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Abstract

Background: The decision to treat multilevel cervical spondylotic myelopathy (MCSM) remains controversial. The
purpose of this study is to compare the biomechanical characteristics of the intervertebral discs at the adjacent
segments and internal fixation, and to provide scientific experimental evidence for surgical treatment of MCSM.

Methods: An intact C2-C7 cervical spine model was developed and validated. Four additional models were
developed from the fusion model, including multilevel anterior cervical discectomy and fusion (mACDF), anterior
cervical corpectomy and fusion (ACCF), hybrid decompression and fusion (HDF), and mACDF with cage alone
(mACDF-CA). Biomechanical characteristics on the plate and the disc of adjacent levels (C2/3, C6/7) were
comparatively analyzed.

Results: Of the four models, stress on the upper (C2/3) adjacent intervertebral disc was the lowest in the mACDF-
CA group and highest in the ACCF group. Stress on the intervertebral discs at adjacent segments was higher for
the upper C2/3 than the lower C6/7 intervertebral disc. In all models, the mACDF-CA group had the lowest stress
on the intervertebral disc, while the ACCF group had the highest stress. In the three surgical models with titanium
plate fixation (MACDF, ACCF, and HDF), the ACCF group had the highest stress at the titanium plate-screw
interface, while the mACDF group had the lowest stress.

Conclusion: Among the four anterior cervical reconstructive techniques for MCSM, mACDF-CA makes little effect
on the adjacent disc stress, which might reduce the incidence of adjacent segment degeneration (ASD) after fusion.
However, the accompanying risk of the increased incidence of cage subsidence should never be neglected.
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Background

Multilevel cervical spondylotic myelopathy (MCSM) re-
fers to cervical spondylosis diagnosed by imaging with
three or more levels of contiguous or noncontiguous
cervical intervertebral disc degeneration and secondary
changes, which causes compression on the dural sac and
spinal cord, and which results in corresponding clinical
manifestations. Owing to severe spinal cord compression
in most cases, MCSM often requires surgery to relieve
the compression. Consensus has currently been reached
on the surgical management of CSM involving one or
two mobile segments; however, controversy remains re-
garding the selection of surgical procedures for treat-
ment of MCSM [1-3].

An anterior, posterior, or combined anterior-posterior
approach can be employed according to the clinical situ-
ation and the experience of surgeons, and each approach
has its unique advantages and disadvantages [3—12]. The
anterior techniques such as multilevel anterior cervical
discectomy and fusion (mACDF), anterior cervical cor-
pectomy and fusion (ACCF), and hybrid decompression
and fusion (HDF) have been proved to be reliable and
effective in spinal cord decompression, and sagittal
alignment restoration and maintenance thus achieved a
good clinical outcome. To increase the stability of cer-
vical vertebrae and the fusion rate of bone graft after
surgery, anterior cervical titanium plate fixation is widely
used. Nevertheless, the anterior titanium plate protrudes
from the anterior margin of the cervical vertebral body,
causing relatively strong friction with soft tissue in the
anterior cervical region. As a result, complications such
as foreign body sensation in the anterior cervical region,
dysphagia, and esophageal injury have been found after
long-term follow-up [13-15]. Meanwhile, some re-
searchers argue that the use of anterior cervical titanium
plate increases the incidence of adjacent segment degen-
eration (ASD) [16-18].

To prevent complications associated with anterior cer-
vical titanium plates and maintain the benefits of inter-
body cages with anterior plating system, a new zero-
profile, stand-alone device (Fidji cervical cage, Abbott
Spine, Bordeaux, France) has been designed and used
clinically [19]. In recent years, we performed mACDF
using Fidji cervical cages alone (mACDF-CA) for the
treatment of MCSM. In these studies, we found that
mACDF-CA was associated with shorter operation time,
less blood loss and cost of index surgery, and lower dys-
phagia incidence, and satisfactory results were achieved
in preliminary clinical applications [8, 9, 20]. Despite
these findings, biomechanical studies assessing anterior
techniques for the treatment of MCSM appear only
rarely in the literature, and no one compares mACDEF-
CA to other anterior techniques in multilevel constructs.
A biomechanical study using finite element (FE) analysis
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can help to elucidate the complex biomechanical proper-
ties of the cervical spine, including stresses, strains, and
loads under different conditions [21-23]. This study was
a biomechanical comparative analysis of four anterior
cervical techniques based on FE model. The biomechan-
ical characteristics of the intervertebral discs at the adja-
cent segments and internal fixation were analyzed to
provide scientific experimental evidence for surgical
treatment of MCSM.

