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Abstract 

Background:  Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. 
The Ikeda strain of T. orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 
5% of affected animals. Within the Asia–Pacific region, where it affects 25% of Australian cattle, T. orientalis Ikeda has a 
significant economic impact on the cattle industry. In 2017, T. orientalis Ikeda was detected in a cattle herd in Alber-
marle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, 
Haemaphysalis longicornis, throughout the eastern U.S. Abundant H. longicornis ticks were identified on cattle in the 
T. orientalis-affected herd in VA, and a subset of ticks from the environment were PCR-positive for T. orientalis Ikeda. A 
strain of T. orientalis from a previous U.S. outbreak was not transmissible by H. longicornis; however, H. longicornis is the 
primary tick vector of T. orientalis Ikeda in other regions of the world. Thus, the objective of this study was to deter-
mine whether invasive H. longicornis ticks in the U.S. are competent vectors of T. orientalis Ikeda.

Methods:  Nymphal H. longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.-T. orientalis Ikeda 
strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T. orientalis 
Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subse-
quently monitored for T. orientalis Ikeda infection via blood smear cytology and PCR.

Results:  After acquisition feeding on a VA-U.S.-T. orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick 
salivary glands tested positive by qPCR for T. orientalis Ikeda. Adult ticks from the same cohort successfully transmitted 
T. orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4–0.9%.

Conclusions:  Our findings demonstrate that U.S. H. longicornis ticks are competent vectors of the VA-U.S.-T. orientalis 
Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this 
parasite and the necessity of enhanced surveillance and control measures.
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Background
Theileria orientalis comprises a diverse group of non-
transforming, bovine hemoparasites that were formerly 
classified as T. sergenti and T. buffeli [1]. Phylogenetic 
analysis using major piroplasm surface protein (MPSP) 
sequences of numerous isolates identified 11 allelic 
genotypes [2], with the Buffeli, Chitose, p32, and Ikeda 
genotypes being most prevalent in Japan, Australia, 
New Zealand, and the U.S [2, 3]. T. orientalis genotypes 
vary widely in virulence [4]. The Ikeda genotype results 
in severe infection in 1–6% of infected animals [5, 6], 
while infection with the Buffeli genotype is almost always 
clinically silent [3, 5]. Moderate to severe infections are 
characterized by erythrocyte destruction, leading to ane-
mia and hypoxia. Severely affected animals often exhibit 
pyrexia, weakness, pallor, and increased heart and res-
piratory rates [7, 8]. Abortion is a common sequela to 
T. orientalis Ikeda infection, although transplacental 
transmission of the parasite from cows to calves is only 
observed in 10% of cases [9, 10].

The primary tick vector of T. orientalis is Haema-
physalis longicornis (AKA the Asian longhorned tick) 
[3, 11]; however, other tick species [3, 12] and mechani-
cal vectors, including contaminated needles [13], biting 
flies [13], and lice [14], have been implicated in parasite 
spread. Regardless, T. orientalis Ikeda can spread rapidly 
and cause significant losses when introduced to naïve 
cattle in areas with competent tick vectors. T. orientalis 
Ikeda was first identified in Australia in 2011 [15], and by 
2014, outbreaks of the disease had affected approximately 
25% of Australian cattle [16, 17]. It is estimated that the 
indirect costs of T. orientalis Ikeda to the Australian beef 
industry, comprised of reduced meat and milk yields 
[16, 18], is $19.6 million per year [19]. A similar, sudden 
emergence of the T. orientalis Ikeda genotype occurred 
in New Zealand beginning in 2012 [20], with peripartu-
rient and lactating dairy cows and young calves exhibit-
ing the highest morbidity and mortality [20]. T. orientalis 
Ikeda is now the most important cause of anemia in New 
Zealand cattle [7].

