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Chronic ethanol vapor exposure
potentiates cardiovascular responses to
acute stress in male but not in female rats
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Abstract

Background: Ethanol use is related to a wide variety of negative health outcomes, including cardiovascular
diseases. Stress is also involved in numerous pathologies, such as cardiovascular diseases and psychiatric disorders.
Sexual dimorphism is an important factor affecting cardiovascular response and has been proposed as a potential
risk factor for sex-specific health problems in humans. Here, we evaluated the effect of prolonged ethanol vapor
inhalation on arterial pressure, heart rate, and tail skin temperature responses to acute restraint stress, investigating
differences between male and female rats.

Methods: We exposed male and female Long-Evans rats to ethanol vapor for 14 h, followed by ethanol withdrawal
for 10 h, for 30 consecutive days, or to room air (control groups). The animals underwent surgical implantation of a
cannula into the femoral artery for assessment of arterial pressure and heart rate values. The tail skin temperature
was measured as an indirect measurement of sympathetic vasomotor response.

Results: Chronic ethanol vapor inhalation reduced basal heart rate in both female and male rats. Sex-related
difference was observed in the decrease of tail cutaneous temperature evoked by stress, but not in the pressor and
tachycardiac responses. Furthermore, prolonged ethanol inhalation enhanced the blood pressure and heart rate
increase caused by acute restraint stress in male, but not in female rats. However, no effect of chronic ethanol
vapor was observed in the tail cutaneous temperature response to restraint in either sex.

Conclusion: Chronic ethanol vapor exposure increased the cardiovascular reactivity to stress in male, but not in
female rats.
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Background
Excessive ethyl alcohol (ethanol) consumption is related
to a wide variety of negative health outcomes and pre-
mature deaths [1]. According to the World Health
Organization, among worldwide ethanol-related deaths
in 2016, 19% were due to cardiovascular diseases [1].
Clinical and preclinical studies have demonstrated that
alterations in contractile/relaxant properties of the vas-
cular smooth muscle, changes in neuroendocrine func-
tion, impairment of baroreflex activity, and autonomic
imbalance constitute important mechanisms underlying
the negative cardiovascular effects of heavy ethanol con-
sumption [1–7].
Stress is a complex and multidimensional

phenomenon of great biological importance that re-
quires an appropriate and coordinated set of physio-
logical responses for the maintenance of homeostasis
[8–11]. Restraint is one of the most commonly employed
stressors to investigate stress-evoked behavioral and
physiological changes in laboratory animals [12–14].
This model is characterized by unconditioned and un-
avoidable stress-elicited neuroendocrine and cardiovas-
cular responses, the latter being characterized by
sustained blood pressure and heart rate (HR) increases
that last throughout the restraint period [10, 15, 16]. In
addition, cutaneous vasoconstriction during restraint
leads to a fall in the tail skin temperature [17–19].
Sexual dimorphism is an important factor affecting

cardiovascular response induced by both stress and
chronic ethanol access [20–27]. For example, suscepti-
bility to hypertension in men is generally associated with
increased vascular response to stress when compared to
women [28]. In addition, preclinical results showed that
females are more resistant than males to stress-induced
cardiovascular disorders [20]. Regarding the association
between ethanol and cardiovascular impairments, results
have demonstrated that hypertensive effect of ethanol in
men is manifested in a linear dose-dependent manner
[29–31], whereas a slight protective effect of ethanol is
observed in women at moderate doses [32–34]. Accord-
ingly, studies in rodents demonstrated that high blood
alcohol levels (BALs) induced by chronic ethanol con-
sumption evoked hypertension, increased sympathetic
neural activity, and enhanced baroreflex tachycardic re-
sponse in males [3–5, 7], while effects considered pro-
tective to cardiovascular function were reported in
females, including hypotension, increased cardiac para-
sympathetic dominance, and bradycardic reflex response
[21, 35–38]. Regarding stress responses, decreased
stress-evoked cardiovascular changes were reported fol-
lowing acute ethanol administration [39]. Nevertheless,
the impact of chronic ethanol exposure in cardiovascular
reactivity during aversive threats has never been
reported.

In addition, despite the evidence of differences in car-
diovascular changes related to chronic ethanol exposure
between females versus males [40–46], a possible influ-
ence of sexual dimorphisms in the effect of ethanol on
stress-evoked cardiovascular changes is unknown. Thus,
the present study aimed to evaluate the effect of chronic
ethanol vapor inhalation on blood pressure, HR, and tail
skin temperature responses to acute stress, investigating
differences between male and female rats.

