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Abstract

The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports 

cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes 

to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM 

proteins and characterize their post-translational modifications, but ECM proteomics remains 

extremely challenging owing to the extremely low solubility of the ECM. Herein, enabled by 

effective solubilization of ECM proteins using our recently developed photocleavable surfactant, 

Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue 

decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to 

reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM 

proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, 

respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational 

modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, 
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were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the 

analysis of ECM proteins and promote the study of ECM biology.
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The extracellular matrix (ECM) consists of approximately 300 core proteins including 

collagens, fibronectins, laminins, and proteoglycans and ~900 associated proteins, defined as 

the “matrisome”1–2, which forms an architectural meshwork and provides stability for the 

surrounding cells.1–5 Serving as a critical regulator of cell behaviors such as adhesion, 

migration, and proliferation, the ECM responds and communicates via biochemical cues to 

the intracellular milieu.3 ECM proteins are also known to be heavily post-translationally 

modified, most notably by glycosylation and hydroxylation.6,7 Dysregulation of ECM 

protein expression and post-translational modifications (PTMs) directly contribute to disease 

progression and regulate ECM protein structures, functions, and interactions contributing to 

pathogenesis.1–10 Particularly, the ECM is increasingly recognized as a major driver in 

tumor metastasis, which contributes to 90% of the cancer deaths.11–13 However, the 

biochemical characterization of ECM proteins remains a daunting task due to the extremely 

low solubility of ECM proteins.14–16

Advances in mass spectrometry (MS)-based proteomics make it an ideal tool to identify 

ECM proteins and characterize their PTMs occurring within the ECM microenvironment.
2, 7, 17–28 Despite its immense potential, ECM proteomics remains extremely challenging 

mainly due to the dense network of cross-linked, fibrous proteins, which makes it 

exceedingly difficult to solubilize, digest, and analyze by MS.19 Moreover, the complexity 

and dynamic range of proteins present in the tissue lysates often result in 

underrepresentation of the important ECM sub-proteome in global proteomics studies.29 The 

current protocols for ECM proteomic analysis typically have lengthy and labor-intensive 

workflows that often include multiple digestion steps, some including chemical digestion 

using toxic chemicals such as cyanogen bromide (CNBr).20, 21, 30

To address these challenges, here we developed a photocleavable surfactant-enabled ECM 

proteomics strategy to streamline the enrichment, extraction, and digestion steps for ECM 
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proteomics (Figure 1). Specifically, we established a new decellularization/extraction 

method, enabled by our recently developed photocleavable anionic surfactant, Azo,31, 32 for 

the efficient enrichment of ECM proteins, which eliminates the need for multiple digestion 

steps and minimizes the sample clean-up prior to reversed phased liquid chromatography 

(RPLC)-MS analysis. Our sample preparation method takes approximately ~8 h (0.75 h for 

decellularization, 1.5 h for removal of Triton and work-up of the Decell extract, 1.5 h for 

extraction of the pellet, and 3.5 h for reduction, alkylation and trypsin digestion) compared 

to the conventional approaches that often take several days due to lengthy decellularization 

and multiple enzymatic digestions,20, 33 representing a significant improvement in the 

throughput of ECM proteomics. Specifically, we chose to analyze tumor tissues harvested 

from the transgenic mouse mammary tumor virus (MMTV) polyomavirus middle T (PyVT) 

mouse model as it represents a classic transgenic model for studying the microenvironment 

of metastatic human breast cancer34–37 and extensive collagen deposition is a pathological 

hallmark of many cancers.38, 39

RESULTS AND DISCUSSION

For characterization of the mouse tumor tissue, we considered both the core ECM domain-

containing regions as well as regulatory and secreted ECM associated proteins, which 

constitute “the matrisome” as defined previously.1, 2 The core matrisome was classified into 

three subcategories, collagens, glycoproteins, and proteoglycans, whereas regulators, 

secreted factors, and affiliated proteins were classified as associated matrisome proteins 