In the United States, T. orientalis outbreaks have 
been historically rare, and, until 2017, were attributed 
to strains closely related to the clinically benign Buf-
feli genotype [1, 21, 22]. In 2017, a cow-calf beef herd in 
Albemarle County, VA experienced an outbreak of febrile 
illness. Six animals died, and examination of a 7th clini-
cally ill animal revealed anemia and lethargy. Blood from 
this animal was positive for T. orientalis. The Ikeda geno-
type was identified from the clinically affected animal 
and herd mates [23]. In parallel, ticks collected from a 
calf on the index farm were identified as H. longicornis, 
the first report of this tick outside of New Jersey.

H. longicornis is native to countries within East Asia, 
including Russia, China, Korea, and Japan [24]. As H. lon-
gicornis can survive within a diverse climactic range, and 
many populations are capable of parthenogenetic repro-
duction, it has successfully invaded and become estab-
lished in many countries within the Asia–Pacific region, 
including Australia and New Zealand [24]. Recently, H. 
longicornis invasion of the United States has been con-
firmed [25]. In addition to its presence on the T. orien-
talis Ikeda outbreak index farm in Virginia, it has been 
identified in New Jersey [25], New York [26, 27], Penn-
sylvania [28], Maryland [28], Delaware [29], Connecticut 
[28], North Carolina [30], West Virginia [31], Tennessee 
[29], Kentucky [29], Arkansas [31], Rhode Island [29], 
Ohio [29], and South Carolina [29], and is believed to 
have been present within the eastern United States for 
at least 8  years, having initially been misclassified as H. 
leporispalustris [31].

In addition to H. longicornis, several other tick species 
are competent biological vectors of T. orientalis, includ-
ing other species of Haemaphysalis ticks [3] and Rhipi-
cephalus (Boophilus) microplus [12]. Interestingly, T. 
orientalis Buffeli isolated from a historical U.S. outbreak 
was not transmissible by Korean H. longicornis ticks [1, 
32]. Although H. longicornis ticks from VA were PCR-
positive for T. orientalis Ikeda [33], it is not yet known 
whether these ticks are the source of T. orientalis trans-
mission to cattle in VA. If H. longicornis proves to be 
a competent vector of T. orientalis Ikeda in the U.S., 
increased tick control practices and vigilance regarding 
cattle health may be required to prevent disease spread 
and losses similar to those experienced by cattle produc-
ers in Australia and New Zealand. Thus, the objective 
of this study was to determine whether the strain of H. 
longicornis ticks that has spread throughout the U.S. can 
acquire and transmit the T. orientalis Ikeda-VA isolate. 
The results of this study will provide important infor-
mation for U.S. cattle producers regarding the potential 
threat of pathogen transmission to cattle by the invasive 
Asian longhorned tick.

Materials and methods
Cattle
Four, 2–3  month-old Holstein–Friesian steer calves 
were utilized in this study. Pre-infection complete blood 
counts (CBCs) and serum chemistry panels were nor-
mal, and all calves tested negative on a pre-infection 
Anaplasma marginale/Anaplasma centrale competi-
tive enzyme linked immunosorbent assay (cELISA) test 
(VMRD, Pullman, WA). PCR for the T. orientalis Ikeda 
major piroplasm surface protein (MPSP) (described 
below) performed on pre-infection peripheral blood 
samples from each calf was negative. The experimental 
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protocol was approved by the University of Idaho Insti-
tutional Animal Care and Use Committee, Protocol num-
ber 2018-46.

One steer, #1697, underwent splenectomy at the Wash-
ington State University Veterinary Teaching Hospital, 
and, to ensure full recovery, was placed on stall rest for 
4  weeks before proceeding with the experiment. The 
splenectomy was performed under the supervision of a 
board-certified agricultural animal internist using stand-
ard surgical, anesthetic, and analgesic protocols. Once 
recovered, the calf was infected intravenously with 6 mL 
of T. orientalis Ikeda blood stabilate (Abermarle, VA 
2018). Beginning 10 days after infection, rectal tempera-
ture, pulse, respiratory rate, lymph node size, and mucous 
membrane color were assessed and recorded daily, and a 
CBC, chemistry panel, and T. orientalis peripheral blood 
PCR and qPCR assays (described below) were performed 
weekly. Diff-Quik-stained blood smears and packed cell 
volume were assessed 2–3 times per week until the calf 
became positive by PCR, and were measured daily there-
after. Monitoring of steers and T. orientalis infection 
kinetics were similarly performed for tick acquisition and 
transmission feeds. Following tick removal and confirma-
tion of infection, the calf was euthanized via intravenous 
administration of sodium pentobarbital (Fatal Plus®, 
Vortech Pharmaceuticals, Michigan, USA).