Methods

Development of FE model (C2-C7)

A 3-dimensional FE model of a normal C2-C7 segment
was created in this study. Geometric details of the hu-
man cervical spine (C2-C7) were obtained from a high-
resolution computed tomographic scan of a healthy
Chinese male volunteer (age, 30yrs; height, 182 cm;
weight, 76kg) in our simulation. This study was ap-
proved by the medical ethics committee of First Affili-
ated Hospital of Dalian Medical University (PJ-KS-KY-
2020-55). All procedures were followed in accordance
with relevant guidelines. The subject’s skull and cervical
spine were scanned using a CT scanner (Brilliance 64,
Philips Electronics, Netherlands). The final CT images
had a resolution of 0.54 mm x 0.54mm and the slice
interval of 0.625 mm.

Within the software Mimics 17.0 (Materialise Inc.,
Leuven, Belgium), these images were segmented and
translated to various 3D solid volumes of all vertebrae.
Then, the solid volumes were created to fill the spaces
between the vertebrae to create intervertebral discs. The
final constructs were exported as STL format files. The
solid volume was then, respectively, imported into the
software Geomagic Studio 12.0 (Geomagic Inc., USA), in
which it was converted into a non-uniform rational B-
spline surface geometry structure. The model compo-
nents included cortical bone, cancellous bone, bony pos-
terior elements, annulus fibrosus, nucleus pulposus,
posterior facets, end plates, anterior longitudinal liga-
ment, posterior longitudinal ligament, ligamentum fla-
vum, interspinous ligament, and capsular ligaments
(Fig. 1). To reduce the resources required for creating a
mesh of the complex spinal geometry, ABAQUS 6.13
(Abaqus Inc., USA) was used to generate a tetrahedral
mesh on the vertebrae and a hexahedral mesh on the
discs. The material properties were assumed to be
homogeneous and isotropic according to the published
literature [24-29]. The annular fibers embedded in the
ground substance were assembled in a crisscross man-
ner. The facet joint was created as a nonlinear three-
dimensional contact problem using surface-to-surface
contact elements. Surface to surface contact algorithm is
used in defining facet joint interaction and friction coef-
ficient was assumed to be 0.1. The initial material
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Fig. 1 A three-dimensional finite element model of intact cervical vertebra (C2-C7). a Front view, b Lateral view

s /.

properties were based on previous studies as shown in
Table 1.

Validation of model

Three-dimensional surface contact elements were used
for the contact and sliding effect between the articular
facets. Statistical analysis was performed by applying 1.0
Nm of flexion, extension, axial rotation, and lateral
bending moments with 73.6 N of axial compression su-
perior to C2. The boundary condition was simulated by
fixing the inferior surface of the C7 vertebra under con-
straint of different degrees of freedom. The validity of

the FE model was verified by comparing the predicted
data with the results reported in the literature [30—33].

Surgery simulation

First, a graphic of the titanium plates, screws, and PEEK
interbody cages was drawn using the pre-processor
modeling function of the FE software, ABAQUS/CAE.
Small portions of the curved surfaces and threads were
removed because these were considered not to affect the
mechanical performance analysis, and rough models
were constructed according to the structures of the ti-
tanium plates, screws, and cages.

