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Abstract

Background: Non-invasive prenatal testing (NIPT) is a rapidly developing and widely used method in the prenatal
screening. Recently, the widespread use of the NIPT caused a neglecting of the limitations of this technology.

Case presentation: The 38-year-old woman underwent amniocentesis because of a high risk of trisomy 2 revealed
by the genome-wide Non-Invasive Prenatal Test (NIPT). The invasive prenatal diagnosis revealed the mosaicism for

a small supernumerary marker chromosome sSMC derived from chromosome 2. Interphase fluorescence in situ
hybridization (FISH) on uncultured amniocytes revealed three signals of centromere 2 in 30% of the cells. GTG-banded
metaphases revealed abnormal karyotype (47 XX,+mar[211/46,XX[19]) and was confirmed by array comparative
genomic hybridization (@CGH). Cytogenetic analyses (FISH, aCGH, karyotype) on fetal skin biopsies were performed
and confirmed the genomic gain of the centromeric region of chromosome 2. In the placenta, three cell lines were
detected: a normal cell ling, a cell line with trisomy 2 and a third one with only the sSMC.

Conclusion: Whole-genome Non-Invasive Prenatal Testing allows not only the identification of common fetal triso-

mies but also diagnosis of rare chromosomal abnormalities. Especially in such cases, it is extremely important to per-

form not only NIPT verification on a sample of material other than trophoblast, but also to apply appropriate research
methods. Such conduct allows detailed analysis of the detected aberration, thus appropriate clinical validity.

Keywords: Array comparative genomic hybridization, Fluorescence in situ hybridization, Karyotyping, Mosaicism,
Non-invasive prenatal test, Small supernumerary marker chromosome

Background

Non-invasive prenatal testing (NIPT) is a rapidly devel-
oping and widely used method in the world. The NIPT
resolution depends on the technique applied. Recent
research shows that different NIPT approaches can be
used not only to detect the most common trisomies,
but also for detection of rare aneuploidies and to assess
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submicroscopic deletions and duplications, as well as
identify monogenic diseases [1-6]. The well-documented
specificity and sensitivity of NIPT for the most com-
mon trisomies (13, 18, 21) are different for each chromo-
some. Mackie et al. estimated specificity of 99% to 100%
for 13, 21, 18 trisomies and monosomy X. The sensitiv-
ity to detect trisomy 21 reaches 99% but for trisomy 13,
18 and monosomy X it is 90%, 98% and 93% respectively
[7]. Similarly study Lee et. al showed 99-100% specificity
and sensitivity for trisomies 21, 13 but sensitivity for 18 is
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high as 92% [8]. However, in literature there is no data of
NIPT sensitivity and specificity for other chromosomes.

Moreover discordant results between the NIPT and
the fetal karyotype have been reported. This can be due
to the fact that the fetal cell-free DNA (cfDNA) in the
maternal blood is derived from the cytotrophoblastic
cells of the placenta [9] and confined placental mosaicism
(CPM) can yield a discrepancy between NIPT and amni-
otic fluid analysis. CPM are observed in about 1-2% of
chorionic villus samplings (CVS) [10]. Additionally, twin
pregnancies, vanisching twing, maternal copy number
variations (CNV), maternal mosaicism, as well as mater-
nal malignancies but also low-level imbalance-mosai-
cism examined chromosomes are the most commonly
reported reasons for discordance [11-19].

Therefore, in the case of fetal abnormalities identified
during the ultrasound screening, invasive test instead of
NIPT is recommended [20]. Here we report a discrep-
ancy between the result of NIPT and the final genetic
diagnosis. The indication for the prenatal examination in
this case was a high risk of trisomy 2 revealed by NIPT
test while in invasive diagnostic mosaicism of a small
supernumerary marker chromosome (sSMC) derived
from chromosome 2 has been detected.