T. orientalis blood stabilate
Whole blood from a T. orientalis Ikeda PCR-positive calf 
identified during the VA outbreak was collected into cit-
rate phosphate dextrose adenine (CPDA) anticoagulant 
via jugular venipuncture. Following collection, blood 
was centrifuged at 1800×g for 10  min, and the plasma 
and buffy coat removed. The remaining erythrocyte frac-
tion was washed three times in filter-sterilized (0.22 µm) 
Puck’s saline G (pH 7.2). Finally, 20% polyvinylpyrro-
lidone-40 (Sigma, St. Louis, MO, USA) was added to 
the washed erythrocytes and 1.5  mL aliquots of the 1:1 
blood/PVP mixture were transferred to 2  mL cryovials. 
The mixture was cryopreserved at – 80  °C for later use, 
and stabilates were thawed rapidly immediately prior to 
inoculation.

H. longicornis colony maintenance
H. longicornis adult and nymphal ticks were collected 
from the field in New Jersey by Dr. Dana Price (Rut-
gers University, New Jersey) and kindly provided to the 
USDA-ARS Animal Disease Research Unit in Pullman, 
WA for colony rearing. To rear all life stages, ticks were 
fed on Holstein-Friesian steer calves under a secure cloth 
or stockinette patch attached by adhesive. Fed ticks were 
collected and held in an incubator at 26 °C to allow molt-
ing and tanning. Colony ticks were held for long-term 

storage at 15 °C and experimental ticks were maintained 
at 26 °C until used for acquisition and transmission feeds. 
The ticks used in these experiments were reared from 
eggs in our facility in Moscow, ID. The colony, which is 
composed entirely of females and reproduces partheno-
genetically, had been reared for one generation (F1) as of 
the date of this transmission trial.

H. longicornis acquisition feed
For acquisition feeding, nymphs were applied to sple-
nectomized steer #1697 in two batches. Prior to feed-
ing, an 8.5″ × 8.0″ patch divided into two equal sections 
was applied to the back of the calf. Batch #1 was applied 
13 days after first detection of T. orientalis by peripheral 
blood PCR (see below). Batch #2 was applied 6 days later 
after visualization of piroplasms within erythrocytes on 
Diff-Quik-stained blood smears. For each batch, 154 
nymphs were applied to one section of the cloth patch. 
Nymphs fed to repletion over a 4–8 day period. During 
this time, engorged nymphs were collected and held as 
described above to allow molting into adults.

H. longicornis transmission feed
Following acquisition feeding, nymphs were held for 
approximately 1 month to allow molting. Post-molt, adult 
ticks from both batches were divided evenly into three 
groups and allowed to feed on three, spleen-intact steers 
(#1718, #1726, and #1727). Prior to tick application, an 
8.5″ × 8.0″ patch was applied to the right and left flanks 
of each calf using adhesive. For transmission feeding, 
42 ticks from Batch #1 and 28 ticks from Batch #2 were 
applied to each calf in the front left and right patches, 
respectively.

To confirm T. orientalis acquisition and maturation, 
a subset of adult ticks from each batch were allowed to 
feed for 4  days to stimulate salivary gland development 
and parasite replication, and were then collected and dis-
sected to harvest salivary glands. Salivary glands were 
placed into individual 1.5  mL microfuge tubes on ice 
containing Phosphate Buffered Saline (PBS; Gibco) and 
stored at –  20  °C until analysis by qPCR as described 
below.