Table 1 Material properties and element types of the spine soft tissues and hard tissues used in the finite element model

Component Element type

Young’s modulus (MPa) Cross-section (mm?) Poisson’s ratio

Bone

Cortical bone Shell elements
Cancellous bone 3-D solid elements (4 node)
Disc

Annulus (ground) 3-D solid elements (8 node)

Annulus (fiber) 3-D solid elements (8 node)

Nucleus 3-D solid elements (8 node)
End plate 3-D solid elements
Ligaments

Anterior longitudinal ligament 3-D tension truss elements

Posterior longitudinal ligament 3-D tension truss elements
Ligamentum flavum 3-D tension truss elements
Capsular ligaments 3-D tension truss elements
Interspinous ligament 3-D tension truss elements
Implants
PEEK cage 3-D solid elements (4 node)
Titanium plate 3-D solid elements (4 node)

Titanium screw 3-D solid elements (4 node)

10,000 - 0.29
100 - 0.29
4.2 - 045
450 - 0.30
1 - 049
500 - 0.40
30 33 0.30
20 33 0.30
5 50.1 0.30
20 46.6 0.30
1.5 13 0.39
3600 - 0.30
120,000 - 0.30
120,000 - 0.30
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mACDF model: The discectomies were simulated by
removing the C3/4, C4/5, and C5/6 intervertebral discs
and the corresponding anterior and posterior longitu-
dinal ligaments. After decompression, a suitably sized
PEEK interbody cage (height 5.8 mm, width 14.6 mm,
and length 15.5 mm) was place into each intervertebral
disc space. After cages placement, a titanium plate
(height 51.3 mm, width 14.5 mm, and thickness 2.3 mm)
was rigidly placed on the anterior C3-C6 vertebral bod-
ies to provide additional stability to the fusion model.
Along the ends of the anterior plate, two titanium
screws were placed inside both C3 and C6 vertebral bod-
ies within 1.00-mm distance from the end plates. Uni-
cortical screws of 16- and 18-mm length with a mean
diameter of 3.0 mm were used. For all surgical models,
the interfaces at the cage-endplate and screw-bone were
defined as a tied contact condition to simulate a
complete fusion status. ACCF model: The C3/4, C4/5,
and C5/6 intervertebral discs were resected followed by
corpectomy of the C4 and C5 vertebral bodies. Also, the
anterior and posterior longitudinal ligament for the C3/
4, C4/5, and C5/6 motion segments were excised. A
bone graft (height 43.2 mm, width 14.4 mm, and length
15.2 mm) with a cross-sectional area accounting for 50%
of the vertebral endplate area was placed on the midline
between the C3 and C6 vertebral bodies. The anterior
margin of the bone graft was set 1.0 mm mm from the
anterior margin of the vertebral bodies. Similar to the
surgical procedure in mACDF, ACCF model was fixed
by the same anterior plate-screw system. For all surgical
models, the interfaces at the bone graft-endplate and
screw-bone were defined as a tied contact condition to
simulate a complete fusion status.

HDF model: The C3/4, C4/5, and C5/6 intervertebral
discs were resected, followed by corpectomy of the C4
vertebral body with both sides retained. Also, the anter-
ior and posterior longitudinal ligament for the C3/4, C4/
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5, and C5/6 motion segments were excised. A bone graft
(height 26.7 mm, width 14.4mm, and length 15.2 mm)
of the appropriate length was placed between the C3
and C5 vertebral bodies, 1.0 mm from the anterior mar-
gin of the vertebral bodies and centered between the left
and right vertebral bodies. Similar to the surgical pro-
cedure in mACDF, the same cage was placed in the C5/
6 intervertebral disc space. After cage placement, a titan-
ium plate (height 34.6 mm, width 14.5mm, and thick-
ness 2.3 mm) was rigidly placed on the anterior C3-C5
vertebral bodies. Unicortical titanium screws of 16- and
18-mm length with a mean diameter of 3.0 mm were
used.

mACDF-CA model: Similar to the surgical procedure
in mACDF, the C3/4, C4/5, and C5/6 intervertebral
discs and the corresponding anterior and posterior lon-
gitudinal ligaments were resected and the same cage was
placed in each intervertebral disc space. This technique
did not require auxiliary anterior titanium plate fixation
(Fig. 2).

Results

Model validation

The comparison between in vitro data and predicted
value in the FE model are shown in Fig. 3. The ROMs of
the intact model at C2/3, C3/4, C4/5, C5/6 and C6/7
were 4.43°, 6.63°, 7.56°, 7.58° and 5.21°, respectively, in
flexion; 3.26°, 4.76° 6.21°, 5.41° and 4.32°, respectively, in
extension; 5.31°, 5.59°, 5.81°, 4.12° and 4.02°, respectively,
in lateral bending; and 2.33°, 3.32°, 4.51°, 3.74° and 2.34°,
respectively, in axial rotation. All the predicted responses
were consistent with the results of previous biomechan-
ical and FE analysis studies [30—33].

