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Abstract

Introduction: With the increase in the number of patients with cardiovascular diseases, better 

risk-prediction models for cardiovascular events are needed. Statistical-based risk-prediction 

models for cardiovascular events (CVEs) are available, but they lack the ability to predict 

individual-level risk. Machine learning (ML) methods are especially equipped to handle complex 

data and provide accurate risk-prediction models at the individual level.

Areas covered: In this review, the authors summarize the literature comparing the performance 

of machine learning methods to that of traditional, statistical-based models in predicting CVEs. 

They provide a brief summary of ML methods and then discuss risk-prediction models for CVEs 

such as major adverse cardiovascular events, heart failure and arrhythmias.

Expert opinion: Current evidence supports the superiority of ML methods over statistical-based 

models in predicting CVEs. Statistical models are applicable at the population level and are 

subject to over-fitting, while ML methods can provide an individualized risk level for CVEs. 

Further prospective research on ML-guided treatments to prevent CVEs is needed.
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1. Introduction

Cardiovascular diseases (CVD) accounted for nearly 900,000 deaths in 2016 in the US alone 

[1], and it is well known that the CVD burden will rise because of the aging population. 

Researchers have created prediction models from existing data to identify individuals who 

are at risk for cardiovascular events using statistical methods. Statistical analysis is heavily 

dependent on data sampling methods, their distribution, and the types of tests used before 

elucidating statistical inferences at the population level using representative sampling. With 
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machine learning (ML), it is possible to make individual-level predictions about 

cardiovascular diseases and events. ML is a form of artificial intelligence (AI) that uses 

complex algorithms and does not require any assumption about the sample or population – 

unlike statistical methods. Statistical methods are useful for drawing inferences, while ML 

methods are better suited to make predictions [2]. ML can aid clinicians in providing 

individualized predictions and tailoring treatment plans for their patients.

In this article, we will succinctly discuss how machine learning works, followed by a review 

of how machine learning has been utilized to predict cardiovascular events such as major 

adverse cardiovascular events, heart failure and arrhythmias. We will also focus on how 

various machine learning algorithms compare to existing statistical-based models for 

predicting cardiovascular events.

2. Machine learning

The concept of artificial intelligence emerged around 1950 s. One of the seminal papers 

published by Alan Turing about “Can machines think? in 1950 created a platform for future 

work for computer scientists [3]. Over the next few decades, the field suffered from ‘AI 

winter’ before its revival and tremendous growth in algorithms and technology. There are 

many ML algorithms exist, however, a simplest form of ML algorithm we know is logistic 

regression. But, its inability to process data as an ML algorithm may limit its utilization on 

big data and in complex data analysis. There are three approaches through which the 

‘machine’ can be trained: (1) supervised learning, (2) unsupervised learning, and (3) 

reinforcement learning [4]. In supervised learning, the input datasets and desired outcomes 

are labeled. For example, let us say that we would like the machine to identify cases of heart 

failure. First, we train it with known (labeled) variables, such as biomarkers, imaging and 

clinical exam findings that are associated with the outcome (heart failure). In unsupervised 

learning, data points (biomarkers, imaging and clinical assessment findings) are entered into 

the algorithm, and we ask the machine to identify patterns or clusters within the population 

without a prespecified outcome. In this case, the algorithm is not asked to identify heart 

failure patients; rather, it creates clusters of variables that are closely related to heart failure.

Neither of these approaches involves any feedback mechanism. In reinforcement learning, 

the algorithm is challenged to reanalyze the data and optimize the predictive model based on 

feedback given for falsely identified cases. For example, crackles could be present in 

patients without heart failure. Patients without heart failure can have crackles, and they are 

relabeled as non-heart failure cases. The machine ‘relearns’ that the presence of crackles 

does not equate to heart failure. Thus, we can say that reinforcement learning is a hybrid 

form of supervised and unsupervised learning. Supervised learning is the most common 

method used in ML. Figure 1 summarizes the steps taken to create a predictive model using 

ML.
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3. Predicting cardiovascular events

In the remainder of the paper, we will discuss specific cardiovascular events than can be 

predicted by ML and how it has performed in comparison to statistical methods in the recent 

literature (Figure 2). We have summarized the information and major points in Table 1.