Methods
Animals
We used 25 male and 27 female Long-Evans rats at
post-natal day (PND 60), obtained from the animal
breeding facility at the School of Pharmaceutical Sci-
ences, São Paulo State University (UNESP) (Araraquara,
SP, Brazil). These were housed in standard rat cages
(plastic cages) in a temperature-controlled room at 24
°C in the Animal Facility of the Physic Institute of São
Carlos, University of São Paulo (USP) (São Carlos, SP,
Brazil). The animals used in this study were the same
animals used in our previous work [21]. They were kept
under a 12:12-h light-dark cycle (lights on between 7:00
h and 19:00 h) with food and filtered water ad libitum.
Housing conditions and experimental procedures were
carried out following protocols approved by the Ethical
Committee for Use of Animal and Subjects of the Physic
Institute of São Carlos-USP (approval# 2014/01), which
complies with Brazilian and international guidelines for
animal use and welfare.

Drugs and solutions
Ethanol 95% (Labsynth, Diadema, SP, Brazil) and Isoflur-
ane, USP (99.9% v.v). Tribromoethanol (Sigma–Aldrich,
St. Louis, MO, USA) and Flunixine meglumine (Bana-
mine®; Schering-Plough, Cotia, SP, Brazil) was dissolved
in saline (NaCl 0.9%). Poly-antibiotic preparation (Penta-
biotico®; Fort Dodge, Campinas, SP, Brazil) were used as
provided.

Ethanol vapor inhalation
Animals were exposed to chronic intermittent ethanol
vapor in an attempt to induce a state of ethanol depend-
ence in rodents, which is characterized by the presence
of withdrawal signs, tolerance, and negative emotional
symptoms upon cessation of ethanol vapor exposure
[47–52]. Furthermore, compared to other methods,
ethanol vapor inhalation offers advantages to the ethanol
researcher, including the circumvention of rodents’ nat-
ural aversion to ethanol and the ease of maintenance of
consistent BALs [47–52].
We adapted the protocol from Leão et al. [53]. Briefly,

animals were housed in standard rat cages that were
placed into separate sealed clear acrylic chambers (n = 4

Bianchi et al. Biology of Sex Differences           (2021) 12:27 Page 2 of 13



per chamber), where the animals were exposed to con-
trolled ethanol vapor. Evaporated ethanol values were
adjusted as necessary to maintain animal BALs in the
150–350 (mg/dl) range. Animals were exposed daily to
ethanol vapor inhalation for 14 h (7 p.m.–9 a.m.)
followed by 10 h of withdrawal (no ethanol vapor inhal-
ation), for 30 days. Blood samples were collected every
week to confirm BALs. We used the single tail tip ampu-
tation (1–2 mm length per single amputation) method
to perform the blood draws. Other blood collections
were performed by removing the scab. The data of BALs
are described in our previous study [21]. Control animals
were not exposed to ethanol vapor and were not submit-
ted to the blood drawing procedure.

Surgical preparation
Animals were anesthetized with tribromoethanol (250
mg/kg, i.p.) and a polyethylene cannula (a 4-cm segment
of PE-10 heat-bound to a 13-cm segment of PE-50)
(Clay Adams, Parsippany, NJ, USA) filled with a solution
of heparin (50 UI/ml, Hepamax-S®, Blausiegel, Cotia, SP,
Brazil) diluted in saline (0.9% NaCl) was inserted into
the abdominal aorta through femoral artery for cardio-
vascular recording. The catheter was tunneled under the
skin and exteriorized on the animal’s dorsum. After the
surgery, rats were treated with a poly-antibiotic formula-
tion containing streptomycins and penicillins (560 mg/
ml/kg, i.m.) to prevent infection and flunixin meglumine
(0.5 mg/ml/kg, s.c.)—a non-steroidal anti-inflammatory
drug—for postoperative analgesia.

Blood pressure and heart rate recording
The catheter implanted into the femoral artery was con-
nected to a pressure transducer (DPT100, Utah Medical
Products Inc., Midvale, UT, USA). Pulsatile blood pres-
sure was recorded using an amplifier (Bridge Amp,
ML224, ADInstruments, Australia) and a digital acquisi-
tion board (PowerLab 4/30, ML866/P, ADInstruments,
NSW, Australia). Mean arterial pressure (MAP) and HR
values were derived from the pulsatile blood pressure
recording.