Stress on the C2/3 intervertebral disc
Of the four anterior cervical approaches, stress on the
upper (C2/3) adjacent intervertebral disc was the lowest

Fig. 2 A three-dimensional finite element model of four anterior cervical techniques. a multilevel anterior cervical discectomy and fusion
(mACDF), b anterior cervical corpectomy and fusion (ACCF), ¢ hybrid decompression and fusion (HDF), d multilevel anterior cervical discectomy
and fusion with cage alone (MACDF-CA)
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in the mACDF-CA group and highest in the ACCF
group during flexion, extension, lateral bending, and ro-
tation. Compared with the mACDF-CA group, the max-
imum von Mises stresses on the C2/3 intervertebral disc
in the mACDF, ACCF, and HDF groups increased by 23,
77, and 72% during extension; by 42, 49, and 46% during
lateral bending; and by 18, 104, and 105% during rota-
tion, respectively (Figs. 4 and 5).

Stress on the C6/7 intervertebral disc

With the four anterior cervical approaches, stress on
the intervertebral discs at adjacent segments was
higher for the upper C2/3 than the lower C6/7 inter-
vertebral disc during flexion, extension, lateral bend-
ing, and rotation. In all models, the mACDF-CA
group had the lowest stress on the intervertebral disc,
while the ACCF group had the highest stress.
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HDF mACDF-CA

Compared with the mACDF-CA group, the maximum
von Mises stresses on the lower (C6/7) adjacent inter-
vertebral disc in the mACDF, ACCF, and HDF groups
increased by 17, 71, and 22% during flexion; by 5, 68,
and 16% during extension; by 10, 72, and 44% during
lateral bending; and by 9, 15, and 10% during rota-
tion, respectively (Figs. 6 and 7).

Stress at the titanium plate-screw interface

In the three surgical models with titanium plate fixation
(mACDF, ACCF, and HDF), stress at the titanium plate—
screw interface was highest under flexion load and lowest
under extension load. Of the three models, the ACCF
group had the highest stress at the interface, while the
mACDF group had the lowest stress (Figs. 8 and 9).
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Discussion

2Cervical spondylosis is a common disease in middle-
aged and older people, for which surgery is a major
treatment. Anterior cervical decompression and bone
graft fusion is considered the standard surgical pro-
cedure for one- or two-level cervical spondylosis.
However, for multilevel (three or more level) cervical
spondylosis, controversy remains over the surgical ap-
proach [3-10]. As the etiological factors of MCSM
usually arise from anterior degenerated intervertebral
discs and osteophytes, it is challenging to remove the
anterior compressive material through a simple pos-
terior surgery, which cannot achieve effective decom-
pression. Furthermore, posterior surgery cannot fully
restore the physiological curvature of the cervical
spine. Therefore, many researchers choose anterior
surgery rather than posterior surgery [34]. More often
than not, multiple levels are involved and complicate
the surgical management. Anterior, posterior, and cir-
cumferential procedures have all been advocated.
Even when the discussion is limited to anterior proce-
dures, there is no agreement as to which reconstruc-
tion technique is best after multilevel anterior cervical
decompression [1, 3, 4, 8, 9, 11, 16, 34—40].

Anterior surgical approaches mainly include ACCEF,
ACDF, and HDF. Among the several anterior surgical
approaches for MCSM, each has advantages and disad-
vantages [1-4, 8, 9, 11, 16, 34—45]. In conventional
ACDF surgery, osteophytes and degenerated interverte-
bral discs are removed from the posterior upper and
lower margins of the vertebral body through an interver-
tebral space approach. This approach effectively removes
the direct compression factors and provides good stabil-
ity as well as multipoint expansion for better recovery
and preservation of the physiological curvature of the
cervical spine. Therefore, this approach is especially suit-
able for patients with straight or kyphotic curvature of

the cervical spine [11, 35, 46]. However, this surgery in-
volves a long operation time, has a limited field of view,
and requires high surgical skills, making it difficult to
ensure complete decompression in most cases [13—15].

