-based or antibody-based) for the
treatment of cancer.

13. Kinase Inhibitors Impact JAK/STAT-Mediated Tumor Immunity

The JAK/STAT signaling pathway is critical for the initiation and subsequent resolu-
tion of inflammatory responses. Janus kinases (JAK) are a family of tyrosine kinases (JAK1,
JAK2, JAK3, and TYK2) that are activated downstream of multiple cytokine receptors,
both in tumor cells and immune cells. They are activated by growth factors (e.g., EGF) as
well as inflammatory (e.g., IFNα, IFNβ, IFNγ, IL-6, IL-23) and immunosuppressive (e.g.,
IL-10, IL-27, IL-35) cytokines. Once activated, JAKs phosphorylate specific members of
the Signal Transducer and Activator of Transcription (STAT1-6) transcription factor family.
Tyrosine phosphorylation allows the formation of STAT family homo- and hetero-dimers,
which translocate to the nucleus where they induce the expression of hundreds of anti-viral,
inflammatory, or immunosuppressive genes [154].

In solid cancers, STAT1 and STAT3 have pleiotropic roles during cancer develop-
ment and in the establishment of immune responses. Type I (IFNα/β) and type II (IFNγ)
interferons stimulate the formation of STAT1/STAT1 homodimers or STAT1/STAT2 het-
erodimers to induce inflammatory responses [155]. In contrast, the delayed formation
of STAT1/STAT3 heterodimers downstream of IFN receptors negatively regulate STAT1-
dependent inflammatory responses to induce immune suppression [156]. By the same
token, multiple cytokines, including IL-6 and IL-10, induce the formation of STAT3/STAT3
homodimers, which increase the expression of genes that recruit and activate immunosup-
pressive macrophages (M2) and regulatory T cells [157]. Coupled with the observation
that the STAT3 pathway also induces tumor growth, angiogenesis, and metastasis, several
STAT3 inhibitors are in development to treat solid malignancies [158]. Indeed, we previ-
ously showed that an increased ratio of active STAT1/STAT3 in breast tumors is associated
with improved immune surveillance, increased production of inflammatory cytokines, and
enhanced sensitivity to immune checkpoint inhibitors in breast cancer [86].

The IFN/STAT1 pathway functions as a double-edged sword in cancer develop-
ment [159]. Several studies have shown that it coordinates tumor-suppressive transcrip-
tional responses, both in the tumor cells themselves and in cells within the tumor microen-
vironment through multiple mechanisms. IFN/STAT1 signaling potentiates cell cycle arrest
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and apoptosis in tumor cells, induces angiostatic responses, increases antigen processing
and presentation by tumor cells, and primes the innate and adaptive immune cells to
activate immune cell subsets (Th1/CTL; NK) that promote anti-tumor immunity. While
STAT1 is required for immune surveillance, its chronic activation paradoxically potentiates
and maintains tumor immune evasion by increasing the expression of immunosuppressive
mediators (PD-L1, IDO1) [159]. Indeed, whereas STAT1 signaling in NK and T cells poten-
tiates their effector functions [160,161], sustained STAT1 signaling in T cells protects them
from NK-cell mediated cytotoxicity, preventing their elimination in inflamed tissues [162].

Several studies highlight this complex relationship between JAK/STAT1 signaling,
tumor immunity, and sensitivity to immune checkpoint inhibitors in oncology. For example,
whole exome and transcriptomic analysis of >1000 tumors treated with immune checkpoint
inhibitors (across seven tumor types) showed that an elevated clonal tumor mutational
burden, coupled with increased expression of CXCL9 (an IFN-inducible gene), is predictive
of superior response [163]. In an independent study, macrophage-derived CXCL9 and
CXCL10 were significantly elevated in response to immune checkpoint inhibition and
were required to mount effective CTL-driven anti-tumor immune responses [164]. In high-
grade serous ovarian carcinomas, elevated PD-L1 levels, indicative of increased STAT1
activation, is associated with elevated numbers of tumor-infiltrating lymphocytes and
good outcome [165]. Finally, tumors with a stem-like phenotype possess decreased type I
IFN/STAT1 signaling and are highly immunosuppressive, despite their high mutational
burden [166]. Indeed, glioma stem cells evade immune surveillance by downregulating
STAT1 expression at the epigenetic level [167].