Tail skin temperature measurement
The cutaneous temperature of the tail was recorded
using a thermal camera (IRI4010, InfraRed Integrated
Systems Ltd., Northampton, UK). The temperature was
measured on five points of the animal’s tail and the
mean value was calculated for each recording [19, 54].

Restraint stress
For acute restraint stress, each rat was placed in a plastic
cylindrical restraint tube (diameter 6.5 cm, length 15
cm), ventilated by holes (1 cm diameter) that made up
approximately 20% of the tube surface. Restraint lasted

30 min [54, 55], and immediately after the end of the
stress exposure, rats were returned to their home cages.
Each rat was submitted to only one session of restraint
in order to avoid habituation [56, 57].

Experimental protocols
Different sets of female and male animals were randomly
allocated in four experimental groups: (i) female control,
whose animals were kept in their home cage without
ethanol vapor exposure (n = 8); (ii) female ethanol vapor,
whose animals were submitted to ethanol vapor cham-
ber daily (n = 9); (iii) male control, whose animals were
kept in their home cage without ethanol vapor exposure
(n = 5); and (iv) male ethanol vapor, whose animals were
submitted to ethanol vapor chamber daily (n = 9). A
schematic representation of the experimental design is
presented in Fig. 1. First, animals were exposed to inter-
mittent ethanol vapor for 4 weeks. Blood samples were
collected every week to confirm BALs. Twenty-four
hours after the last ethanol vapor exposure day, animals
in all experimental groups were subjected to surgical
preparation. The next day, rats were brought to the ex-
perimental room in their own home cages. Rats were
allowed 1 h to adapt to the conditions of the experimen-
tal room, such as sound and illumination, before starting
arterial pressure and HR recording. The experimental
room was temperature controlled (25 °C) and was acous-
tically isolated from the other rooms. Cardiovascular re-
cording of MAP and HR of freely moving rats began at
least 30 min before the onset of the restraint and was
performed throughout the session of stress. The tail skin
temperature was measured 10, 5, and 0 min before the
restraint for baseline values and at 5, 10, 15, 20, 25, and
30 min during restraint [16, 19]. At the end of the ex-
periment, the rats were anesthetized with isoflurane in-
halation and decapitated.

Data analysis
Basal values of MAP, HR, and cutaneous temperature
were evaluated by two-way ANOVA models, using sex
and vapor as independent factors, and the average of the
baseline measurements as a dependent variable.
The comparisons between the average values of MAP,

HR, and cutaneous temperature values during the pre-
stress period (basal) and restraint stress session were
conducted using three-way mixed ANOVA models, with
sex and vapor as between-subject factors and time (basal
× stress) as a repeated-measure factor.
The time-course curves of MAP, HR, and cutaneous

temperature during the stress session were evaluated by
generalized estimation equation (GEE) model with sex
and vapor as between-subject factors and time of stress
exposure as a repeated-measure factor. GEE is a semi-
parametric model that evaluates longitudinal data that
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displays advantages when compared to repeated mea-
sures ANOVA. Contrary to ANOVA, GEE can be used
when normality assumption is violated, and it achieves
higher power with smaller sample sizes [58, 59]. GEE
models were estimated using the robust estimator (Hu-
ber-White estimator) and a first-order autoregressive
correlation matrix structure. When main effects of time,
sex, or vapor were detected, data were submitted to con-
trast analysis with Bonferroni adjustment for multiple
comparisons. When two- or three-way interactions were
detected, data from different experimental groups (vapor
or sex) were analyzed separately. For example, GEE de-
tected a statistically significant interaction between sex
and time for tail temperature. Therefore, as a subsequent
step, data were evaluated using two GEE models: one
evaluating the effect of time on males and the other on
females.

ANOVA analysis was conducted on GraphPad Prism
8.0.2 software and GEE analysis was conducted on the
software SPSS v. 20. For all analysis, the adopted statis-
tical significance level (α) was 0.05.

