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Abstract

Haplotype-resolved de novo assembly is the ultimate solution to the study of sequence variations 

in a genome. However, existing algorithms either collapse heterozygous alleles into one consensus 

copy or fail to cleanly separate the haplotypes to produce high-quality phased assemblies. Here we 

describe hifiasm, a de novo assembler that takes advantage of long high-fidelity sequence reads to 

faithfully represent the haplotype information in a phased assembly graph. Unlike other graph-

based assemblers that only aim to maintain the contiguity of one haplotype, hifiasm strives to 

preserve the contiguity of all haplotypes. This feature enables the development of a graph trio 

binning algorithm that greatly advances over standard trio binning. On three human and five non-

human datasets, including California redwood with a ~30-gigabase hexaploid genome, we show 
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that hifiasm frequently delivers better assemblies than existing tools and consistently outperforms 

others on haplotype-resolved assembly.

Introduction

De novo genome assembly is the most comprehensive method that provides unbiased insight 

to DNA sequences. With the rapid advances in long-read sequencing technologies such as 

Pacific Biosciences (PacBio) and Oxford Nanopore (ONT), many long-read assemblers have 

been developed to tackle this essential computational problem. Most of them1–9 collapse 

different homologous haplotypes into a consensus representation with heterozygous alleles 

frequently switching in the consensus. This approach works well for inbred samples that are 

nearly homozygous but necessarily misses half of the genetic information in a diploid 

genome. To solve this problem, Falcon-Unzip10 recovers heterozygous alleles by 

“unzipping” them in an initial collapsed assembly. It produces a pair of assemblies, one 

primary assembly representing a mosaic of homologous haplotypes, and one alternate 

assembly composed of short haplotype-specific contigs (haplotigs) for alleles absent from 

the primary assembly. The alternate assembly is often fragmented and does not represent a 

complete haplotype, making it less useful in practice. In addition, starting from a collapsed 

assembly, Falcon-Unzip may not recover highly heterozygous regions which are not 

properly collapsed in the initial assembly. Trio binning11 addresses these issues by globally 

partitioning long reads upfront with parental short reads and then performing two separate 

assemblies on the partitioned reads. This strategy works well for samples with high 

heterozygosity, but for a human sample sequenced with noisy long reads, it only produces 

fragmented assemblies with ~1.2 Mb contigs.

A great challenge to the assembly of heterozygous samples is caused by the 5–15% 

sequencing error rate of older long reads. With this high error rate, it is difficult to 

distinguish errors from heterozygotes occurring at a rate of <0.1% in humans. The recent 

availability of high-fidelity (HiFi) reads12 produced by PacBio has changed the equation. 

Generated from the consensus of multiple sequences of the same DNA molecule, HiFi reads 

have a much lower error rate of <1%. With HiFi, standard trio binning can produce contigs 

of 17 Mb12. Recent works relying on Hi-C or Strand-seq read binning13,14 can achieve better 

contiguity and phasing accuracy. These pre-binning algorithms all use short k-mers or short 

reads to partition HiFi reads15,16. They may not identify haplotype-specific markers in 

complex regions and result in wrong read partitions which will negatively affect the 

assembly as we will show later. In addition, both Hi-C and Strand-seq binning start with a 

collapsed assembly and have the same issues as Falcon-Unzip.

In 2012, we reasoned17 that a perfectly constructed unitig graph with read information is a 

lossless representation of single-end reads. Because this graph is lossless, we can compress 

input reads into a unitig graph and perform phasing later. This should maximize the power of 

long HiFi reads. Developed in parallel to our work, HiCanu18 follows a similar rationale and 

can produce Falcon-Unzip-style primary/alternate assemblies better than other assemblers 

especially around segmental duplications. However, HiCanu only tries to keep the contiguity 

of one parental haplotype and often breaks the contiguity of the other haplotype. When we 
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separate parental haplotypes, these break points will lead to fragmented haplotype-resolved 

assemblies.

In this article we present hifiasm, an assembler for HiFi reads that generates a well-

connected assembly graph and produces better assemblies in practice. We will first give an 

overview of the hifiasm algorithm, compare it to other assemblers for partially phased 

assemblies and then explain and evaluate the haplotype-resolved assembly algorithm used 

by hifiasm.

Results

Overview of the hifiasm algorithm

The first few steps of hifiasm broadly resemble the workflow of early long-read 

assemblers1,2 (Fig. 1). Hifiasm performs all-vs-all read overlap alignment and then corrects 

sequencing errors. Given a target read to be corrected, hifiasm inspects the alignment of 

reads overlapping with the target read. A position on the target read is said to be informative 

if there are two types of A/C/G/T bases (gaps ignored) at the position in the alignment and 

each type is supported by at least three reads. A read overlapping with the target read is 

inconsistent with the target if there are informative positions in the overlap and the read is 

not identical to the target read across all these positions; accordingly, the overlap between 

this and the target read is inconsistent. Inconsistent reads theoretically originate from a 

haplotype different from the target read. Hifiasm only uses consistent reads to correct the 

target read.