In contrast, some studies point to IFN/STAT1 activation in the inferior response to
kinase and/or immune checkpoint inhibition. For example, two neo-adjuvant clinical trials,
including palbociclib (CDK4/6i) plus endocrine therapy, showed that increased IFN/STAT1
signaling in ER+ breast cancers were associated with elevated immune checkpoint levels,
endocrine resistance, and poor outcome [168]. In pancreatic tumors, dinaciclib (a pan
CDK inhibitor targeting CDK2/5/9) reversed immune suppression by inhibiting IFNγ-
induced expression of immunosuppressive mediators, including IDO1 and PD-L1 [169].
Indeed, IFN/STAT1 activation in individual HER2+ breast cancers can exert opposing
effects on their sensitivity to HER2 kinase inhibitors. Whereas Th1 cytokines, including
IFNs, sensitized HER2+ tumors to lapatinib [170], trastuzumab increased PD-L1 expression
in breast tumors, contributing to trastuzumab resistance [171].

Combined, these studies demonstrate a complex role for IFN/STAT1 signaling in
tumor development and immune evasion, highlighting the need for further research to
identify whether activation of this pathway will potentiate and/or suppress sensitivity to
immune checkpoint inhibitors, alone or in combination with kinase inhibitors.

14. Kinase Inhibitors Target Immune Cells in the Tumor Microenvironment

Immune cells depend on multiple kinases to function. As such, kinase inhibitors
used to treat cancer also directly regulate immune cell signaling and activity in the tumor
microenvironment (reviewed in [172]), leading both to immune-related adverse events as
well as improved sensitivity to immune-based therapies.

For example, skin inflammation is a prominent adverse effect of some EGFR inhibitors
through off-target inhibition of Ste-10-like (STK10) serine/threonine kinase, leading to
enhanced lymphocyte migration and secretion of IL-2 [173]. Moreover, immune checkpoint
inhibitors are frequently associated with immune-related adverse events in cancer patients,
and emerging evidence suggests that kinase inhibitors may be employed to modulate these
toxicities. Indeed, the treatment of a melanoma patient experiencing anti-PD1 induced
colitis with an mTOR inhibitor (sirolimus) could dampen systemic inflammatory responses
and relieve this toxicity while sparing the anti-tumorigenic effects of PD-1 blockade [174].

Perturbation of signaling pathways in immune cells within the tumor microenviron-
ment by kinase inhibitors also affects the efficacy of targeted and immune based-therapies,
altering patient outcomes. Several RTKs, including Tyro3, Mer, and Axl (TAM-family), are



Int. J. Mol. Sci. 2021, 22, 2608 14 of 23

expressed on APCs (macrophage and dendritic cells) and negatively regulate their activa-
tion and antigen presentation capabilities [175]. Inhibition of these TAM receptors on NK
cells also leads to rejection of breast cancer metastasis in mouse models [176]. Given that
intra-tumoral Tyro3, Mer, and Axl signaling contributes to tumor growth, immune evasion,
drug resistance, proliferation, and metastasis [177–179], TAM RTKs represent an important
drug candidate to simultaneously target both malignant cells and immune cells in order to
enhance anti-tumor immunity. Similarly, other kinase inhibitors that induce tumor-intrinsic
effects also target immune cells to simultaneously relieve immune suppression as part of
their mechanism of action. While trametinib is used to treat many solid tumors, this MEK
inhibitor also suppresses naïve CD8+ T cell priming and protects CD8+ T cells from chronic
T cell receptor activation, leading to synergy with anti-PD-L1 inhibitors [115]. CDK4/6
inhibition also elicits increased antigen presentation in tumor cells and suppresses the
proliferation of regulatory T cells to result in CTL-mediated anti-tumor immunity [60].