3.1. Major adverse cardiovascular events and myocardial infarction

Ischemic heart disease accounts for more than 9 million deaths globally, with a downward 

trend in mortality in Western countries. This phenomenon is attributed to advanced therapy 

and a strong emphasis on prevention [5]. It is essential to identify high-risk patients with 

readily available and pragmatic predictive models.

Simple EKG-based predictive models using neural networks have been used to detect 

myocardial infarction with an accuracy of more than 95% [6]. The availability of electronic 

health records and the incorporation of data from various cardiac imaging modalities allow 

us to create better predictive models. Prior studies have focused on regression-based models 

such as the Framingham risk score (FRS), thrombolysis in myocardial infarction (TIMI) and 

the Global Registry of Acute Coronary Events (GRACE) for risk assessment of initial, short-

term and long-term major adverse cardiovascular events (MACE), respectively [7–10]. 

However, regression-based models do not address the complex interactions between clinical 

variables existing in the studies. ML can reveal complex interactions among variables and 

provide accurate, predictive models for future outcomes.

To predict outcomes after myocardial infarction, various machine learning algorithms have 

been tested for their predictive ability [11]. Using the Hungarian Myocardial Infarction 

Registry, researchers studied 47,391 patients who were hospitalized for acute myocardial 

infarction. They compared the relative performance of decision tree, neural network and 

logistic regression models for short-term (30-day) and long-term (1-year) mortality post-

myocardial infarction. The decision tree, neural network and logistic regression models had 

areas under the receiver operating characteristic curves (AUCs) of 0.788, 0.837 and 0.834 

for 30-day mortality and 0.754, 0.819 and 0.819 for 1-year mortality, respectively. Although 

the neural network was not superior to logistic regression, it was significantly superior to the 

decision tree model in this study. Another registry-based (KAMIR: Korea Acute Myocardial 

Infarction Registry) ML model was superior to regression-based models in predicting 

outcomes up to one year post-myocardial infarction [12]. More than 14,000 acute 

myocardial infarction patients were included in the registry. The primary goal was to predict 

MACE using 51 variables, such as demographic information, clinical presentation variables 

and other variables. For this project, three ML algorithms, a deep neural network (DNN), a 

generalized linear model (GLM) and a gradient-boosting model (GBM) were developed, and 

the accuracy of traditional regression-based GRACE model was also tested. For the 1-, 6-, 

and 12-month follow-ups, the AUCs for predicting MACE were as follows: 0.97, 0.94, and 

0.96 for the DNN; 0.96, 0.95, and 0.96 for the GBM; 0.76, 0.67, and 0.72 for the GLM; and 

0.75, 0.72 and 0.76 for GRACE, respectively. In fact, the DNN had a > 95% accuracy for the 

prediction of MACE, and thus, ML far outperformed the regression-based GRACE model.
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Nevertheless, in an Israeli study, ML-derived models did not outperform GRACE [13]. The 

study included 2,782 patients and 54 variables. The objective of this study was to predict 30-

day mortality after ST-elevation myocardial infarction. Six different ML models were 

compared, along with GRACE and TIMI. The GRACE risk score outperformed that of 

TIMI, but the ML models were not superior to GRACE. Interestingly, the performance of 

the algorithm plateaued with 15 variables, which means that only certain variables are 

necessary to predict such outcomes; creatinine level, Killip class on admission, blood 

pressure, glucose and age were among the important predictors.