T. orientalis MPSP PCR
Frozen samples were extracted using the QIAamp DNA 
mini kit (Qiagen, Hilden, Germany) following the blood 
or body fluids spin protocol (blood and salivary glands) 
or the tissue protocol (larvae) using proteinase K. EDTA 
anticoagulated blood (100  µL) and salivary gland pairs 
dissected from acquisition fed adults were brought up 
to 200  µL with PBS. Elution was performed with 50  µL 
of pre-warmed buffer AE and 2  min incubation prior 
to centrifugation; this step was repeated for blood 
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samples. Detection of the MPSP gene by conventional 
PCR was carried out in reactions composed of 22.5  µL 
of AccuPrime™ Pfx SuperMix (Thermo Fisher Scientific, 
Waltham, MA, USA), 1.5 µL of 10 uM each MPSP primer 
[23] and 2 µL of DNA template. Reaction conditions were 
as follows: 5 min at 95 °C followed by 35 cycles of 15 s at 
95 °C, 5 s at 57 °C and 1 min at 68 °C. Ten microliters of 
the final reaction volume was electrophoresed on a 1.25% 
agarose gel. Positive controls (blood stabilate) and posi-
tive samples produced fragments of the expected size of 
776 bp and negative controls showed no signs of amplifi-
cation (Additional file 1: Figure S1). Positive samples (one 
date per animal and blood stabilate control) were veri-
fied as T. orientalis with bidirectional Sanger sequencing 
using PCR primers (Eurofins Genomics, Louiseville KY). 
Sequences were trimmed and merged for consensus to 
create consensus sequences (Sequencher, GeneCodes, 
Ann Arbor, MI, USA).

T. orientalis qPCR
Real-time PCR targeting the T. orientalis MPSP gene 
was completed on DNA extracted from blood of the 
four steers and from salivary glands of ticks fed on the 
three transmission-fed steers. PCR reaction components 
consisted of TaqMan™ Environmental Master Mix 2.0 
(Thermo Fisher Scientific), 300  µM of Forward Primer 
[34] (5′-GCA AAC AAG GAT TTG CAC GC-3′), 300 µM 
of Reverse Primer (5′-TGT GAG ACT CAA TGC GCC 
TAG A-3′), 100 µM of Probe (5′-NED–TCG ACA AGT 
TCT CAC CAC-MGB-NFQ-3′), and 2  µL of DNA in a 
20 µL reaction. Serial ten-fold dilutions of plasmid DNA 
pASK-IBA2 (IBA Life Sciences, Goettingen, Germany) 
ligated with a partial T. orientalis Ikeda MPSP gene were 
included in the assay as a standard curve. qPCR was run 
on a 7500 Fast Real-Time PCR System (Thermo Fisher 
Scientific) using standard mode and the following cycling 
conditions: 10 min at 95C followed by 45 cycles of 15 s at 
95C and 1 min at 60C (Additional file 2: table S1).

Results
Infection of a splenectomized calf with T. orientalis Ikeda 
blood stabilate results in microscopically detectable 
parasites and anemia
Sixty-three  days following IV inoculation with T. ori-
entalis Ikeda blood stabilate, calf 1697 tested positive 
for T. orientalis Ikeda via peripheral blood PCR (Addi-
tional file  1: Figure S1). T. orientalis merozoites were 
detectable in Diff-Quick stained blood smears from day 
80 post-infection onward (Fig.  1a). Peripheral blood 
parasitemia peaked at 3.4% 91  days post infection, 
then decreased (Fig.  2). The PCV of calf 1697 stead-
ily declined 6%, from 32% pre-infection to a nadir of 
26%, by 99 days post-infection (Fig. 2). T. orientalis was 

detected by qPCR beginning at 56  days post-infection 
through the end of the study at 72 days post-infection 
with detected copy numbers per mL of blood increasing 
steadily from 2.81 × 103 to 7.61 × 105 (Fig. 3 and Addi-
tional file  2:Table  S1). As is commonly observed in T. 
orientalis infections, the calf exhibited no other clinical 
signs of piroplasmosis (e.g. fever, anorexia, icterus, and 
hemoglobinuria) throughout the course of infection.