Case presentation and methods

A 38-year old woman came to the clinic because of
increased risk of trisomy 21 (T21=1/291) calculated
based on the combined test. The ultrasound test did not
reveal any abnormalities. The patient conducted NIPT at
the 14th week of gestation, which revealed a high risk of
trisomy 2. Amniocentesis was performed at 17th week
of gestation. The amniotic fluid was aliquoted in order
to perform FISH, aCGH and conventional karyotyping
analysis. A fetal skin and placental were taken to perform
FISH and aCGH on uncultured cells, and conventional
karyotyping on cultured cells.

Methods

Fluorescence in situ hybridization (FISH)

Interphase FISH analysis was performed on uncultured
amniotic fluid cells using commercially available DNA
probe for region 2pll.1-q11.1 (Spectrum Red cen-
tromere of chromosome 2 probe, locus D2Z2) (Chro-
mosome 2 Alpha Satellite Probe—Cytocell) and probe
for region Xpll.1-q11.1 (Spectrum Green centromere
of chromosome X probe, locus DXZ1) (Chromosome X
Alpha Satellite Probe—Cytocell) as a control. Fetal skin
and placenta cells were examined with the same probe for
chromosome 2 (Chromosome 2 Alpha Satellite Probe—
Cytocell) and locus specific probe RP11-676E9 from
bacterial artificial chromosome (BAC) clone located at
cytoband 2p21 (chr2:45,579,001-45,773,026; GRCh37).
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The position of the BAC clone was taken from the UCSC
Genome Browser. DNA was labelled with Spectrum
Green-dUTP (Vysis), using the Vysis nick-translation kit
(Vysis). Labelling of probe was done as described previ-
ously by Merscher et al. [21].

Array comparative genomic hybridization (aCGH)

DNA was extracted directly from amniotic fluid cells
and from fetal skin cells. Microarray was performed
using CytoSure Constitutional v3 (8 x 60 k), (Oxford
Gene Technology, GRCh37/hgl9) according to proce-
dures described by Bartnik et al. [22]. Scanned images
were quantified using Agilent Feature Extraction soft-
ware (v10.0). The CytoSure (Oxford Gene Technology)
software was used for chromosomal microarray analysis.
All genomic coordinates are based on the March 2006
assembly of the reference genome (NCBI37/hg19).

Karyotype analysis
Analysis of GTG-banded metaphases at approximately
400-band resolution in amniocytes and skin fibroblasts
after in situ culturing was performed according to the
standard protocol.

Result

Interphase FISH analysis performed on amniotic fluid
showed three signals for the centromere of chromosome
2 in 45 cells and two signals in 105 cells, indicating 30%
mosaicism for trisomy 2 in female fetus. However, based
on the interphase FISH, structural chromosomal abnor-
malities cannot be identified. Analysis of GTG-banded
metaphases revealed a 47,XX,+mar[21]/46,XX[19]
karyotype indicating the presence of a marker chromo-
some in 52% of the analyzed metaphases. In order to
determine the genetic content of the sSMC, aCGH was
performed. Array CGH indicated a pericentromeric
gain of 14.83 Mb in chromosomal region 2ql1.1q13
(95420515_1102553160). Based on the morphology
of the marker detected in GTG-banding (Fig. 1) and
molecular results, we concluded that the marker was a
small supernumerary ring chromosome (sSRC) derived
from chromosome 2. Based on Liehr online database
[23] (the panel B in Fig. 2), the region is known as patho-
genic, causing dysmorphism, developmental delay, brain
malformations, heart defect, hypotonia, mental retarda-
tion, finger or toe/foot malformations, growth retarda-
tion, kidney problems/ malformations and omphalocele
or situs inversus. Following detailed genetic counselling,
the parents decided to terminate the pregnancy. Ultra-
sound examination and postnatal autopsy at the 22nd
week of gestation revealed a female fetus with growth
restriction but without any further malformations. Fetal
skin an placental tissue were sampled to perform further
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Fig. 1 A GTG-banded metaphase (47,XX, 4+ mar) at 400-band resolution carrying sSMC