Results
Effects of ethanol vapor exposure on basal values of
arterial pressure, heart rate, and tail skin temperature
Figure 2 depicts the mean ± standard error of mean
(SEM) of MAP, HR, and tail temperature during basal
period in female and male rats. Analysis of MAP indi-
cated no significant effect for sex (F (1, 27) = 1.12, p >
0.05), vapor (F (1, 27) = 0.21, p > 0.05), or interaction be-
tween factors (F (1, 27) = 0.06, p > 0.05) (Fig. 2a). Analysis
of HR revealed a main effect of vapor (F (1, 27) = 5.24, p
< 0.05), with no effect for sex (F (1, 27) = 0.09, p > 0.05),
or interaction between factors (F (1, 27) = 0.13, p > 0.05)

a b c

Fig. 2 Values of a mean arterial pressure (MAP), b heart rate (HR), and c tail skin temperature in female and male control rats (light blue bars) or
rats that were submitted to ethanol vapor exposure (dark blue bars). The bars represent mean ± SEM (n = 5–9 per group). Two-way ANOVA. The
number sign indicates the main effect of vapor, p < 0.05

Fig. 1 Experimental design schematic representation. Female and male rats were submitted to daily sessions of ethanol vapor inhalation for 14 h
(7 p.m. to 9 a.m.) followed by a 10-h withdrawal (no ethanol vapor inhalation) to evaluate chronic ethanol vapor exposure effects on
cardiovascular parameters. Blood samples (100 μl) were collected from the tip of the rat tail every week. Twenty-four hours after the last ethanol
vapor exposure, we subjected all experimental groups to surgical preparation. Two days later, we performed cardiovascular measurements during
basal and stress conditions (for details, see the description of “Experimental protocols” in the text)
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(Fig. 2b). No significant effects of sex (F (1, 40) = 0.005, p
> 0.05), vapor (F (1, 40) = 0.10, p > 0.05), or interaction
between factors (F (1, 40) = 0.34, p > 0.05) were observed
for tail skin temperature (Fig. 2c). In summary, the ana-
lysis of basal parameters showed that alcohol vapor ex-
posure decreased HR in females and males, when
compared to control groups, with no alteration of MAP
and tail skin temperature.

Effects of ethanol vapor exposure on cardiovascular
responses to acute restraint stress
Independently of sex or treatment, acute restraint stress
increased MAP (F (1, 54) = 2037, p < 0.0001) and HR (F
(1, 29) = 1283, p < 0.0001) and decreased tail cutaneous
temperature (F (1, 43) = 25.14, p < 0.0001), as revealed by
a significant effect of time (basal × stress). Thus, these
alterations reflect the physiological changes promoted by
restraint stress.
During restraint stress, GEE analysis of MAP de-

tected significant effects of sex, treatment, and time,
as well as significant interactions sex × time; vapor ×
time; and sex × vapor × time (Table 1). Subsequent
analyses revealed a significant effect of sex in the
group treated with vapor (b = − 6.48, p < 0.05), but
not in the control group (b = − 0.29, p > 0.05). Fur-
thermore, a significant effect of treatment was de-
tected in males (b = 7.38, p < 0.002), but not in
females (b = 0.85, p > 0.05). Taken together, the data
indicates that chronic ethanol vapor inhalation poten-
tiates the effect of acute stress on MAP in male, but
not in female rats (Fig. 3).
For HR, GEE detected a main effect of time and sig-

nificant interactions sex × time; vapor × time; and sex ×
vapor × time (Table 1). In Table 2, we presented all the
significant effects of time revealed by Bonferroni pair-
wise comparisons. Considering the data present in Fig. 3
with the results of statistical analysis, we can conclude
that males exposed to ethanol vapor exhibit considerable
variation of HR during restraint, when compared to fe-
males and male control group. In this regard, male vapor
group showed an increase on tachycardia response,
which was maintained until the last 10 min of stress
session.
For tail temperature, GEE detected a significant main

effect of time and an interaction sex × time (Table 1).
Subsequent analysis revealed a significant effect of time
in both males (W(6) = 47.45, p < 0.001) and females
(W(6) = 20.66, p < 0.05). Pairwise comparisons showed
that females displayed decreased tail temperature only in
the first 5 min of restraint, whereas males displayed de-
creased temperature throughout the stress session (Fig.
3). This result indicates an immediate decrease in cuta-
neous temperature, which was sustained throughout the
stress period in females, whereas males showed a more

gradual decline in cutaneous temperature over the entire
stress session. Nevertheless, analysis did not indicate an
effect of ethanol vapor in restraint-evoked skin
temperature changes in either female or male animals.