H. longicornis ticks fed as nymphs on a T. orientalis 
Ikeda‑infected calf acquire T. orientalis Ikeda infection
Batch #1 nymphs fed to repletion after approximately 
4 days on T. orientalis Ikeda PCR-positive blood (Fig. 2; 
solid box). Batch #2 nymphs fed to repletion after 
approximately 8 days, during which peripheral blood par-
asitemia increased from 0.1 to 1.7% (Fig. 2; dashed box). 
Of the total nymphs applied, 150/154 from Batch #1 and 
114/154 from Batch #2 were collected.

After molting, T. orientalis Ikeda was detected in sali-
vary glands from a subset of adult ticks from both Batch 
#1 and Batch #2 following a 4  day stimulation feed. Of 
the subset of stimulation-fed ticks from Batch #1, 8/17 
were positive by qPCR with an average infection rate of 
47.1 ± 12.4% and a range from 1.63 × 103 to 2.17 × 105 
copies per salivary gland pair. From Batch #2, 1/18 was 
positive representing an infection rate of 5.5% and 
1.92 × 105 copies per salivary gland pair. (Fig. 4 and Addi-
tional file 2: Table S1).

T. orientalis Ikeda‑infected H. longicornis adult ticks 
transmit T. orientalis Ikeda to naïve calves
Fourteen days after adult tick application, 3/3 spleen-
intact calves were positive for T. orientalis Ikeda via 
peripheral blood PCR Additional file  1: Figure S1), and 
merozoites were detected in the erythrocytes of all calves 
on day 15 post-tick application (Fig. 1b–d). T. orientalis 
was detected by qPCR in all three calves from 14  days 
post-tick application through the end of the study. 
Copy numbers peaked for two calves (1727 and 1726) at 
28 days post-infection while copy numbers were continu-
ing to climb steadily for the third calf (1718) at 42 days 
post-tick application (Fig.  5), at the end of the study. 
Copy numbers per mL of blood ranged from 1.68 × 105 
to 1.52 × 108 (Additional file 2: Table S1), and for the two 
calves that demonstrated a peak in detected parasites, 
the peak was at approximately 1 × 108 per mL of blood 
(Fig. 5). Peripheral blood parasitemia peaked at 0.4–0.9% 
between 26 and 31 days post-tick application (Fig. 6), and 
the PCV of all calves declined 2–7% to nadirs of 28–29%, 
followed by incremental recovery (Fig. 6). One calf (1727) 
developed a transient, mild fever (103.5  °F) on day 11 
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post tick-application, but no other clinical signs of piro-
plasmosis were exhibited by the calves throughout the 
course of infection.

Sequence anzalysis
Consensus sequences for all sequenced amplicons were 
identical to each other and to that of the Ikeda strain, 
similar to the analysis by Oakes [23].

Discussion
These findings confirm that the U.S population of H. 
longicornis is a competent vector of T. orientalis Ikeda 
detected in beef cattle in VA, U.S. in 2017 [23]. This is the 
first report of T. orientalis transmission by H. longicornis 
ticks in the U.S. Our findings support the hypothesis that 

transmission of T. orientalis Ikeda within the Abermarle 
County, VA area is due to the abundance of H. longi-
cornis. The previous detection of T. orientalis Ikeda in H. 
longicornis, but not native ticks, from the same area in 
VA provides further support for this hypothesis [33].