Patients with angina or its equivalent symptoms often undergo stress testing. In nuclear 

cardiology, ML has shown improved detection of myocardial ischemia [14]. It is possible to 

combine clinical variables and stress test data to predict cardiovascular outcomes. Betancur 

and colleagues studied 2,619 consecutive patients who underwent exercise or pharmacologic 

stress myocardial perfusion imaging (MPI) [15]. The goal was to study the combined value 

of MPI and clinical variables to predict 3-year MACE, including nonfatal myocardial 

infarction. As expected, the combined ML model predicted with better accuracy than the 

imaging ML model (AUC 0.81 vs. 0.78, respectively, p < 0.01). While there is value in 

incorporating MPI data, better predicting models are needed to identify short- and long-term 

MACE.

Computer computed tomography angiography (CCTA) has been studied to predict long-term 

outcomes. CCTA is an invaluable tool in both diagnosing and excluding coronary artery 

disease [16]. Data from the CONFIRM registry [17] was used to predict 5-year all-cause 

mortality by combining 44 CCTA variables and 25 clinical variables [18]. The study 

included more than 10,000 patients with suspected coronary artery disease and had at least 5 

years of follow-up data. They utilized the iterative LogitBoost algorithm, which is an 

ensemble boosting algorithm. Compared to FRS (AUC: 0.61) as well other CCTA-based risk 

models [segment stenosis score (AUC: 0.64), segment involvement score (AUC: 0.64)], the 

ML model combining CCTA and clinical variables (AUC: 0.79) was far better in predicting 

5-year all-cause mortality.

With ML, it is possible to predict MACE. A large-scale, registry-based analysis in the 

United Kingdom has shown the superiority of ML-based predictive modeling [19,20]. 

Similar analyses using US registries are needed. The accuracy of models heavily relies on 

the selected algorithm, clinical variables and heterogeneity of the population. Based on the 

available data, ML methods seem to perform better when combining clinical variables with 

cardiac imaging modalities.

3.2. Heart failure

Acute heart failure (AHF) leads to more than one million hospital admissions representing 1 

to 2% of all hospitalizations. The condition has been associated with morbidity and 

mortality as well as financial burden. Nearly 26 million patients worldwide carry a diagnosis 

of heart failure [21]. The overall survival rate from heart failure has improved with improved 

diagnostic tools and new drug therapies, but 2–17% of individuals admitted with heart 

failure die while hospitalized [21,22]. Risk models (GWTG-HF, MAGGIC, ADHERE, 

LAPS2, EFFECT, Premier) to identify individuals at high risk for mortality have been 
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developed for inpatient and outpatient settings [23]. These models require commonly 

collected variables in typical heart failure patients. However, the complexity of inter-variable 

interactions are not be well defined with statistical methods used to create these predictive 

models.

Traditional mortality models for heart failure patients were compared to machine learning 

models in a Korean study [24]. The source of data was hospitalized patients at two Korean 

hospitals (test data set) and the KorAHF registry [25] (validation dataset). They analyzed 

more than 8,000 patients for testing and validation purposes. When the GWTG-HF and 

MAGGIC risk models were compared to ML models to predict in-hospital, 12- and 36-

month mortality in AHF patients, the ML models significantly outperformed the other two 

models. The AUCs for in-hospital mortality were 0.88 [deep learning (DL) algorithm] and 

0.73 for the ML and GWTG-HF models, respectively. Similarly, the AUCs for 12-month and 

36-month mortality were 0.78 and 0.81 (deep learning) and 0.72 and 0.73 (MAGGIC score), 

respectively. In fact, the deep learning algorithm also outperformed the random forest, 

support vector machine, Bayesian network and logistic regression models for all three time 

points.

Machine learning is also able to predict HF better than the Cox-based method in diabetic 

patients [26]. Data from ACCORD (Action to Control Cardiovascular Risk in Diabetes) and 

ALLHAT (Anti-hypertensive and Lipid-lowering Treatment to Prevent Heart Attack Trial) 

were analyzed to compare a random survival forest (RSF) model and the Cox-based method 

for HF events (death or hospitalization). The RSF model had a better AUC of 0.77 vs. 0.73 

for the Cox-based model. Using the best predictors from the RSF algorithm, the WATCH-

DM model was created. Weight, age, hypertension, creatinine, high-density lipoprotein level, 

QRS duration, myocardial infarction and coronary artery bypass surgery were the prediction 

variables in the model. An increase of 1 unit was associated with a 24% increased risk of 

HF.