Hifiasm performs three rounds of error correction by default. It then does overlap alignment 

again and builds a string graph19 where a vertex is an oriented read and an edge is a 

consistent overlap. After transitive reduction, a pair of heterozygous alleles will be 

represented by a “bubble” in the string graph (Fig. 1). No information is lost. If there are no 

additional data, hifiasm arbitrarily selects one side of each bubble and outputs a primary 

assembly similar to Falcon-Unzip and HiCanu. For a heterozygous genome, the primary 

assembly generated at this step may still contain haplotigs from more than one homologous 

haplotypes. HiCanu relies on third-party tools such as purge_dups20 to remove redundant 

haplotigs. Hifiasm natively implements a variant of the purge_dups algorithm. This 

simplifies the assembly pipeline.

If parents of the sample are also sequenced, hifiasm can use k-mer trio binning11 to label 

corrected reads in the string graph. In this case, hifiasm effectively discards the maternal 

unitigs to generate the paternal assembly, and vice versa. This graph-based trio binning may 

go through regions heterozygous in all three samples in the trio and is more robust to the 

mislabeling of reads. We will explain the advantage of hifiasm binning in a later section.

Assembling homozygous non-human genomes

We first evaluated hifiasm v0.12 along with Falcon-Unzip10 v1.8.1, Peregrine6 v0.1.6.1 and 

HiCanu18 v2.1 on two inbred samples23 including the C57/BL6J strain of M. musculus 
(mouse) and the B73 strain of Z. mays (maize). All assemblers produced long contigs for 

mouse (Table 1). To evaluate how often assemblers collapse paralogous regions and produce 
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misassemblies, we mapped HiFi reads to each assembly, extracted apparently heterozygous 

SNPs at high coverage and clustered them into longer regions (Online Methods). These 

regions correspond to collapsed misassemblies. We identified 4 such misassemblies in the 

HiCanu assembly, 6 in hifiasm and more than 100 in both Falcon and Peregrine. HiCanu is 

the best at this metric although its contig N50 is the shortest.

For the repeat-rich maize genome, hifiasm and HiCanu generated longer contigs and again 

produced much fewer collapsed misassemblies. There are 3 collapsed misassemblies in the 

hifiasm assembly and 9 in HiCanu, versus more than 100 in Falcon and Peregrine. Hifiasm 

and HiCanu perform better presumably because they can more effectively resolve repeats by 

requiring near perfect overlap18.

Assembling heterozygous non-human genomes

Since most natural samples are heterozygous, we next evaluated the assemblers on three 

heterozygous datasets from F. × ananassa (garden strawberry), R. muscosa (mountain 

yellow-legged frog) and S. sempervirens (California redwood). These samples are more 

challenging to assemble. F. × ananassa has an allopolyploid genome estimated to be 813.4 

Mb in size21. All assemblers achieved a total assembly of ~1.2 Gb, including both primary 

and alternate contigs. However, they resolved the primary assembly differently. Hifiasm 

resulted in a primary assembly of similar size to the published genome. BUSCO24 regarded 

most single-copy genes to be duplicated, consistent with the previous observation21. HiCanu 

assigned most contigs to the primary. Applying purge_dups20 overcompressed the assembly 

and reduced the BUSCO completeness by 5%. Falcon-Unzip and Peregrine are somewhat 

between hifiasm and HiCanu. The varying primary assembly sizes highlight the difficulty in 

assembling polyploid genomes. On the other hand, all HiFi assemblies here have much 

longer contig N50 than the published assembly (>5 Mb vs 580 kb). HiFi enables better 

assembly.

R. muscosa is hard to assemble for its large genome size. We failed to run Falcon-Unzip for 

this sample using its released version. We did not apply purge_dups to the HiCanu assembly 

as it could not finish in 15 days. Without the purging step, the HiCanu assembly contains a 

higher rate of duplicated genes. The N50 of the hifiasm assembly is almost twice as long as 

the HiCanu assembly.

S. sempervirens poses an even greater challenge to assembly with a much larger hexaploid 

genome. Hifiasm took 875 Gb reads as input and produced a 35.6 Gb assembly in 3 days 

over 80 CPU threads using ~700 GB memory at the peak (Supplementary Table 10). The 

flow cytometric estimate of the full hexaploid genome is 62.8 Gb in size25. Our assembly is 

about half of that. Peregrine achieved a 35.6 Gb assembly as well. Its BUSCO score is 1.9% 

better than the hifiasm assembly. Peregrine took 15 days on a computer cluster. It ran slower 

and its assembly is more fragmented. Hifiasm overall performs better on large genomes.