Discussion
Present findings provide evidence of the effects of
chronic ethanol vapor exposure on cardiovascular func-
tion during acute restraint stress in female and male rats.
Our main findings were as follows: (i) females and males
exposed to ethanol vapor presented a decrease in basal
HR when compared to control groups; (ii) sex-related
difference was observed in the time-course of decrease
in the cutaneous temperature under stress condition;
(iii) chronic ethanol vapor enhanced the MAP and
tachycardiac response caused by acute restraint stress in
males, but not in females; and (iv) chronic ethanol vapor
did not change the tail cutaneous temperature response
to acute restraint stress in either sex.

Table 1 GEE (generalized estimation equation) model with
blood pressure, heart rate, or tail temperature as the dependent
variable, and sex, vapor condition, and time as independent
factors

Variables in the model W gl p

Blood pressure

Sex 4.996 1 0.025 *

Vapor condition 5.795 1 0.016 *

Time 806.670 14 < 0.001 *

Sex × vapor 3.086 1 0.079

Sex × time 155.382 14 < 0.001 *

Vapor × time 42.638 14 < 0.001 *

Sex × vapor × time 96.417 14 < 0.001 *

Heart rate

Sex 0.167 1 0.683

Vapor condition 1.304 1 0.253

Time 447.653 14 < 0.001 *

Sex × vapor 0.003 1 0.955

Sex × time 116.907 14 < 0.001 *

Vapor × time 88.871 14 < 0.001 *

Sex × vapor × time 62.33 14 < 0.001 *

Tail temperature

Sex 0.854 1 0.355

Vapor condition 0.033 1 0.857

Time 42.697 6 < 0.001 *

Sex × vapor 0.195 1 0.659

Sex × time 14.260 6 0.027 *

Vapor × time 2.746 6 0.840

Sex × vapor × time 6.353 6 0.385

*p < 0.05
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Alcohol dependence is a chronic relapsing disorder
characterized by frequent episodes of intoxication, pre-
occupation with alcohol, use of alcohol despite adverse
consequences, compulsion to seek and consume alcohol,
loss of control in limiting alcohol intake, and emergence
of a negative emotional state in the absence of the drug
[60–62]. In our study, we exposed rats to chronic inter-
mittent alcohol vapor to model the human condition in
which alcohol exposure occurs in a series of extended
exposures followed by periods of withdrawal. Previous

studies using the chronic intermittent alcohol vapor
model showed that motivational symptoms of depend-
ence are present in rodents at acute withdrawal time
points, as evidenced by increased anxiety-like behavior,
increased alcohol drinking (i.e., escalation of ethanol
self-administration), and increased willingness to work
for alcohol, revealing alcohol’s negative reinforcing prop-
erties [47, 63–66].
Excessive alcohol consumption is related to a wide var-

iety of negative health outcomes, such as cardiovascular

Fig. 3 Time-course curves of mean arterial pressure (MAP), heart rate (HR), and tail skin temperature (tail temperature) during pre-stress period
(basal) and restraint stress session (restraint, shaded area) in females (left) and males (right) from control (light blue lines) or ethanol vapor (dark
blue lines) groups. Circles represent the mean and bars the SEM (n = 5–9 per group). Generalized estimation equations followed by Bonferroni
multiple comparisons. (*) Different to male control group, p < 0.05; (0) different to time 0 of the same group, p < 0.05; (2) different to time 2 of
the same group, p < 0.05; (8) different to time 8 of the same group, p < 0.05; (10) different to time 10 of the same group, p < 0.05; (24) different
to time 24 of the same group, p < 0.05; (20) different to time 20 of the same group, p < 0.05. (α) Different to male groups, p < 0.05