Since the T. orientalis Ikeda outbreak was detected 
2017, concomitant with the introduction of H. longi-
cornis to the U.S., it is possible that the tick and the 
parasite were imported together (e.g. T. orientalis Ikeda-
infected H. longicornis ticks were imported); however, it 
is also possible that they were introduced separately (e.g. 
T. orientalis-infected cattle and uninfected H. longicornis 
ticks entered separately), and an outbreak occurred when 
the parasite and the tick arrived in the same area of VA 
at the same time. In general, although this has yet to be 

Fig. 1  Representative blood smears from calves 1697, 1718, 1726, and 1727 following T. orientalis Ikeda-infection. In each calf, few erythrocytes 
contain 1–2.5 µm × 0.5 µm, tear-drop shaped, intracellular piroplasms (arrows). No other evidence of anemia, erythrocyte destruction, or cellular 
regeneration is present. a calf 1697, b calf 1718, c calf 1726, d calf 1727. Scale bar: 10 µm
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empirically demonstrated in this strain of T. orientalis 
Ikeda, Theileria sp. are not transovarially transmitted. 
Furthermore, H. longicornis survives well in varied envi-
ronmental conditions [24, 27, 28, 35], and exhibits a wide 
variety of host feeding preferences, in addition to cattle, 
including deer and avian species [25, 27, 28, 35]. Thus, if 
infected ticks were imported, an outbreak of T. orientalis 
Ikeda could occur if those infected ticks fed on cattle dur-
ing their life cycle. In contrast, if the infected ticks com-
pleted their life cycle by feeding on other animals, their 
progeny would likely not be infected with T. orientalis 
Ikeda, and no outbreak would occur. This may explain the 
lack of T. orientalis Ikeda outbreaks in other areas of the 
U.S. where H. longicornis has become established [25, 27, 
28, 35].

Given the cosmopolitan nature of the tick vector, there 
is significant potential for extensive, rapid spread of T. 
orientalis Ikeda throughout the U.S. due to movement of 
infected, asymptomatic cattle. Additionally, other North 
American tick species competent to transmit T. orientalis 

Ikeda are not yet known. Small-scale T. orientalis Buf-
feli infections have been detected in cattle herds in dif-
ferent areas of the U.S. since 1955 [1, 21, 22], prior to 
the introduction of H. longicornis ticks. It is thus likely 
some indigenous North American tick species are also 
capable of transmitting T. orientalis Ikeda. There is one 
report of T. orientalis acquisition and transmission by 
Rhipicephalus microplus ticks in India [12]. As R. micro-
plus ticks are also native to regions of the U.S. near the 
southern border, and are competent vectors of Theileria 
equi [36–39], it is possible that they have been involved 
in T. orientalis transmission in the past, and could prove 
competent vectors of T. orientalis Ikeda. Other North 
American tick species, including Amblyomma mixtum, 
Dermacentor variabilis, and Amblyomma americanum, 
are competent vectors of other Theileria sp. [36, 37, 39, 
40], and thus may be competent vectors of T. orientalis 
as well. Although T. orientalis was not detected in field-
collected cohorts of A. americanum (n = 28) and D. vari-
ablilis (n = 10) ticks in VA [33], larger scale, controlled 
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Fig. 3  Quantitative PCR of T. orientalis mpsp in blood samples from acquisition-fed calf 1697. EDTA-anticoagulated peripheral blood samples were 
collected during course of infection and evaluated for T. orientalis by mpsp qPCR. Data points represent the copy number per mL of blood collected 
on the indicated day post inoculation

Fig. 4  Quantitative PCR of T. orientalis mpsp in salivary gland samples from acquisition-fed adult H. longicornis ticks. Salivary glands dissected from a 
subset of adult ticks from Batch #1 and Batch #2 were stimulation fed on calves 1718, 1726, and 1727. Only positive ticks are depicted in the graph. 
Columns represent the copy number per salivary gland pair dissected from a single tick. *Single positive salivary gland pair from batch #2
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acquisition and transmission experiments are required 
to definitively determine the vector competence of these 
tick species for T. orientalis Ikeda.