Primary assembly of human genomes

We next evaluated hifiasm and other assemblers on three human datasets (Table 2). We 

introduced two new metrics, “multi-copy genes retained” and “resolved BACs” to evaluate 

how assemblers resolve difficult genomic regions such as long segmental duplications. If an 
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assembler breaks contigs at such regions or misassemblies the regions, the resulting 

assembly will lose multi-copy genes and/or lead to fragmented BAC-to-contig alignment.

CHM13 is a homozygous cell line, similar to M. musculus and Z. mays. The telomere-to-

telomere (T2T) consortium produced a near complete assembly for this sample with 

multiple data types and manual curation. Taking the T2T assembly as the ground truth, 

QUAST27 reported 349 misassemblies in the HiCanu assembly, 476 in the hifiasm assembly 

and more than 1500 misassemblies in others (Supplementary Table 1). HiCanu is the best in 

terms of the number of misassemblies. Nonetheless, it has shorter NG50, misses more multi-

copy genes and resolves fewer BACs in comparison to hifiasm. Hifiasm and HiCanu are 

broadly comparable. Both of them are better than Peregrine, Falcon and ONT assemblies on 

all metrics by a large margin.

QUAST often takes structural variations (SVs) as misassemblies. Taking GRCh38 as the 

reference, it reported 23,541 misassemblies for the T2T assembly, greatly overestimating 

assembly errors. We thus did not apply QUAST to HG00733 and HG002 where the ground 

truth is missing. Instead, we inferred NGA50 based on minigraph alignment that can go 

through most SVs (Table 2). This more accurately measures large-scale misassemblies.

For these two heterozygous samples, HiCanu produced primary assemblies with several 

hundred megabases of heterozygous regions represented twice. We thus ran purge_dups20 to 

remove these falsely duplicated regions in the primary assembly. We tried a few purge_dups 

settings, including the default, and chose the one that gave the best primary assembly. 

Hifiasm can identify and remove falsely duplicated regions by inspecting inconsistent read 

overlaps between them. The other assemblers collapsed most heterozygous regions during 

assembly. They do not need additional tools like purge_dups, either.

For HG00733 and HG002, hifiasm and HiCanu consistently outperformed other assemblers. 

The hifiasm assembly was more complete and resolved more difficult regions than HiCanu. 

This difference probably has more to do with the duplicate purging algorithm than with the 

capability of the assembler. Nonetheless, this observation suggests it is easier to produce a 

high-quality primary assembly with hifiasm.

On running time, hifiasm took 7–9 wall-clock hours over 48 threads (Supplementary Table 

10). The peak memory was below 150 GB. Peregrine was about twice as fast for human 

assembly but used more memory. HiCanu was about 7–8 times as slow as hifiasm using the 

same machine. Falcon was the slowest.

Improving haplotype-resolved assembly

A major issue with trio binning is that a fraction of heterozygous reads cannot be 

unambiguously partitioned to parental haplotypes: if both parents are heterozygous at a 

locus, a child read will harbor no informative k-mers and cannot be uniquely assigned to a 

parental haplotype; if, say, the father is heterozygous at a locus and the mother is 

homozygous, reads from the maternal haplotype cannot be partitioned, either. With standard 

trio binning, heterozygous reads that cannot be partitioned will be used in both parental 

assemblies. As a result, both alleles may be present in one haplotype assembly and lead to 
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false duplications. Standard trio binning is unable to cleanly separate the two parental 

haplotypes.

Hifiasm draws power from HiFi read phasing in addition to trio binning. It does not partition 

reads upfront; it only labels reads in the string graph. In a long bubble representing a pair of 

heterozygous alleles, hifiasm may correctly phase it even if only a small fraction of reads are 

correctly labeled. This way hifiasm also rarely puts two alleles in one haplotype assembly.

Hi-C or Strand-seq based phasing13,14 can unambiguously phase most heterozygous reads 

and are naturally immune to false duplications. They however suffer from another issue 

shared by standard trio phasing: reads assigned to a wrong parental haplotype may break 

contigs (Fig. 2). By considering HiFi read phasing and the structure of the assembly graph, 

hifiasm may be able to identify and fix such binning errors.

Haplotype-resolved assembly of heterozygous human genomes

To evaluate how well assemblers resolve both haplotypes, we applied trio binning assembly 

to HG00733 and HG002. Hifiasm performs graph trio binning that partitions a diploid 

assembly graph to generate the final assembly. HiCanu does standard trio binning11 that 

partitions HiFi reads upfront and assembles the two parental partitions separately. Peregrine 

does not natively support trio binning. We fed the HiCanu-partitioned reads to Peregrine for 

assembly. For comparison, we also acquired a Strand-seq HG00733 assembly14 and a Hi-C 

HG00733 assembly13 that use the same HiFi reads but are supplemented with additional 

data types for phasing.