Bianchi et al. Biology of Sex Differences           (2021) 12:27 Page 6 of 13



diseases [1]. An association between chronic ethanol con-
sumption and hypertension in males is well documented
[2–7, 67]. However, we did not observe alterations in
MAP values, neither in males nor females. As demon-
strated previously by our group [21], 4 weeks of ethanol
vapor exposure was not enough to promote an increase in
basal blood pressure in male rats. Previous studies have
provided evidence that long-term ethanol exposure (e.g.,
6, 8, or 12 weeks) is required to induce hypertension in
males with BAL levels (100 to 300 mg/dl) reached during
ethanol inhalation [2, 5, 67, 68]. In addition, different from
other models of chronic forced ethanol exposure, such as
liquid diet or ethanol in drinking water, the ethanol vapor
is an intermittent model of ethanol access. In agreement
with our results, Engi et al. [69] showed that 6 weeks of
intermittent voluntary ethanol consumption did not in-
duce an increase in blood pressure in male rats.
We observed decreased basal HR values in females

and males exposed to ethanol vapor. The resting brady-
cardia effect of ethanol in females was described by
other authors [21, 70–72] and might be followed by re-
ductions in cardiac output and contractile force. For ex-
ample, El-Mas and colleagues [70, 71] showed that
females exposed to ethanol presented upregulation of
cardiac nitric oxide synthase, which resulted in reduc-
tions of cardiac output. Further, Duan et al. [72]

observed that ethanol metabolic product acetaldehyde
induced cardiac contractile depression in females. An-
other explanation for the decrease in HR could be re-
lated to enhanced cardiac parasympathetic activity,
which was observed in our previous study in females ex-
posed to alcohol vapor [21]. In addition, it was demon-
strated that decreases in basal HR are associated with
inadequate tissue perfusion, arrhythmias, higher mortal-
ity, and sudden death [73, 74]. Although previous studies
did not report resting bradycardia in male rodents [2, 4,
5, 7, 21], similar mechanisms and consequences to those
identified in females might be related to the HR decrease
identified in the present study in males.
Our findings are in line with previous studies that re-

ported blood pressure and HR increases, and decrease in
the skin temperature as physiological changes during re-
straint stress [10, 16, 18, 19, 75–77]. However, in con-
trast to other authors [22, 23], we did not observe an
influence of sex on MAP and HR during the stress ses-
sion. Comparing the responses of males and females
under immobilization stress, Anishchenko et al. [22] ob-
served higher amplitude and duration of MAP elevation
in males and a severe tachycardia in females. Another
study, using spontaneously hypertensive rats, showed a
greater change in MAP in response to restraint (60 min)
in males, but not in females [23]. Nevertheless, we ob-
served a sex-related difference in the cutaneous vasocon-
striction response under stress conditions. In this regard,
we observed that females presented an initial decrease in
cutaneous temperature, which was sustained across
stress exposure, whereas males showed a more gradual
decline in cutaneous temperature over the entire stress
session.
This sex-related effect on sympathetic vasomotor re-

sponse in cutaneous bed can be related to ovarian hor-
mones. For instance, Zhen and colleagues [78] reported
that under adrenergic nerve stimulation, arteries from
females were less responsive than arteries from male
rats. They also observed that this sex difference was
abolished after ovariectomy of the females but not after
orchidectomy of the males [78], suggesting that circulat-
ing ovarian hormones inhibits sympathetically mediated
vasoconstriction. In addition, a vasodilator effect of es-
trogens has been reported, which is mediated by rapid
stimulation of endothelial nitric oxide synthase (eNOS),
via membrane-associated estrogen receptors (ERs), in-
creasing nitric oxide (NO) production [46, 79–81]. Con-
sidering these effects, estrogen could mediate the sexual
differences on hemodynamic adjustments during aver-
sive threats.
Although ethanol exposure did not change the basal

MAP in male rats, chronic ethanol vapor inhalation po-
tentiated the effect of acute stress on MAP in males, but
not in females. The arterial pressure rise during stress is

Table 2 Summary of Bonferroni pairwise comparison of heart
rate (HR) during restraint stress