In the most recent analysis of TOPCAT (Treatment of Preserved Cardiac Function Heart 

Failure with an Aldosterone Antagonist), Angraal and colleagues demonstrated that ML had 

a better predictive ability than logistic regression for HF-related hospitalization or mortality 

[27]. Among the studied algorithms (logistic regression, gradient boosting, random forest 

and support vector machine), the random forest model had the best predictive ability, with 

AUCs of 0.72 and 0.76 for mortality and HF hospitalizations over 3 years of follow-up, 

respectively. The analysis also showed that blood urea nitrogen (BUN) and alkaline 

phosphatase levels, Kansas City Cardiomyopathy Questionnaire (KCCQ) score and body 

mass index were the best predictors for mortality, while hemoglobin and BUN levels, KCCQ 

score and previous HF-related admissions were the best predictors for HF hospitalizations 

over 3 years of follow-up.

Readmission is another issue burdening our healthcare system. The Hospital Readmission 

Reduction Program was intended to reduce hospital admissions for certain conditions, 

including heart failure. Despite its best efforts, readmission rates for heart failure-related 

readmission remain approximately 20% nationwide. Several studies have tried to identify 

high-risk patients, and a better prediction model is still needed. Mortazavi and colleagues 
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used data from Tele-HF to compare a machine learning model to a logistic regression model 

to predict heart failure-related readmissions [28]. They analyzed the 30-day post-discharge 

readmission data from 1,001 patients. The majority of patients had a left ventricle ejection 

fraction <40%. The ML-based algorithms had better C-statistics (AUCs) than the logistic 

regression model. The random forest algorithm (vs. logistic regression) had the highest C-

statistic of 0.68 (vs. 0.54) for readmission at 30 days.

Additional supporting data to predict 30-day HF readmission risk using ML (vs. traditional 

models) comes from a retrospective analysis of 11,510 patients (out of 27,334 admissions) 

[29]. Among the logistic regression, gradient boosting, deep unified network (DUN) and 

max-out network models, the DUN model was the best prediction model for 30-day risk of 

readmission, with an AUC of 0.71 vs. 0.66 for logistic regression. A similar finding was also 

observed in another study, in which ML-based algorithms (deep neural network and random 

forest models) outperformed logistic regression models for the 30-day risk of readmission 

[30].

To predict post-discharge outcomes (readmissions and deaths), enhanced machine learning, 

multilayer perceptron (MLP) technique is even superior to traditional ML or regression-

based modeling. In MLP, there is input, hidden and output layers. All input layers directly 

connect to nodes in the hidden layer(s), which also receive output from the output layer(s). 

This creates a higher level of non-linear transformation for learning. Using the Western 

Australia Data Linkage System, Awan and colleagues studied a cohort of 10,757 patients, 

among whom 23.6% were readmitted or died within 30 days of the index discharge [31]. 

They created a multilayer perception (MLP) model, which is a model derived from a neural 

network. They also formed models using other ML algorithms used in the other studies 

described above. The MLP model has the best AUC (0.63) vs. 0.55 for the LR model or 0.53 

for the weighted random forest model. The MLP model had an improved sensitivity (48%) 

compared to the other models. This study highlighted intra-ML model variability to predict 

post-HF discharge outcomes. It is important to consider various ML algorithms before 

creating a final predictive model.

For HF patients, machine learning algorithms are superior to conventional statistical-based 

models for predicting HF-related readmissions and mortality in multiple studies. However, 

data on model-based decision making and interventions to avert readmissions or improve 

outcomes are not well defined.