On both datasets, trio hifiasm missed fewer variants and emitted longer contigs with higher 

QV and lower variant FDR than other assembly strategies (Table 3). The HiCanu contig 

NG50 was the shortest, which is probably caused by wrongly partitioned reads (Fig. 2) in 

combination with HiCanu’s strict requirement of exact overlapping. By collapsing inexact 

overlaps, Peregrine is more robust to partition errors in certain cases and can achieve longer 

contigs. However, this comes with the cost of fewer resolved BACs and increased FNR. The 

Strand-seq and Hi-C assemblies also use Peregrine and are affected by false read partitions 

in the same way. These two assemblies were not as good as hifiasm. It is not possible to get 

a good all-around assembly if we perform separate assemblies on pre-partitioned reads.

The Human Leukocyte Antigen (HLA) region is highly heterozygous and enriched with 

complex variations. For HG002, we compared each assembly to the haplotype-resolved 

ground truth of the same sample32 (Supplementary Table 9). While hifiasm fully 

reconstructed both haplotypes, HiCanu failed to assemble paternal haplotype and peregrine 

likely introduced misassemblies in both haplotypes. These results are consistent with the 

BAC resolution of HG00733 assemblies (Table 3), showing that trio hifiasm can more 

effectively resolve hard regions.

Discussion

Hifiasm is a fast open-source de novo assembler specifically developed for HiFi reads. It 

mostly uses exact overlaps to construct the assembly graph and can separate different alleles 
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or different copies of a segmental duplication involving a single segregating site. This 

greatly enhances its power for resolving near identical, but not exactly identical repeats and 

segmental duplications. In our evaluation, hifiasm consistently outperforms Falcon and 

Peregrine which do not take the advantage of exact overlaps.

In comparison to HiCanu which is developed in parallel to our work, hifiasm is able to 

generate a more complete assembly graph preserving all haplotypes more contiguously. This 

enables us to implement a graph trio binning algorithm that can produce a haplotype-

resolved assembly tripling the contig N50 of a trio HiCanu assembly. Hifiasm can generate 

overall the best haplotype-resolved human assemblies so far.

Our graph binning algorithm can also work with reads labeled by Hi-C or Strand-seq 

binning that do not require parental data. However, because existing Hi-C or Strand-seq 

binning algorithms start with a collapsed assembly, they may not work well with highly 

heterozygous regions not represented well in the initial assembly. In our view, a better 

solution to pedigree-free phased assembly is to map Hi-C or Strand-seq data to the hifiasm 

assembly graph, group and order unitigs into chromosome-long scaffolds with the graph 

topology, and then phase heterozygous events along the scaffolds. We envision that 

haplotype-resolved assembly will become a common practice for both human and diploid 

non-human species, though haplotype-resolved assembly may remain challenging for 

polyploid plants in the near future.

Online Methods

Haplotype-aware error correction.

Hifiasm loads all reads into memory and performs all-vs-all pairwise alignment between 

them. For each read R, hifiasm effectively builds an approximate multi-sequence alignment 

from the pairwise alignment between R and each of its overlapping reads. Hifiasm then 

identifies positions on R at which there are two types of A/C/G/T bases in the alignment 

with each type supported by at least three overlapping reads. These positions inform base 

pair differences between haplotypes and are thus called informative positions. If R and its 

overlapping read Q are identical across all informative positions in the overlap, Q is regarded 

to come from the same haplotype as R. Hifiasm collects reads that are inferred to be on the 

same haplotype as R and use them to correct R with an algorithm similar to Falcon1, 10.

All-vs-all pairwise alignment is the major performance bottleneck in this step. Hifiasm uses 

a windowed version of Myers’ bit-vector algorithm33 to perform the base alignment. Instead 

of computing the alignment over the entire overlap, hifiasm splits read R into non-

overlapping windows and does pairwise alignment in each window. This enables us to 

simultaneously align multiple windows using the SSE instructions34. In practice, one 

potential issue with windowing is that the alignment around window boundaries may be 

unreliable. To alleviate the issue, hifiasm realigns the subregion around the window 

boundary if it sees mismatches or gaps within 20bp around the boundary.
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Constructing phased assembly graphs.

After haplotype-aware error correction, most sequencing errors have been removed while the 

marker positions are still kept. With nearly error-free reads, hifiasm is able to perform 

phasing accurately to determine if one overlap is among the reads coming from different 

haplotypes (i.e. inconsistent overlap). The next step is to build the assembly string graph3, 19. 