cytogenetic examinations. Array CGH of skin cells (red
plot in Fig. 2) showed the same 14.83 Mb gain of chromo-
some 2q11.1q13 (95420515_1102553160). However, this
time the plot showed higher level of mean log ratio (0.44
on average), compared to results from the amniotic fluid
cells (0.19 on average), indicating higher level of mosai-
cism in skin cells. FISH analysis of fetal skin cells (Fig. 3b)
showed three signals of centromere 2 in 84 of 132 ana-
lyzed nuclei, indicating 64% of mosaicism for the sSMC.
The placenta (Fig. 3a) showed the presence of three cell
lines: 39% of scored nuclei had a normal number of sig-
nals from chromosome 2, 40% presented trisomy of
the whole chromosome 2 and 21% carried the sSMC.
Finally, cytogenetic analysis by conventional karyotype
of cultured skin and placental cells revealed 30% and 33%
mosaicism of the sSSMC respectively (Table 1), however,
no trisomy of whole chromosome 2 was detected.

Discussion and conclusions

Herein, we report the prenatal diagnosis and molecular
cytogenetic characterization of the mosaicism for sSSMC
derived from chromosome 2. The indication for the

prenatal examination in this case was a high risk of tri-
somy 2 revealed by NIPT test. Our case underlines the
screening nature of the NIPT test and also demonstrates
that performing only the FISH analyses in uncultured
amniocytes, as the most rapid way to verify the NIPT
result, would be insufficient for the correct diagnosis.
Therefore, bearing in mind that the fetal and placental
karyotypes might be different, a good follow-up of abnor-
mal NIPT results is necessary, but as the investigation
showed, techniques as well as the tested tissue should be
properly selected.

Chromosomal mosaicism can be associated with a wide
spectrum of phenotypes extending from apparently nor-
mal to severe or lethal. Hsu and coauthors [24] summa-
rized the outcome of 11 fetuses with whole chromosome
trisomy 2 detected in mosaicism, which ranged from 4
to 33% and has been confirmed in other tissues. Within
these cases, 1 with the lowest percentage of abnormal
cells (4% in the amniocytes but without trisomy in blood
and placenta) resulted in an apparently normal livebirth;
1 newborn presented IUGR, 1 had IUGR and multi-
ple anomalies, 3 stillbirths or intrauterine deaths, and 4
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Fig. 2 a Array CGH analysis of amniocytes (blue plot) and fetal skin cells (red plot) showing 14,83 Mb genomic gain of chromosome 2g11.1q13
(95420515_1102553160; area in red shadow). b The green line marks schematic cytogenetic depiction of probably non-dosage sensitive pericentric
region of chromosome 2. The red line marks schematic cytogenetic depiction of chromosome 2 region with clinical relevance [23]
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Fig. 3 Interphase FISH analysis of uncultured placenta (a) and fetal skin (b) cells showing red signals from centromeres of chromosome 2 and green
signals from specific locus in p arm of chromosome 2. Loci for FISH probes on chromosome 2 are presented in the scheme below
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Table 1 Summarized results from FISH and GTG-banding scoring
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Biological material Treatment Method of analyses Results Mosaicism [%]
Amniotic fluid Uncultured FISH nuc ish(D222x 3)[45/150] 30

Cultured GTG mos 47,XX,4+mar[21]/46,XX[19] 52
Fetal skin Uncultured FISH nuc ish(D272x3)[84/132] 64

Cultured GTG 47 XX,+mar[15]/46,XX[35] 30
Placenta Uncultured FISH nuc ish(D2Z2,RP11-676E9) x 3[45/112]/ 40/21

(D272 x3,RP11-676E9x 2)[23/112]
Cultured GTG 47 XX, +mar[6]/46,XX[12] 33

GTG Giemsa trypsin G-banding, FISH fluorescence in situ hybridization, Nuc ish nuclear in situ hybridization, Mos mosaic, Mar marker chromosome

in elective terminations (11-33% mosaic cells, all with
abnormal findings).