3.3. Arrhythmia

The dynamic and transient nature of arrhythmias make them unpredictable in a clinical 

setting. Limited epidemiologic data have shown that the worldwide burden of arrhythmia 

and sudden cardiac death is rising. This phenomenon is probably due to better detection 

methods, an aging population and an increased incidence of risk factors [32]. While there 

are tools available to detect arrhythmias as they are occurring, predictive tools for 

arrhythmia before the onset are lacking.

Atrial fibrillation (AF) is well known to be independently associated with thromboembolic 

events such as stroke [33]. In the SMART (The Stroke and Monitoring for PAF in Real 
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Time) study, AF was detected in 1 out of 9 cryptogenic stroke patients with a 30-day event 

monitor [34]. This finding means that AF can be transient and clinically unknown unless 

patients are monitored for a long time. However, the goal should be to identify patients who 

are likely to develop AF so that they are promptly treated. With this question in mind, a large 

study involving 180,000 patients in normal sinus rhythm (SR) was carried out by Attia and 

colleagues [35]. The authors developed a convolutional neural network (CNN) using AI-

enabled EKGs to predict AF in patients in sinus rhythm. For this study, both AF and atrial 

flutter (AFL) were labeled as AF. More than 450,000 EKGs from 126,526 patients, 64,340 

EKGs from 18,116 patients, and 130,802 EKGs from 36,280 patients were used for training, 

internal validation and testing, respectively. The model predicted AF from a single EKG 

with an area under the curve (AUC) of 0.89(0.86–.88) and 0.90 (0.90–0.91) when the EKGs 

with the highest risk score were used. The sensitivity and specificity of the model were 79% 

and 79.5%, respectively. Since AF affects many individuals and such data can influence 

treatment, validation using an external dataset and optimization of the model is necessary.

EKG signals have been studied to predict sudden cardiac death (SCD). Heart rate variability 

(HRV) was studied by Ebrahimzadeh and colleagues using various ML algorithms to predict 

SCDs [36]. In this study, the authors analyzed EKGs from 70 patients (35 who had 

experienced SCD and 35 healthy subjects) with a sampling rate of 256 Hz. They found that 

the two-minute interval before an SCD can be prognostically important to identify high-risk 

patients. The multilayer perceptron (MLP) neural network showed superiority to the k-

nearest neighbor (k-NN) algorithm. The MLP model had an 84% SCD prediction rate of vs. 

81.5% for the k-NN model 4 minutes before the event. EKG signals and various ratios 

calculated from EKG, such as the timing of the T-wave relative to the QT interval, have been 

shown to predict SCDs by means of ML-based models with greater than 97% accuracy (the 

maximum accuracy for the random forest model was 99.49%) [37].

More than 200,000 in-hospital cardiac arrest events occur in US hospitals [38]. For early 

detection, at-risk patients are admitted to hospitals, but accurate prediction is essential to 

divert appropriate resources to these patients. Using only blood pressure, heart and 

respiratory rates and body temperature, Kwon and colleagues developed deep and machine 

learning models to predict in-hospital cardiac arrest [39]. The DL-based early warning 

system outperformed the Modified Early Warning Score (MEWS) significantly (AUC of 

0.85 vs. 0.60). Random forest and LR models were also better than MEWS with AUCs of 

0.78 and 0.61, respectively. Importantly, the DL- and ML-based algorithms reduced the 

number of early warnings without compromising sensitivity. In essence, DL and ML models 

predicted cardiac arrest significantly better than the currently adopted MEWS. Likewise, ML 

has been used to accurately predict out-of-hospital cardiac arrest via data obtained from 

emergency calls with medical dispatchers [40].