(Figure 2a). Characterizing the ensemble of core and associated matrisome proteins is 

critical to achieving a comprehensive understanding of ECM biology.1, 2 However, core 

matrisome proteins, like collagens, are generally considered extremely challenging to be 

analyzed by proteomics since they are extremely difficult to be solubilized,40 and resistant to 

common extraction and enzymatic digestions.41

Typically, enrichment of the core matrisome proteins is obtained by decellularization,42 

wherein the tissue is passively immersed in a buffer, such as SDS or Triton X-100, for 

several hours or days to remove soluble cellular material (proteins, lipids, metabolites, etc.), 

leaving an intact ECM.20, 21, 43 However, since an intact scaffold is not required for 

proteomics, we mechanically homogenized the tissue in Triton X-100 buffer44 to 

dramatically increase the throughput. The samples were centrifuged and the supernatant was 

collected and labeled as “Decell extract 1”, and a pellet remained (Figure S1). Commonly, 

proteins extracted during decellularization are discarded20 presumably because few ECM 

proteins are extracted during this step. To investigate whether the decellularization extraction 

contains soluble ECM factors, the proteins in the Decell extract 1 were precipitated and 

reconstituted in 0.5% Azo for downstream LC-MS analysis (Figure S1).

Next, the remaining tissue pellets were washed with ammonium bicarbonate (ABC) buffer 

(chosen for its MS-compatibility) to remove any remaining soluble proteins, surfactants, or 

salts (Figure S2). Azo was then used to extract the remaining proteins yielding “Azo extract 

2” for further LC-MS analysis. We observed excellent reproducibility using SDS-PAGE 

analysis across technical replicates (Figure S3). Interestingly, we qualitatively observed that 
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Decell extract 1 was rich in lower molecular weight proteins, whereas Azo extract 2 

contained many higher molecular weight species (Figure S3).

Subsequently, Decell extract 1 and Azo extract 2 were digested in-solution with trypsin for 2 

h followed by rapid degradation of Azo32 by UV light and subsequent analysis by RPLC-

MS/MS. Recently we developed a high-throughput bottom-up proteomics method enabled 

by this photocleavable surfactant for robust protein extraction, rapid enzymatic digestion, 

and subsequent MS-analysis without additional sample clean-up following UV degradation.
32 Identification and relative protein abundance including reproducibility across replicates 

were determined with MetaMorpheus45 and FlashLFQ46 software using intensity-based 

normalization. A full list of parameters can be found in Table S1 and a full list of ECM 

identifications can be found in Table S2. Transformed, normalized intensities of ECM 

peptide spectral matches (PSMs) in Azo extract 2 were plotted against each other, 

demonstrating a highly reproducible method with Pearson correlation coefficients from 0.91 

to 0.93 (Figure S4).

Using the normalized peptide intensities, we analyzed the relative abundance of core and 

associated matrisome proteins in the Decell and Azo extracts (Figure S5a and Table S3). 

Significantly, we observed the Azo extract 2 generally contained a higher abundance of core 

matrisome proteins such as collagen alpha-1 (I) chain (COL1A1) and biglycan (BGN) 

(Figure S5b–c and Table S3). On the other hand, associated matrisome proteins, such as 

Galectin-1 (LGALS1) and Cathepsin D (CTSD), were enriched in the Decell extract 1 

(Figure S5b–c) (Table S3). Additionally, we evaluated the cellular locations of proteins in 

both extractions to better understand their protein compositions (Figure S5a). Endoplasmic 

reticulum (ER), mitochondrial, cytoplasmic, secreted and membrane proteins were found in 

higher abundance in the Decell extract 1, whereas core matrisome and nuclear proteins were 

primarily present in Azo extract 2 (Figure S5c–d). Overall, the results demonstrated 

successful protein fractionation at the extraction level and highlighted Azo’s ability to 

solubilize and digest important ECM proteins such as type I collagen47 for a streamlined 

analysis.