In our study, parasitemia was markedly delayed when 
the calf was infected via IV inoculation with blood sta-
bilate as compared to tick feeding. There are several pos-
sible explanations for this observation. First, during tick 
feeding, infectious parasites are delivered to the blood-
stream of the bovine within a milieu of salivary proteins 
that modulate the immune response and facilitate infec-
tion of cells by sporozoites [41–44]. As these modulating 
proteins are largely absent from infected blood stabi-
lates, infection of host cells by parasites is less efficient. 
Furthermore, heterologous erythrocyte and lymphocyte 
antigens in the infected blood stabilate stimulate destruc-
tion of the inoculum by the recipient. Second, significant 
parasite amplification occurs within the tick vector, both 
via sexual and asexual reproduction [45, 46]. Thus, cat-
tle infected via tick bite likely received a higher dose of T. 
orientalis parasites. Third, when tick transmission is used 
for infection, parasites undergo another round of asexual 

reproduction within leukocytes of the host (schizogony) 
[3], further increasing the number of parasites that sub-
sequently infect bovine erythrocytes, bringing animals 
to the threshold of PCR detection much more quickly. 
While small numbers of contaminating schizont-infected 
lymphocytes were likely present in the blood stabilates, 
their prevalence would have been incomparable to those 
observed following natural tick transmission, and most of 
them would have been destroyed by the immune system 
of the recipient calf due to expression of heterologous 
lymphocyte antigens. Finally, it is likely that stabilate 
preparation, shipment, and storage led to parasite degra-
dation, effectively significantly decreasing the infectious 
parasite dose.

Disease severity due to T. orientalis Ikeda is variable. 
The three animals infected via tick feeding in this study 
developed mild disease in comparison to the cattle from 
which the isolate was derived, likely due to reduced 
stress, lack of exposure to other pathogens, and, most 
importantly, reduced parasite dose. In other virulent 
Theileria species, including T. parva and T. annulata, 

Fig. 5  Quantitative PCR analysis of T. orientalis mpsp gene fragment in blood samples from transmission-fed calves 1718, 1726, and 1727. Peripheral 
blood samples were evaluated as described in Fig. 3
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parasite dose is a critical determinant of disease lethal-
ity [47, 48]. In T. orientalis-endemic areas, cattle often 
endure dense H. longicornis infestations [49], and thus 
may be exposed to extremely high numbers of parasites. 
Exposure of immunologically naïve or debilitated animals 
to such a high parasite dose may contribute to morbid-
ity and mortality caused by T. orientalis. Cattle age and 
pregnancy status are also purported to play a role in T. 
orientalis disease susceptibility. For instance, in Australia 
and New Zealand, the majority of T. orientalis-related 
economic impact on the cattle industry is due to fetal 
loss, abortion, and neonatal calf death [16, 20, 50].

Conclusions
In conclusion, we have demonstrated that a U.S. popu-
lation of the invasive Asian longhorned tick, H. longi-
cornis, is a competent vector of the T. orientalis Ikeda 

genotype isolated from a beef herd outbreak in VA, 
U.S. in 2017 [23]. Since the Asian longhorned tick has 
become established in fourteen U.S. states [25, 28, 35], 
and many T. orientalis-infected cattle exhibit only mild, 
intermittent clinical signs, there is significant poten-
tial for T. orientalis Ikeda to spread widely within the 
expanding North American range of H. longicornis in 
the absence of surveillance and livestock tick control 
measures throughout this and neighboring regions. 
Furthermore, the development and implementation of 
improved diagnostic assays for T. orientalis surveillance 
may be needed to reduce losses incurred by the U.S. 
cattle industry. Finally, future studies to determine the 
vector competence of other North American tick spe-
cies for T. orientalis Ikeda will provide critical knowl-
edge regarding disease transmission and susceptibility 
of cattle in different regions of the United States.
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Fig. 6  Packed cell volume (PCV) and peripheral blood percent parasitemia of erythrocytes (PPE) in calves 1718, 1726, and 1727 following 
transmission feed by T. orientalis Ikeda-infected H. longicornis adult ticks. PCV and Diff-quick-stained blood smears were evaluated following tick 
attachment and feeding. a calf 1718, b calf 1726, c calf 1727. For A-C, PCV (left y-axis) and PPE (right y-axis) are depicted as percentages, and each 
value is derived from analysis of a single blood sample taken on the indicated day post-inoculation. ♦ PCV, ○ PPE
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