Heart failure (HF) patients are susceptible to fatal arrhythmias and sudden cardiac deaths 

(SCDs). Implantable cardioverter defibrillators (ICDs) are associated with a greater than 

50% risk reduction in SCD in selected patients [41]. Patients with reduced systolic function 

(≤ 35%) are susceptible to fatal ventricular arrhythmias and can benefit from an ICD. A 

study was designed to create a predictive model based on existing data from a retrospective, 

multicenter registry of Chinese patients with HF [42]. The primary goal of this study is to 
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predict all-cause sudden cardiac deaths. Various ML algorithms and Cox proportional 

hazards regression models will be utilized to create a predictive model for SCD in HF 

patients with low systolic function.

Hypertrophic cardiomyopathy patients are at increased risk for sudden cardiac death. An 

ML-based model (HCM-VAr-Risk) was created to predict ventricular arrhythmias in 

hypertrophic cardiomyopathy patients [43]. The goal was to detect at least one episode of 

sustained ventricular tachycardia or fibrillation. The baseline logistic regression model had 

an AUC of 0.80, and a 0.80 false-negative rate, the HCM-VAr-Risk model had an AUC of 

0.83 and a 0.27 false-negative rate. Out of 93 clinical variables, twenty-two variables (11 

positively and 11 negatively) predicted the risk of arrhythmia. There are currently 10 known 

variables in the HCM-Risk-SCD model (AUC ~ 0.69) developed by the American College 

of Cardiology and American Heart Association [44], but the HCM-VAr-Risk model 

identified 12 new variables that increased the predictive ability; blood pressure before 

exercise, early diastolic strain rate, body mass index and statin use were among the new 

variables.

Furthermore, ML and DL algorithms have been utilized to optimize automated external 

defibrillators (AEDs). These devices notify the operator whether the rhythm is shockable or 

not (for ventricular tachycardia or fibrillation). Minimum standards for arrhythmia analysis 

algorithms for AEDs have been published [45]. To further enhance the accuracy, an ML-

derived algorithm using a convolutional neural network has been proposed. The algorithm 

had an accuracy of 99.26%, with a sensitivity of 97.07% and a specificity of 99.44% [46]. 

Ideally, a sensitivity of 100% is preferable to avoid artificial sudden cardiac arrest, but the 

current work promises future development for further optimization.

The application of ML seems very promising for detecting arrhythmias using simple clinical 

variables and EKGs. In the era of wearable devices such as those used in the Apple Heart 

Study [47] and improved algorithms, the ability to predict arrhythmias before their 

occurrence in the near future is very plausible.

4. Bayesian statistics

Regression-based models lack the ability to predict outcomes at an individual level, while 

Bayesian statistical-based modeling can overcome this hurdle. The majority of current risk-

predicting models are regression based (or frequentist statistics). Fundamentally, Bayesian 

statistics uses prior knowledge, data or belief to construct a probability distribution, while 

frequentist statistics does not take any prior knowledge of an event into account. 

Individualized risk prediction and learning from prior data are similar features in Bayesian 

statistics and ML. Risk prediction models using Bayesian statistics have been created for 

cardiovascular events [48,49]. Regression-based models can be incorporated in the Bayesian 

methods; similarly, Bayesian theory is also utilized in ML algorithms. But, a comparative 

study for various ML algorithms that includes Bayesian theory to predict cardiovascular 

event is lacking. Future work should focus on comparing various ML modeling that includes 

Bayesian machine learning approach.
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5. Conclusion

Machine learning-based algorithms are superior to traditional statistical methods for 

predicting cardiovascular events. Certain algorithms, such as deep neural networks, are 

superior to other ML algorithms for certain outcomes. Further studies evaluating the 

applicability of such algorithms in the real world are needed

6. Expert opinion

Enormous amounts of data are generated by electronic health records, registries, research 

studies, and genomic and biospecimens. The complexity and size of the data poses 

challenges for data scientists to process, analyze, interpret and put them into clinical 

contexts. Although AI is not a new concept, its popularity has grown tremendously in the 

last decade. Machine learning is a part of AI and addresses complex data and ‘trains’ itself 

through mathematical models. By 2020, the US healthcare industry is expected to generate a 

trillion megabytes of data, with an annual growth of 36–48% [50]. To process even a fraction 

of these data, advanced modeling and statistical analysis techniques are necessary. Due to 

fast computing power, ML methods allow us to look at the data in unforeseeable ways.