In this graph, nodes represent oriented reads and each edge between two nodes represents 

the overlap between the corresponding two reads. Note that only consistent overlaps are used 

to build the graph. Since hifiasm builds the graph on top of nearly error-free reads and 

highly accurate haplotype phasing, the produced assembly graph of hifiasm is simpler and 

cleaner than those of current assemblers for haploid genomes. However, for diploid genomes 

or polyploid genomes, its graph becomes more complicated as reads from different 

haplotypes are clearly separated out by phasing. Fig. 1 gives an example. Since there is a 

heterozygous allele on reads in orange and blue, hifiasm separates them into two groups in 

which all reads in the same color belong to one group. Only the reads from same group are 

overlapped with each other. For reads in green, they are overlapped with the reads in both 

groups because the overlaps among them are not long enough to cover at least one 

heterozygous allele. As a result, hifiasm generates a bubble in the assembly graph. A bubble 

is a subgraph consisting of a single source node v and a single sink node w with more than 

one path between v and w, and all nodes in this bubble except v and w do not connect to the 

rest of the whole graph. Most existing assemblers aim to produce one contiguous contig 

from the graph (i.e. single path in the graph) as much as possible. They tend to collapse 

bubbles when building the assembly graph. As a result, they will lose all but one allele in 

each bubble. In contrast, hifiasm is designed to retain all bubbles on the assembly graph. 

Owing to the fact that there are still a few errors at the corrected reads, hifiasm adopts a 

topological-aware graph cleaning strategy. It first identifies substructures embedding local 

phasing information like bubbles, and then only cuts too short overlaps outside these 

substructures. Hifiasm additionally records the inconsistent overlaps, which are helpful in 

the following assembly construction steps.

Constructing a primary assembly.

The construction of the primary assembly aims to produce contigs including one set of 

haplotypes but may switch subregions between haplotypes. In other words, each subregion 

in the primary assembly only comes from one haplotype, while the corresponding 

subregions of other haplotypes are removed as duplications. In this step, most existing 

assemblers follow the “best overlap graph” strategy or its variants35. Their key idea is to 

retain longer overlaps if there are multiple overlaps to a given read. In contrast, hifiasm 

produces a primary assembly mainly relied on the graph topological structures and the 

phasing relationship among different haplotypes. Ideally, the phased assembly graph of 

hifiasm should be a chain of bubbles for diploid genomes (Fig. 2c). It is easy and reliable to 

extract primary assembly from such chain of bubbles by bubble popping3. However, there 

are still tips (i.e. deadend contigs broken in single end) on the assembly graph caused by 

broken bubbles due to lack of coverage, phasing errors or unresolvable repeats. To fix this 

problem, hifiasm proposes a three-stage procedure (Supplementary Fig. 1). First, each 

bubble in the graph is reduced into a single path using bubble popping. This step removes 

most duplicated subregions on different haplotypes without hampering the contiguity of 

Cheng et al. Page 8

Nat Methods. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



primary assembly. Second, given a tip unitig T that is broken in one end but connected to a 

unitig C in another end, hifiasm checks if there are other unitigs, which are also connected to 

C, coming from the different haplotypes of T. If such unitigs are identified, hifiasm removes 

tip T so that unitig C will become longer. The reason is that for T, its corresponding region 

from different haplotype has already been integrated into the new longer unitig C. Since 

hifiasm records overlaps between haplotypes (i.e. inconsistent overlaps), it can check if two 

unitigs come from different haplotypes. Last, hifiasm uses the “best overlap graph” strategy 

to deal with a few remaining unresolvable hard substructures on the assembly graph. In most 

cases, the graph topological information and the phasing information is more reliable than 

only keeping the longer overlaps. As a result, hifiasm is able to generate a better primary 

assembly than current assemblers which mainly rely on “best overlap graph” strategy.

Constructing a haplotype-resolved assembly.

The phased assembly graph in hifiasm embeds the local phasing information that is 

resolvable with HiFi reads. In this graph, the corresponding node of a homozygous read is at 

a single path connecting two bubbles, while the corresponding node of a heterozygous read 

is at a bubble (Fig. 2). Given parental short reads, hifiasm labels child HiFi reads with the 

existing k-mer based algorithm11. When generating a fully phased assembly for one 

haplotype, hifiasm drops reads of different haplotypes from the graph, while using the local 

phasing information in graph to correct the mispartition of global phasing. Hifiasm does not 

drop reads at a single path connecting two bubbles, since these are homozygous reads that 

must be contained in both haplotypes. For a bubble in which all reads are heterozygous, 

hifiasm applies bubble popping to select a single best path consisting of most reads with the 

expected haplotype label. If a few reads are assigned false labels by global phasing, they are 

likely to be corrected by the best path that traverses through them. In addition, instead of 

dropping any read with non-expected haplotype label, hifiasm drops a contig if the 

haplotype labels of most reads in it are non-expected.

Purging heterozygous duplications.