Clinical consequences in cases of mosaicism of partial
trisomy can be harder to predict. Marker chromosomes
derivative from chromosome 2, described in the litera-
ture, have been associated with multiple clinical conse-
quences. Children diagnosed after birth might present:
developmental delay, brain malformations, seizures,
heart defect, kidney malformations, hypotonia, men-
tal retardation, growth retardation, microcephaly [23].
However, little is known about prenatal ultrasound
abnormalities in such cases.

Microarray analysis defined the gain of 14.83 Mb
in the 2q11.1q13 region. Our case is highly similar to
a case reported by Riegel and Schinzel [25]. Authors
described a 4-year-old boy with multiple clinical fea-
tures and a duplicated segment of 2q11.1-q13.2 pre-
sented in all analyzed cells. Low birth weight (< 10th
centile), a left cleft lip with cleft palate and natal left
upper incisor were noted at birth. Consecutive exami-
nation revealed mental retardation, low set ears, irregu-
lar teeth, cryptorchidism and epilepsy. However, also in
this case, three ultrasound routine examinations per-
formed prenatally did not disclose abnormal findings.
The difference in the clinical presentation between our
case and the patient described by Riegel and Schinzel
[25], might be due to the percentage of the level of nor-
mal cells, but also could be because of different impact
of the simple region duplication in the genome versus
marker chromosome.

Furthermore, cytogenetic discrepancy between
results of uncultured fetal cells (skin 64%, amniocytes
30%) and cultured cells (skin 30%, amniocytes 52%)
provides an additional challenge in genetic counsel-
ling. FISH analyses in uncultured skin cells presented
higher percentage of mosaicism (64%) than was found
later in cultured skin cells (30%). The discrepancy has
also been observed between uncultured and cultured
placenta cells. In uncultured placenta we observed
three cell lines; with a normal number of signals from

chromosome 2 (39%), trisomy of whole chromosome
2 (40%), and 21% of cells carrying the sSMC. Whereas
cultured placenta did not reveal the whole trisomy 2.
The variations in cell numbers carrying an abnormality
before and after cultivation are compatible with results
of other authors and presumably stem from a selection
against the trisomic cells after long-term culture [26].
Different values of mosaicism indicated in uncultured
(30%) and cultured (52%) amniocytes can be caused
by the contamination of amniotic fluid with maternal
cells. Moreover, the number of available for analysis
metaphases was relatively low (n=40) in comparison
to uncultured nuclei analyzed with FISH (n=150).
The fact that the abnormal cells may divide slower and
undergo apoptosis more easily causes an increase in the
proportion of normal cells, should be taken into con-
sideration during genetic consultation [27].

In the presented case, based on FISH and GTG-banding
results, the sSMC was in fact a small ring chromosome.
There is a high probability that this ring chromosome
formation is caused by low repetitive elements present in
the pericentric region of chromosome 2 [28, 29].

We have observed a discrepancy between the indica-
tion for invasive testing, and the final genetic diagnosis
results. However, the presence of the trisomy of whole
chromosome 2 was confirmed in the placenta. It is prob-
able that the marker chromosome has arisen from tri-
somic embryo cells, which existed at an initial stage of
development. The presence of the marker chromosome
mosaicism in subsequent studies points to the existence
of a functional trisomy rescue mechanism in this case.

A genetic counselling of fetuses with mosaicism is
especially problematic because of the relatively poor phe-
notypic data and time-limitation. Considering the fate
of the pregnancy in the case of detecting abnormalities,
NIPT can be assessed as a screening test, and should
be accompanied by an ultrasound examination. Hence,
invasive diagnosis is necessary to confirm the non-inva-
sive results. In the presented case, it should be empha-
sized that there is a discrepancy between the result of the
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NIPT study and the results of the genetic diagnostic tests
performed in the fetal tissues. Therefore it is crucial to
choose the most suitable investigation strategy in order
to perform the most rapid genetic diagnosis.
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