Machine learning-based models have a better predictive ability than statistical-based models. 

Nonlinear modeling, complex calculations, and a higher dimension of data analysis are 

unique characteristics that set ML apart from statistical analysis. Further analysis should 

focus on the implementation of a prediction model for altering clinical outcomes. If an 

EKG-based algorithm can detect the future risk of developing atrial fibrillation, then trials 

should evaluate whether early treatment with anticoagulation reduces the risk of future 

cardiovascular events. Indeed, atrial fibrillation is detected in 10–30% of patients after an 

index cryptogenic stroke [51]. Similarly, algorithm-based at-risk detection for HF or 

myocardial infarction can possibly alter outcomes and save healthcare costs. Duration of 

dual-antiplatelet therapy, identifying ideal candidates for implantable cardioverter 

defibrillators or cardiac resynchronization therapy and advanced heart failure treatments are 

among several topics and issues that ML can help us to further delineate. The role of ML in 

structural heart disease and interventions can be paramount. The application of ML in 

genome-based projects has been shown to predict advanced coronary artery calcium, which 

is a known risk factor for future cardiovascular events [52]. Studies focusing on 

incorporating genomic-level data into existing large datasets are quintessential to predict 

cardiovascular events. Future studies focusing on cost-saving strategies using ML algorithms 

are also needed as healthcare costs are skyrocketing.

Our ongoing work is focused on the reclassification and clustering of patients for specific 

diseases and outcomes using patient similarity analysis. In a patient similarity analysis, 

patients are presented as nodes, and they are connected by edges that represent similarities 

among the patients. This analysis reveals a heterogeneous relationship among the patients 

and represents the data in network and graphical format. In a recent publication, we showed 

the two main pathways of how patients with severe aortic stenosis progress and how they 

respond to treatment after aortic valve replacement using patient similarities [53]. We are 

working on a study to demonstrate how patients with heart failure are clustered using similar 
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clinical and echocardiographic data. The patient clusters were divided into four regions 

based on the similarities, and we were able to demonstrate how each region predicted 

MACE. For example, patients with increased filling pressure and increased left atrial volume 

index will have an increased risk of cardiovascular events, and then, the patients can be 

treated to have these parameters within the normal range. Thus, the application of AI can aid 

the analysis of data in unique ways that can aid clinicians in identifying and predicting 

individual-level risk.

One of major caveat in understanding of ML based prediction model is the ‘black box’. Lack 

of clear understanding how information journeys from input variables to outcomes 

predictors create uncertain trusts in the implantation of ML based decision making. 

Improper and undertested models can create a huge public health risk. Creating testing and 

validation datasets requires utmost accuracy and confidence as much as implementing the 

model prospectively. An applicability of data interpretation is not as widely common as 

statistical based research among clinicians, and therefore, the systemwide integration of 

predictive models are not practical in every hospital or clinic at present time. AI-based 

modeling is largely driven by data scientists. Mastering the complexity of programming, 

data management, and application of appropriate algorithms can be a daunting task for 

clinicians. We therefore recommend establishing a team approach in which clinicians, 

statisticians and data scientists are included. Although AI is widely popular among 

commercialized industries, it is still lagging in the medical field. We strongly believe that AI 

can transform the medical industry and deliver precision medicine.
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Article Highlights

• Machine learning (ML), a branch of artificial intelligence, is widely utilized 

in cardiovascular medicine

• Thus far, predictive models for cardiovascular events are based on statistical-

based methods

• Evidence favors ML as a better predictive tool for cardiovascular events

• Future research showing applications of ML to prevent cardiovascular events 

is needed
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Figure 1. 
Generalized diagram of the steps in machine learning used to create models.
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Figure 2. 
Central theme of literature reviewed in this review article.
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