In the primary assembly construction step, accurately keeping one set of haplotypes is more 

challenging for haplotype-resolved assemblers. Although the bubble popping method and 

the tip removing method of hifiasm already purge large numbers of duplications from 

multiple haplotypes, some duplications still remain on the primary assembly, especially for 

subregions with a high heterozygosity rate. Existing assemblers postprocess the primary 

assembly using downstream tools like purge_dups20, which identify duplications by inexact 

all-vs-all contig alignment. If two contigs overlap with each other, the overlapped regions 

between them are duplications. However, inexact contig alignment might be not reliable on 

segmental duplications or repeats, leading to more duplications left or overpurged repetitive 

regions. To address this duplication challenge, hifiasm re-assembles the contigs by building 

a string graph regarding contigs as nodes, called a purge graph. Given contig A and contig 

B, we define A inconsistently overlaps B if there are enough reads of A that are 

inconsistently overlapped with the reads of B. Note that hifiasm records all inconsistent 

overlaps among reads in the initial phased assembly graph construction step by haplotype 

phasing. In the purge graph of hifiasm, each node is a contig, while an edge between two 

nodes is an inconsistent overlap between their corresponding contigs. Once the graph is 
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built, hifiasm generates the non-redundant primary assembly by simple graph cleaning. As a 

result, the built-in purge duplication step of hifiasm is smoother and more reliable than 

existing downstream tools. This is because hifiasm identifies duplications from multiple 

haplotypes using accurate haplotype phasing of each read, while existing tools mainly rely 

on inexact contig alignment.

Evaluating collapsed misassemblies for inbred samples.

We mapped HiFi reads with minimap222 to each assembly and then called apparent 

heterozygous SNPs with htsbox, a fork of samtools. We selected biallelic SNPs such that 

each allele is supported by d reads where d is set to 75% of the average coverage of the 

sample. We then hierarchically cluster these apparent SNPs28 as follows: we merge two 

adjacent SNP clusters if (1) the minimum distance between them is within 10kb and (2) the 

density of SNPs in the merged cluster is at least 1 per 1kb. A cluster longer than 5kb and 

consisting of ≥10 SNPs is identified as a collapsed misassembly. Varying the thresholds 

changes the number of estimated misassemblies but does not alter the relative ranking 

between assemblers.

Evaluating gene completeness with asmgene.

BUSCO24 is a popular tool for evaluating gene completeness. It is very helpful for new 

species, but is underpowered for species with high-quality reference genomes. For example, 

BUSCO reports that the completeness of GRCh38 is only 94.8%, lower than the 95.2% 

percent completeness of the male HG002 hifiasm assembly (Supplementary Table 5).

In order to quantify gene completeness more accurately, we used the paftools script from the 

minimap2 package22 to calculate the asmgene scores. Unlike BUSCO, asmgene relies on a 

reference genome. It uses minimap2 to align EnsEMBL cDNAs (v99 for human and mouse 

and v47 for maize) to a reference genome or an assembly. For each transcript, asmgene 

records a hit if the transcript is mapped at ≥99% identity (≥97% for non-human species due 

to their higher diversity) over ≥99% of the transcript length. A transcript is considered to be 

single-copy (SC) if it has only one hit; otherwise it is considered to be multi-copy (MC). The 

asmgene script chooses the longest transcript to represent a gene. In Table 1 and 2, percent 

“Complete” equals |{SCorMCinASM}∩{SCinREF}|/|{SCinREF}|, where {SCinREF} 

denotes the set of genes single-copy in the reference genome and {SCorMCinASM} denotes 

the union sets of single- and multi-copy genes in the assembly. Similarly, percent 

“Duplicated” equals |{MCinASM}∩{SCinREF}|/|{SCinREF}|. In Table 2, percent “Multi-

copy gene retained” is calculated by |{MCinASM}∩{MCinREF}|/|{MCinREF}|.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Outline of the hifiasm algorithm.
Orange and blue bars represent the reads with heterozygous alleles carrying local phasing 

information, while green bars come from the homozygous regions without any heterozygous 

alleles. In phased string graph, a vertex corresponds to the HiFi read with same ID, and an 

edge between two vertices indicates that their corresponding reads are overlapped with each 

other. Hifiasm first performs haplotype-aware error correction to correct sequence errors but 

keep heterozygous alleles, and then builds phased assembly graph with local phasing 

information from the corrected reads. Only the reads coming from the same haplotype are 

connected in the phased assembly graph. With complementary data providing global phasing 

information, hifiasm generates a completely phased assembly for each haplotype from the 

graph. Hifiasm also can generate unphased primary assembly only with HiFi reads. This 

unphased primary assembly represents phased blocks (regions) that are resolvable with HiFi 

reads, but does not preserve phasing information between two phased blocks.
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Figure 2: Effect of false read binning.
(a) A set of reads with global phasing information provided by the complementary data. 