PI3K/AKT/mTOR signaling is critical in controlling immune cell function and has
been linked to immunosuppressive immune cell function in the tumor milieu. PI3Kγ,
which is expressed specifically in immune cells, is an important drug target for pan PI3K
inhibitors in modulating anti-tumor immune responses. Indeed, PI3Kγ is required in
Tregs and MDSCs to stimulate their infiltration into tumor tissue [180]. Moreover, PI3Kγ

expression in macrophages negatively regulates the pro-inflammatory TLR4/NFkB sig-
naling pathway while positively regulating IL-4 and C/EBPb signaling [181], polarizing
macrophages toward immunosuppressive types. In line with this, PI3Kγ inhibitors can
relieve macrophage-driven immunosuppression on T cells and synergize with PD-1 in-
hibitors to impede tumor growth [181]. Similarly, Mnk signaling in macrophages also
increases their immunosuppressive properties [182]. On the other hand, dactolisib, a pan-
specific PI3K inhibitor, reduced mRNA translation initiation in granulocytic MDSCs in a
preclinical model of prostate cancer, inhibiting their immunosuppressive properties [183].
Indeed, dactolisib synergized with immune checkpoint blockade to induce durable tumori-
cidal responses in prostate cancer models [184]. Beyond this, mTOR signaling in multiple
immune cell types contributes to immune suppression. For example, glioblastoma cells
upregulate mTOR signaling in microglia, tissue-resident macrophages, which increases
their immunosuppressive properties [185]. Furthermore, inhibition of mTOR signaling
in T cells allows for their spontaneous activation into effector T cells, suggesting that
this pathway is important for T cell tolerance. Indeed, mTOR function is required for
the generation of regulatory T cells through metabolic reprogramming [186]. Similarly,
mTOR activation increases fatty acid synthesis in dendritic cells, which indirectly reduces
acetyl CoA pools, leading to reduced histone acetylation. This epigenetic reprogramming
minimizes the ability of DCs to activate cytotoxic T lymphocytes [187].

While some studies indicate kinase inhibitors as promising agents to reverse immuno-
suppression in combination with cancer immunotherapy, others show that kinase inhibitors
may dampen anti-tumor immune responses, potentially contributing to their lack of efficacy
in cancer treatment [188]. For example, mTOR signaling plays a complex role in regulat-
ing NK cell function whereby mTORC1 signaling stimulates NK cell cytolytic function,
whereas mTORC2 activity favors immunosuppressive NK cells [189]. Finally, mTORC2
deletion in macrophages stimulates a pro-inflammatory microenvironment that potentiates
colitis-induced colon cancer [190]. These studies suggest that rapalogs (mTORC1-specific)
and active site dual-specificity mTOR inhibitors (asTORi) may differentially impact the
tumor immune microenvironment and, potentially, sensitivity to combination immunother-
apies. Combined, these studies demonstrate that kinase inhibition impacts both tumor
cells and immune cells in the tumor microenvironment to modulate treatment response
and sensitivity to immunotherapy. Thus, it is critical to investigate the impact of indi-
vidually targeted therapies on immune cells to maximize their ability to synergize with
immunotherapies.
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15. Conclusions

Collectively, a combination of kinase inhibitors and immunotherapy holds promise
in cancer treatment. It remains to be seen whether kinase inhibitors combined with im-
munotherapy will be effective in different subtypes of cancers. Where there is a lack of
response, its mechanisms should be investigated. The intrinsic kinase signaling pathways
tumors employ to adapt and resist cancer immunotherapy need to be investigated. Where
efficacy is seen, it must be established if a combination approach—over a single-agent
approach—is preferred. In addition to duration, the order and timing of the combined ap-
proach, whether phased or sequential use of the drugs is as effective need to be tested [112].
Mechanistic studies that inform rational combination of kinase inhibitors and immunother-
apeutic modalities for clinical trials are in need. Given all the evidence presented above,
combinatorial use of kinase inhibitors and cancer immunotherapy may help to combat
drug resistance and broaden responsiveness.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/5/2608/s1, Table S1: Summary of kinase inhibitors approved by the FDA to treat solid
tumors, their molecular targets and the studies demonstrating their regulatory roles on tumor
immunogenicity or immune responses, Table S2: Ongoing clinical trials of kinase inhibitors approved
for breast cancer treatment in combination with immunotherapy. Only the kinase inhibitors and the
immunotherapeutic agents that are combined are listed.
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