ACCEF involves long-segment decompression with slot-
ting followed by long titanium mesh or autogenous bone
grafting. The advantage of this approach is that it can be
performed under direct vision, with a wider intraopera-
tive view and larger operative field, and that it allows
more extensive and thorough decompression [10, 37, 39,
41-43, 47, 48]. The resected vertebral body can be used
as a bone autograft, thus preventing the risk associated
with bone allografts and complications, such as pain in
the bone removal area. Moreover, the size of the graft—
host bone interface requiring postoperative healing is re-
duced compared with that in ACDF, which is beneficial
to improve the fusion rate after surgery. The disadvan-
tage of ACCEF is that it results in considerable damage to
the structural stability of the anterior and middle col-
umns [1, 4, 8, 16, 35, 49]. Furthermore, iliac bone auto-
grafts collapse easily, and may become displaced or form
a false joint. Long titanium mesh or fibular autografts
are not conducive to restoring physiological lordosis of
the cervical spine. In addition, owing to the multiple
fixed segments and long moment arm, the
monocortically-fixed screws at both ends of the titanium
plate bear considerable stress, which may lead to postop-
erative complications, such as loosening and displace-
ment. If the implanted bone is too long, surgical
difficulty increases. Moreover, the fusion rate of long-
segment bone grafting is substantially reduced, and the
complication rate increases. ACCF surgery is mainly
suitable for cases with lesions extending to the posterior
vertebral body, extensive and severe osteophyte forma-
tion and vertebral body deformity in the anterior spinal
cord, and contiguous stenosis of adjacent intervertebral
spaces causing spinal cord compression.
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Another anterior surgical approach is HDF, namely
ACCF combined with ACDF [3, 12]. Generally, the most
severely compressed vertebral body is removed in HDF,
and discectomy is performed only at the less compressed
sites, which reduces the number of resected vertebral
bodies. While achieving full decompression, this ap-
proach also reduces damage to the anterior vertebral
column, which shortens the length of the bone graft, re-
duces the graft-host bone interface, and theoretically,
lowers the probability of upper false joint formation.
However, this approach is also associated with loss of
cervical lordosis and bone graft—titanium plant-related
complications.

Anterior titanium plating is required with conven-
tional mACDF, ACCF, and HDF to treat MCSM. The
application of an anterior locking titanium plate can ef-
fectively improve the stability and firmness of the fused
cervical spine and greatly increase the fusion rate. In
addition, using a plate prevents loss of intervertebral
height, while the physiological curvature of the cervical
spine is maintained, to some extent. However, with in-
creasing plate length, stress at the plate—screw interface
increases correspondingly, which increases the risk of
implant loosening, displacement, and fracture. More-
over, following the application of a long-segment titan-
ium plate, patients are prone to foreign body sensation,
dysphagia, and even esophageal fistula, while the inci-
dence of ASD is also increased [13—18]. In the present
study, our biomechanical results showed that among the
three surgical models involving titanium plate fixation
(mACDF, ACCF, and HDF groups), the ACCF group
had the highest stress at the plate—screw interface, the
HDF group had higher stress than the mACDF group,
and the mACDF group had the lowest stress. These re-
sults revealed that the risk of titanium plate or screw
loosening, displacement, and fracture was the highest
following ACCEF, which is similar to clinical results. Fur-
thermore, we found that stress in the intervertebral fu-
sion cage also differed substantially between the mACDF
and mACDF-CA groups. The mACDF-CA group
showed markedly higher stress than the mACDF group,
which may indicate a higher risk of fusion cage subsid-
ence in the mACDF-CA group compared with the
mACDF group. However, this speculation must be veri-
fied with long-term follow-up results from controlled
clinical trials with large sample sizes.