To further assess Azo’s extraction efficacy, we directly compared its performance to 8 M 

urea, a common reagent used for ECM protein extraction.31,32,25 Pulverized tumor tissue 

was decellularized with Triton-X-100, washed, and extracted with 8 M urea in 25 mM ABC, 

0.5 % Azo in 25 mM ABC, or 25 mM ABC (serving as a control). SDS-PAGE analysis 

demonstrated Azo extracted a unique protein profile compared to the other conditions 

(Figure S6a). Using RPLC-MS/MS analysis, we found the relative abundance of collagen 

species, a common benchmark for ECM enrichment,2, 14 was significantly increased in the 

Azo extract compared to the urea or ABC alone (Figure S6b and Table S3). Hence, this 

demonstrated the superior performance of Azo relative to urea, in solubilizing ECM 

proteins. In particular, fibrillar type I collagen chains, COL1A1 AND COL1A2, were 

solubilized more efficiently with Azo relative to urea extraction. Moreover, the use of 

photocleavable Azo eliminated the need for time-consuming desalting steps and greatly 

improved the throughput of ECM proteomics. Overall, we identified 173 ECM proteins 

using 1D RPLC-MS/MS. A total of 52 and 71 proteins were uniquely identified in the 

Decell extract 1 and Azo extract 2 samples, respectively, and 50 proteins were identified in 
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both (Figure S7a). Next, we investigated whether the addition of protein fractionation by 

high-pH RPLC could increase the proteome coverage. This 2D high-pH low-pH RPLC 

approach contributed 52 new unique identifications (a 30% increase) compared to using 1D 

RPLC-MS/MS (Figure S7a–b). Although the increase in protein identification was 

moderate, we demonstrated our method could be easily combined with additional separation 

steps to increase proteome coverage.

Combined, we identified 225 unique ECM proteins from mouse mammary tumor tissue 

using this approach (Figure 2b and Table S2). Importantly, we observed both Decell extract 

1 and Azo extract 2 contained many matrisome proteins. Of the ECM protein identifications, 

89 ECM proteins were identified in both extracts, whereas 51 and 85 were uniquely 

identified in Decell extract 1 and Azo extract 2, respectively, which indicates that some 

proteins are preferentially solubilized and present in either Decell extract 1 or Azo extract 2 

(Figure 2b).

We further investigated the protein compositions of each extract, observing that 54 core 

matrisome proteins and 86 associated proteins were identified in the Decell extract 1 

whereas 96 core matrisome proteins and 63 associated proteins were identified in Azo 

extract 2 (Figure 2c). The results indicate enrichment of core matrisome proteins in the Azo 

extract 2, but also highlight the importance of analyzing the commonly disregarded 

decellularization fraction, Decell extract 1. Additionally, Decell extract 1 and Azo extract 2 

contained similar numbers of proteoglycans, secreted proteins, and affiliated proteins 

(Figure 2d). On the other hand, ECM regulatory proteins were enriched in the Decell extract 

1 whereas a large number of collagens and glycoproteins were identified in the Azo extract 

2. All categories of ECM proteins were well represented, using our approach (Figure 2e). 

We observed that a larger number of higher molecular weight (>100 kDa) and core 

matrisome proteins were identified in Azo extract 2, whereas a larger number of lower 

molecular weight, associated matrisome species were identified in Decell extract 1 (Figure 

2f). We reason that the higher molecular weight of core matrisome proteins makes them 

more difficult to be solubilized, thus require a strong surfactant such as Azo. A 

representative list of identified ECM proteins is shown in Figure 2g.

ECM proteins are known to be heavily post-translationally modified. Here, we used 

MetaMorpheus45 software to identify a diverse range of ECM PTMs including proline 

hydroxylation, asparagine hydroxylation, lysine hydroxylation, acetylation, phosphorylation 

and glycosylation (Figure S8). In total, 87 unique PTM sites were identified from mouse 

tumor tissue using 1D RPLC-MS/MS (Figure S8 and Table S4). Significantly, we observed a 

dramatic increase in PTM identifications, 229 total PTMs, with the 2DLC-MS/MS workflow 

(Figure S8 and Table S4), despite that the 2D approach provided only a moderate increase in 

the identifications of ECM proteins. Overall, proline hydroxylation, which is essential for 

the stability of collagen fibrils,47 accounted for 50% of all identified modifications from 

mouse mammary tumor tissue (Figure S8). Figure 3 shows some representative examples of 

unambiguously localized PTMs, such as proline hydroxylation of collagen alpha-2 (I) chain 

(COL1A2) and asparagine β hydroxylation, on proteins like fibrillin-1 (FBN1) (Figure 3a–

b). N-acetylglucosamine (HexNAc) was localized to a threonine residue of Host cell-factor-1 
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(Figure 3c). Additionally, we have identified an N-terminal acetylation of Serpin B6 (Figure 

3d).