Group Bonferroni comparison p

Female vapor Time 10 × time 16 .000 *↑

Female vapor Time 10 × time 20 .000 *↓

Female vapor Time 10 × time 22 .000 *↓

Male control Time 0 × time 2 .014 *↑

Male vapor Time 2 × time 6 .000 *↑

Male vapor Time 8 × time 12 .000 *↑

Male vapor Time 8 × time 14 .001 *↑

Male vapor Time 10 × time 12 .000 *↑

Male vapor Time 10 × time 14 .000 *↑

Male vapor Time 12 × time 24 .000 *↓

Male vapor Time 14 × time 24 .000 *↓

Male vapor Time 16 × time 24 .000 *↓

Male vapor Time 18 × time 24 .000 *↓

Male vapor Time 18 × time 28 .026 *↓

Male vapor Time 18 × time 30 .026 *↓

Male vapor Time 20 × time 22 .010 *↓

Male vapor Time 20 × time 24 .000 *↓

Male vapor Time 26 × time 28 .004 *↓

Male vapor Time 26 × time 30 .004 *↓

Up or down arrows indicate increase or decrease, respectively
*p < 0.05
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mediated by an increase in vascular sympathetic tone
and activation of α1-adrenoreceptors in vascular smooth
muscle [82, 83]. In this sense, a sympathoexcitatory ef-
fect of ethanol in male rats was described in numerous
studies [4, 5, 7, 67, 84, 85]. For example, Russ and col-
leagues [5] showed that chronic ethanol increased, via
central nervous system modulation, the basal firing rate
of sympathetic nerve fibers. They also observed that the
sympathetic nervous activity was increased prior to the
development of hypertension in males [5]. In addition,
higher levels of plasma concentrations of adrenaline and
noradrenaline [6, 86], as well as enhanced vascular re-
activity to α1-adrenoceptor agonists [87–90] were ob-
served in male rats chronically treated with ethanol. In
this regard, Stewart and Kennedy [89] showed an
ethanol-associated increase in the maximal contractile
response to phenylephrine in endothelium-denuded
preparations of male, but not of female rats. Thus, it is
possible that the initial vasodilatory effect of ethanol [91,
92] is completely suppressed by increased sympathetic
nervous activity in males [5, 93]. Taken together, these
results could explain the increase in cardiovascular stress
reactivity in male, but not in female rats observed in the
present study.
The exacerbated increase in MAP in male rats exposed

to chronic ethanol vapor was accompanied by an en-
hanced tachycardia response. Cardiac sympathetic
blockers abolish tachycardia response evoked by stress,
whereas cardiac parasympathetic blocker increases it
[15, 77, 82, 83]. These results demonstrated that both
sympathetic and parasympathetic outflows to the heart
are activated during stress. Thus, an increase in
restraint-evoked HR rise following ethanol exposure may
result from a facilitation of cardiac sympathetic response
or inhibition of parasympathetic activity in males. In this
sense, the sympathoexcitatory effect of ethanol stated
above might also mediate the enhanced tachycardia to
stress in addition to the change on pressor response. Al-
though previous results from our group did not indicate
changes in parasympathetic activity in male rats sub-
jected to chronic ethanol inhalation [21], we cannot ex-
clude the possibility of an involvement of inhibition of
this autonomic branch in facilitation of tachycardia to
restraint.
There is significant report evidence that ethanol with-

drawal is characterized by elevated glucocorticoid levels
that reflect increased hypothalamic-pituitary-adrenal
(HPA) axis activity, as well as by increased activity of the
sympathetic nervous system, which produces significant
physiological symptoms, including tachycardia, elevated
blood pressure, and body temperature dysregulation
[94–96]. In this regard, studies have demonstrated that
dependence models involving chronic intermittent alco-
hol exposure constitute potent stressors, as evidenced by

initial activation and subsequent dysregulation of HPA
axis activity [94, 97]. Furthermore, it was demonstrated
that the post-dependent state in laboratory animals is
characterized by a persistently upregulated behavioral
sensitivity to stress [98–100]. Clinical studies demon-
strated that despite the fact that autonomic-related
symptoms can return to normal in a few days during
acute alcohol withdrawal in alcoholics, some cardiovas-
cular changes may persist, especially when assessed fol-
lowing a stress challenge [101–103]. Our results in male
rats are in accordance with these findings, since the
intermittent alcohol vapor exposition intensified the car-
diovascular stress reactivity.
Differently from males, no effect of chronic ethanol