Reads in orange and reads in blue are specifically partitioned into haplotype 1 and haplotype 

2, respectively. The remaining reads in green are partitioned into both haplotypes. Read 9 

without heterozygous alleles is mispartitioned into haplotype 2, instead of to both 

haplotypes. (b) Pre-binning assemblies produced by current methods which independently 

assemble two haplotypes. Haplotype 1 is broken into two contigs due to the mispartition of 

read 9. (c) Hifiasm fixes the mispartition by the local phasing information in the phased 

assembly graph. It is able to identify that read 9 does not have heterozygous alleles, so that 

read 9 should be partitioned into both haplotypes.
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Table 1.

Statistics of non-human assemblies

Dataset Assembler Size (Gb) N50 (Mb) NG50 
(Mb)

Alternate size 
(Gb)

Completeness (asmgene or 
BUSCO)

Complete (%) Duplicated (%)

M. musculus (25×)

hifiasm 2.610 21.1 20.6 0.044 99.73 0.23

HiCanu 2.594 16.0 14.8 0.077 99.68 0.22

Peregrine 2.578 17.9 17.0 0.029 99.56 0.21

Falcon 2.559 19.3 16.7 0.025 99.49 0.14

Z. mays (22×)

hifiasm 2.190 37.5 37.5 0.095 99.85 0.17

HiCanu 2.145 27.1 24.1 0.040 99.84 0.13

Peregrine 2.205 10.1 10.2 0.038 99.88 0.26

Falcon 2.132 9.5 9.3 0.016 99.77 0.17

F. × ananassa (36×)

hifiasm (purge) 0.829 17.6 17.6 0.458 98.45 93.43

HiCanu 1.044 8.4 9.8 0.295 98.08 92.94

HiCanu (purge) 0.411 10.5 0.0 0.928 96.78 55.08

Peregrine 0.930 5.5 6.7 0.260 98.33 91.70

Falcon 0.971 5.4 7.3 0.213 98.27 92.81

R. muscosa (~29×)

hifiasm (purge) 9.664 9.1 7.208 66.61 1.70

HiCanu 9.645 5.2 6.361 65.54 3.92

Peregrine 9.415 0.9 2.936 66.84 1.72

S. sempervirens (~33×)
hifiasm (purge) 35.310 5.5 15.757 61.31 39.42

Peregrine 35.662 0.8 63.20 35.93

HiCanu (purge) applies purge_dups to a HiCanu assembly. Hifiasm (purge) enables the built-in purge_dups equivalent strategy. The N50/NG50 of 
an assembly is defined as the sequence length of the shortest contig at 50% of the total assembly/genome size. To calculate the NG50, a genome 

size of 2730.9 Mb (AC:GCF_000001635.20), 2182.1 Mb (AC:GCA_902167145.1) and 813.4 Mb21 is used for M. musculus, Z. mays and F. × 
ananassa, respectively. The genome size is unknown for R. muscosa and S. sempervirens. “Alternate size” is the total length of the alternate 

assembly. The reference-based asmgene method22 is used to evaluate the gene completeness of M. musculus and Z. mays which have high-quality 
reference genomes. For these two samples, “Complete” gives the percentage of single-copy genes in the reference genome (one unique mapping at 
≥97% identity) that are mapped at ≥97% identity to the assembly; “Duplicated” gives the percentage of reference single-copy genes that become 
multi-copy in the assembly. The BUSCO embryophyta dataset is used to evaluate the gene completeness of F. × ananassa and S. sempervirens; the 
tetrapoda dataset is used for R. muscosa. BUSCO scores of all samples can be found in Supplementary Table 7.

Nat Methods. Author manuscript; available in PMC 2021 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cheng et al. Page 16

Table 2.

Statistics of human primary assemblies

Dataset Assembly Size 
(Gb)

NG50 
(Mb)

NGA50 
(Mb) QV

Multi-copy 
genes 

retained 
(%)

Resolved 
BACs (%)

Gene completeness 
(asmgene)

Complete 
(%)

Duplicated 
(%)

CHM13 (HiFi 
32×)

hifiasm 3.052 88.9 86.7 54.2 99.7 98.8 99.97 0.05

HiCanu 3.037 69.7 67.9 54.1 98.9 97.6 99.97 0.04

Peregrine 2.990 37.8 33.4 43.8 51.1 39.7 99.64 0.16

Falcon 2.862 27.1 21.8 50.1 30.2 34.2 99.47 0.03

(ONT 120×)