CONCLUSION

In summary, for the first time, we developed a streamlined ECM proteomics method enabled 

by a photocleavable surfactant, Azo, which addressed several challenges in the conventional 

ECM proteomics workflows. Most notably, Azo facilitated robust extraction of fibrous ECM 

proteins, aided in rapid trypsin digestion, and subsequently can be easily degraded by UV-

irradiation before MS. This Azo-enabled ECM sample preparation including 

decellularization, ECM extraction, reduction, alkylation and digestion takes about 6 h 

compared to several days or a week using the conventional approaches. This sample 

preparation does not require chemical digestion, multiple enzymes, or deglycosylation. 

Moreover, we demonstrated the importance of analyzing the commonly discarded 

decellularization fraction to identify soluble ECM and ECM-associated proteins. Using both 

1D and 2D RPLC-MS/MS, we have established an ECM protein catalog consisting of 225 

ECM proteins from mouse tumor tissue and have further identified 229 total PTMs for ECM 

proteins including hydroxylation, phosphorylation, and glycosylation. We envision this Azo-

enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote 

an understanding of ECM biology in various diseases such as tumor metastasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the Azo-enabled ECM proteomics strategy. (1) Tissues are 

collected, cryo-pulverized, and (2) undergo rapid decellularization in 2% Triton X-100. 

After centrifugation, the supernatants are collected, precipitated, and reconstituted in 0.5% 

Azo labeled as “Decell extract 1” for downstream analysis. (3) Azo was added to the 

remaining tissue pellet to extract the remaining proteins, resulting in “Azo extract 2”. (4) 

Both Decell Extract 1 and Azo extract 2 were reduced, alkylated, and digested with trypsin. 
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(5) Azo was degraded by UV-irradiation and (6) the digested peptides were analyzed by 

RPLC-MS/MS.
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Figure 2. 
ECM proteomics of mammary tumor tissue. a. Schematic of matrisome ECM composition 

and annotation.1, 2 b. Venn diagrams showing the overlap of ECM protein identifications 

found in the Decell extract 1 and Azo extract 2 identified using 2D RPLC MSMS. c. 
Division distribution of ECM identifications in each extract. d. Category distribution of 

ECM identifications in each extract. e. Pie chart illustrating the composition of all ECM 

identifications. f. The molecular weight (MW) distribution of all ECM identifications. g. 
Table of highest abundance ECM core matrisome proteins identified in Azo extract and 

associated matrisome proteins identified in Decell extract 1.
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Figure 3. Identification of PTMs in the ECM proteins.
Representative MS/MS spectra of identified ECM PTMs. Precursor ions are annotated with 

green stars. a. Precursor ion Collagen alpha-2 (I) chain peptide with proline (P) 

hydroxylation (+ 16 Da). [(M+2H)2+, 788.9 m/z, Expt’l: 1,575.8 Da, 0.8 ppm]. b. Fibrillin-1 

peptide modified with cysteine (C) carbamidomethylation (+ 57 Da) and asparagine (N) 

hydroxylation (+16 Da). Precursor ion [(M+3H)3+, 1102.4 m/z, Expt’l: 3,304.3 Da, 1.4 

ppm]. c. Host cell-factor-1 with (N)-linked acetylhexosamine (HexNAc) glycosylation 

(+203 Da). Precursor ion [(M+3H)3+, 802.1 m/z, Expt’l: 2,403.3 Da, 0.6 ppm]. HCFC1 co-

eluted with a highly abundant peptide identified as splicing factor 3b subunit 2, where 

corresponding b and y ions are denoted with gray circles. d. Serpin B6 with N-terminal 

acetylation (+42 Da). Precursor ion [(M+2H)2+, 959.0 m/z, Expt’l: 1,916.0 Da, 0.2 ppm].
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