vapor was observed on MAP or HR values during re-
straint stress in females. Sexual dimorphism influences
the cardiovascular effects promoted by chronic ethanol
exposure [21, 89], which may impact the autonomic and
hemodynamic stress responses. In contrast to sym-
pathoexcitatory effects of ethanol in males, an increase
in cardiac parasympathetic dominance has been ob-
served in females following long-term ethanol access
[21, 36, 37, 104, 105]. In fact, as stated above, we dem-
onstrated increased cardiac parasympathetic activity in
female but not in male rats exposed to chronic ethanol
vapor inhalation [21]. Furthermore, other studies ob-
served that this effect on cardiac vagal tone was
estrogen-dependent [36, 104, 105]. For example, El-mas
and Abdel-rahman [36] showed that the parasympathetic
overactivity induced by chronic ethanol was exacerbated
in estrogen-replaced ovariectomized rats, when com-
pared to ovariectomized ones. Accordingly, El-mas and
Abdel-rahman [37] observed that ovariectomized rats
exposed to ethanol presented enhanced sympathetic ac-
tivity as indicated by significant increases in plasma nor-
epinephrine levels. Considering the importance of
baroreflex response for the control of autonomic activity
[106], we previously observed that only females exposed
to alcohol vapor had increased baroreflex bradycardic re-
sponse [21]. Mohamed et al. [107] demonstrated that fe-
males with intact ovaries showed an increase in
bradycardic response to phenylephrine compared to
ovariectomized females. It was reported that alcohol in-
take increases estradiol levels in humans and in rodents
[108, 109], which might explain the predominance of
vagal tone in females exposed to alcohol vapor and, con-
sequently, may constitute a prominent adaptative mech-
anism in females that precludes the occurrence of
changes in cardiovascular reactivity during stressful
situations.
In addition to the evidence of female sex hormones,

many recent studies indicated the positive role of male
sex hormones (androgens) in cardiovascular protection
[81, 110–114]. Preclinical studies showed that
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testosterone induces endothelium-independent relax-
ation in isolated coronary artery and aorta, and also con-
tributes to the vagal outflow, but not to the sympathetic
outflow to the heart of male rats [111, 113, 115]. Indeed,
Ward and Abdel-Rahman [116] demonstrated that or-
chiectomy or androgen receptor blockade attenuates
baroreflex-mediated bradycardia in rats, suggesting that
androgens (including testosterone) may enhance barore-
flex bradycardia via the androgen receptor at the level of
the baroreceptors at the aorta and carotid, the central
nervous system, or the heart. Clinical trials showed that
acute administration of testosterone in patients with
chronic heart failure reduced peripheral vascular resist-
ance, cardiac afterload, and increased cardiac index
[117]. On the other hand, a negative correlation has
been reported between ethanol consumption and testos-
terone release. Several studies have shown that ethanol
is a testicular toxin and it causes deficiency in testoster-
one secretion and spermatogenesis [118–121]. For ex-
ample, Maneesh and colleagues [118] observed that
serum testosterone levels in alcoholics were negatively
correlated with duration of alcohol abuse. Accordingly,
studies in laboratory animals showed that high doses of
alcohol decreased the testosterone concentrations in
alcohol-preferring and non-preferring rats [122–124].
Taking these studies into account, we may suggest that
ethanol-induced reduction on testosterone levels can
disrupt the cardiovascular protection of androgens, con-
tributing to the enhanced restraint-evoked sympathoex-
citatory effect in males exposed to chronic alcohol
vapor.

Perspectives and significance
Sexual dimorphism is an important factor affecting
the cardiovascular response induced by both stress
and chronic ethanol access. To the best of our know-
ledge, the findings reported here are the first to pro-
vide evidence related to the influence of sexual
dimorphisms on the effect of chronic intermittent
ethanol exposure on stress-evoked cardiovascular
changes. Thus, the present study aimed to evaluate
the effect of chronic ethanol vapor inhalation on
blood pressure, HR, and tail skin temperature re-
sponses to acute stress, investigating differences be-
tween male and female rats.
Our data support the notion that exposure to chronic

ethanol potentiates the cardiovascular reactivity to
stressful stimuli in males but not in females and this
opens doors for future work aiming at testing the mech-
anism underlying sex differences in cardiovascular re-
sponses to stress after a chronic exposure to ethanol.
This evidence could be of great importance for imple-
menting different strategies for treating cardiovascular
diseases in abstinent alcoholic patients, considering the

impact of biological sex and hormonal status in response
to therapy.

Conclusions
The results reported here showed that chronic ethanol
vapor inhalation enhanced both blood pressure and
tachycardiac responses to acute restraint stress in male,
but not female rats. Furthermore, a sex-related differ-
ence was observed in the cutaneous vasoconstriction re-
sponse during stress, as males showed a decrease in
cutaneous temperature that was sustained throughout
the stress session, while females presented this reduction
only at the beginning of restraint. Finally, more research
is necessary to improve the understanding of the impact
of prolonged ethanol exposure, and the influence of sex-
ual dimorphisms, in other physiological and behavioral
responses to stress.
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