Canu 2.936 80.0 47.3 32.7 76.9 86.7 99.30 0.10

Flye 2.900 37.5 34.0 33.5 54.7 60.6 99.22 0.11

Shasta 2.820 41.3 33.4 30.4 26.7 27.9 98.05 0.01

HG00733 (HiFi 
33×)

hifiasm 
(purge) 3.043 68.3 55.3 49.9 74.6 80.4 99.07 0.39

HiCanu 
(purge) 2.921 40.5 34.2 50.5 55.2 65.9 98.47 0.32

Peregrine 3.035 30.1 30.1 40.5 37.2 38.5 98.70 0.31

Falcon 2.861 24.4 23.2 46.3 33.6 38.0 96.51 0.15

(ONT 50×)

Canu 2.923 41.1 36.6 29.5 54.6 69.3 98.32 0.66

Flye 2.890 26.7 25.4 29.9 34.2 44.7 97.88 0.20

Shasta 2.805 21.2 20.8 30.0 17.0 22.9 97.19 0.05

HG002 (HiFi 
36×)

hifiasm 
(purge) 3.067 98.2 64.1 51.5 75.8 99.26 0.32

HiCanu 
(purge) 2.953 48.3 39.4 52.1 59.7 98.71 0.18

Peregrine 3.081 33.4 32.5 41.3 42.5 99.14 0.36

Falcon 2.955 30.4 29.0 46.7 36.6 99.00 0.20

Polished ONT assemblies were generated by the Shasta developers8. HiCanu and hifiasm were run without duplication purging for the 
homozygous CHM13 cell line, and run with purging for the heterozygous HG00733 and HG002 cell lines. The NGA50 of an assembly is defined 
as the length of the correctly aligned block at 50% of the total reference genome size which is assumed to be 3.1 Gb. It was calculated based on the 

minigraph26 contig-to-reference alignment. The “QV” (quality value) equals the Phred-scaled contig base error rate measured by comparing 31-
mers in contigs to 31-mers in short reads from the same sample. Percent “multi-copy genes retained” is reported by asmgene (Online Methods). It 
is the percentage of multi-copy genes in reference genome (multiple mapping positions at ≥99% sequence identity) that remain multi-copy in the 
assembly. A BAC is resolved if 99.5% of its bases can be mapped the assembly. There are 330 CHM13-specific BACs excluding those not resolved 
by the telomere-to-telomere (T2T) assembly, and there are 179 HG00733-specific BACs. HG002 does not have BAC data. Throughout the table, 
GRCh38 is used as the reference genome for HG00733 and HG002, and the T2T CHM13 assembly v0.9 is used as the reference for CHM13.
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Table 3.

Statistics of haplotype-resolved human assemblies

Dataset Assembly Size 
(Gb) QV NG50 

(Mb)

Multi-copy 
genes 

retained 
(%)

Resolved 
BACs (%)

Switch 
error 
(%)

Hamming 
error (%)

FNR 
(%)

FDR 
(%)

HG00733

hifiasm (trio) 6.071 49.9 34.9 84.0 95.5 0.08 0.22 2.43

HiCanu (trio) 6.079 49.2 10.6 84.3 90.5 0.04 0.04 4.78

Peregrine (trio) 5.938 42.2 19.1 37.6 39.7 0.10 0.23 12.34

Peregrine (Hi-
C) 5.867 41.6 26.1 33.2 35.2 0.12 0.67 3.31

Peregrine 
(Strand-seq) 5.805 45.8 26.6 33.0 46.9 0.18 0.72 3.99

HG002

hifiasm (trio) 5.967 51.6 43.0 80.6 0.79 0.34 0.88 0.26

HiCanu (trio) 6.003 50.4 12.1 80.4 0.75 0.19 1.57 0.32

Peregrine (trio) 5.888 42.7 25.8 38.7 0.70 0.18 4.42 4.18

Parental assemblies are merged together for computing QV, NG50 and BACs resolved. Calculating NG50 assumes a diploid human genome size of 

6.2 Gb. Phased variants are called with dipcall28 for each pair of parental assemblies and are compared to HG002 truth variants from GIAB29 or 

HG00733 phased SNPs from HGSVC30. Phasing switch error rate: percent adjacent SNP pairs that are wrongly phased. Phasing hamming error 
rate: percent SNP sites that are wrongly phased. False negative rate (FNR): percent true variants that are missed in the assembly. False discovery 

rate (FDR): percent assembly-based variant calls that are not called in the truth data. RTG’s vcfeval31 is used for estimating variant FNR and FDR 
for HG002. For HG00733, FNR is estimated at heterozygous SNP sites only; FDR is not available because HGSVC does not provide confident 
regions. Percent “multi-copy genes retained” measures the percentage of multi-copy genes in GRCh38 (multiple mapping positions at ≥99% 
sequence identity) that remain multi-copy in the assembly, averaged between the two parental haplotypes. Gene completeness (asmgene) can be 
found in Supplementary Table 2.
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