To overcome the problems associated with anterior
cervical titanium plating, a novel intervertebral fusion
system that integrates support, fixation, and fusion; does
not protrude from the anterior margin of the vertebral
body; and effectively reduces surgical complications has
been designed and applied clinically. This system can be
independently applied in ACDF surgery without requir-
ing anterior titanium plate fixation. The system
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highlights establishing cervical stability while minimizing
interference with adjacent tissues by the implant, and
considerably reduces the incidence and severity of asso-
ciated complications after surgery. The system has
achieved satisfactory results in its preliminary clinical
applications [9, 19, 20, 50-54]. The currently available
self-stabilizing zero-profile anterior cervical interbody
fusion and internal fixation systems are the Zero-P sys-
tem (Synthes, Switzerland) and the Fidji cage system
(Zimmer, France). Strong evidence from basic research
and clinical use have demonstrated the effectiveness of
these systems [9, 19, 20, 50-55].

ASD has always been a potential long-term complica-
tion following anterior cervical fusion, and the incidence
of ASD is even higher following long-segment fusion,
which has attracted increasing attention. The incidence
of ASD within 10vyears after primary anterior cervical
surgery is 25%, and more than 15% of patients require
secondary surgery owing to ASD [16-18, 56—59]. The
mechanisms underpinning the development of ASD are
still unclear, and the widely accepted mechanisms are
local biomechanical changes in the cervical spine and
natural degeneration of adjacent segments. Other risk
factors are advanced age, multilevel fusion, postoperative
cervical alignment change, an excessively long titanium
plate, surgical injury to the adjacent intervertebral discs,
and preoperative degeneration of adjacent segments.
Controversy continues regarding whether differences
exist in the impact of anterior cervical fusion on adjacent
segments. Based on a 2-year follow-up of 218 patients
undergoing single- or two-level ACCF, Park et al. [56]
found that the incidence of ASD in the upper adjacent
segment was markedly higher than that in the lower ad-
jacent segment following ACCF (58% vs. 28%, respect-
ively). In addition, Yang et al. [57] conducted a 5-year
follow-up of 370 patients who underwent anterior cer-
vical fusion without titanium plate implantation, and
found that the incidence of ASD in the upper adjacent
segment was considerably higher than that in the lower
adjacent segment (5% vs. 1%, respectively). However, in
a 5.6-year follow-up study, Koller et al. [58] found no
significant difference in the incidence of ASD between
the upper and lower segments adjacent to the fused seg-
ment following anterior cervical fusion (41.2% vs. 50.0%,
respectively). Similarly, Goffin et al. [59] followed 25 pa-
tients for an average of 7 years and found that 24% of
the patients had ASD in the upper adjacent segment,
while 28% had ASD in the lower adjacent segment; the
difference between the two groups was not significant.
In the present study, we found that with all four anterior
cervical approaches, stress on the intervertebral discs at
the adjacent segments was always higher for the upper
disc compared with the lower disc under different condi-
tions (flexion, extension, lateral bending, and rotation).
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This result suggests that after fusion, the upper adjacent
segment was subjected to higher stress, which may ac-
celerate dehydration and degeneration of the adjacent
intervertebral disc, leading easily to ASD at this segment.
A plausible reason for this difference is that the lower
segment has greater mobility, which is conducive to
stress load sharing; however, this hypothesis requires
further clinical verification. Furthermore, we found that
stress on the intervertebral discs at the adjacent seg-
ments was lowest in the mACDEF-CA group and highest
in the ACCF group. Biomechanically, this result revealed
that mACDF-CA had the least impact on the adjacent
segments compared with mACDF, HDF, and ACCF.
However, whether mACDE-CA effectively prevents ASD
remains to be clinically verified.

Conclusions

In summary, our biomechanical analysis indicated that
among the four surgical approaches to anterior cervical
fusion and internal fixation to treat MCSM, mACDEF-CA
had the least impact on the biomechanics of adjacent
segments, and theoretically could reduce the incidence
of ASD. However, this approach is associated with in-
creased risk of fusion cage subsidence. In addition, stress
at the titanium plate—screw interface was highest in the
ACCEF group and lowest in the mACDF group, which in-
dicates the highest risk of titanium plate screw loosen-
ing, displacement, and fracture after ACCF. This study
presented biomechanical evidence for the surgical treat-
ment of MCSM and also provided strategies for prevent-
ing or reducing associated complications. However,
further experiments and prospective clinical trials must
be conducted to verify our findings.
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