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Abstract

Background: Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related
to sexuality, which enables the fixation of heterozygous genetic combinations through the development of
maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of
Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the
transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive
developmental steps and the orientation of transcription (sense/antisense) remain unexplored.

Results: We produced 24 lllumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four
developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate
apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for
the apomictic and sexual samples respectively. A global comparative analysis involving reads from all
developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147
(32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100
differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in
apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed
candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected
at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest
number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis
(120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the
auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological
expression profile of several well-characterized apomixis controllers was examined in detail.
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Conclusions: This work provides a quantitative sense/antisense gene expression catalogue covering several
subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum,
with potential to reveal heterochronic expression between reproductive types and discover sense/antisense
mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as
well as specific sense/antisense modulation occurring at the onset of parthenogenesis.
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Background

Apomixis (i. e, agamospermy) is an asexual mode of
plant reproduction via seeds, which generates progenies
consisting of exact genetic replicas of the mother plant
[1]. This puzzling trait occurs in at least 326 angiosperm
genera, with no clear tendency to any specific group [2].
The apomictic and sexual developmental pathways are
strongly related, since both take place within the ovule
and involve common developmental features [3]. Trad-
itionally, the asexual route was considered to be a devi-
ation from the sexual one, repeatedly emerging during
evolution from genetic or epigenetic mutations derived
from polyploidization and/or hybridization events [4—6].
More recently, apomixis and sexuality were hypothetic-
ally classified as ancient polyphenic traits [7]. According
to the latter view, the switching from one phenism to
the other would be environmentally triggered by epigen-
etic mechanisms, with full sexual genera/species having
lost the capacity to carry on this transition due to dele-
terious (epi)mutations affecting the molecular switch
that connects both pathways [7].

The potential of apomixis for fixing heterosis has long
been recognized [8, 9]. Therefore, the use of this trait in
combination with sexuality can dramatically accelerate
the development of new hybrid varieties and reduce the
costs associated with seed-production [10]. Among other
advantages, the transference of apomixis to species of
agricultural interest will allow the perpetuation of gen-
etic resources including wide-cross hybrids, the rapid
generation of adapted crops, the avoidance of monocul-
tures and the development of maternal seeds from
vegetatively propagated cultivars, like potatoes or straw-
berries [10—12]. The apomixis breeding technology im-
pact in global agriculture could be comparable to that
produced by the green revolution, initiated in USA,
Mexico, India and further spread to other countries in
the middle ‘70s [13].

While plant sexuality takes off with a specialized cell
division process (meiosis) preceding the formation of
haploid megaspores, apomictic mechanisms share the
common characteristic of lacking any reductive division
before female sporogenesis (apomeiosis) [1]. Moreover,
while sexuality start the sporophytic life cycle by restor-
ing the species-specific ploidy level through fertilization

of the genetically reduced egg cell with an equally re-
duced male gamete, apomixis does it by inducing
parthenogenesis, i. e., the spontaneous formation of an
embryo from a reproductively-committed cell [1]. Fi-
nally, for the formation of the seed endosperm, the
sexual route requires the fertilization of two reduced fe-
male polar nuclei with a reduced male gamete under a
strict 2:1 maternal:paternal genomic contribution.
Instead, apomixis may alternatively proceed with the
spontaneous proliferation of maternal polar nuclei
(autonomy) or the fertilization of one/two female unre-
duced polar nuclei with a male reduced gamete (pseudo-
gamy), a path that often deviates from the expected
genome contribution ratio [1]. While in some species
the three components of apomixis (apomeiosis, par-
thenogenesis and endosperm development) seem to be
controlled by a non-recombinant superlocus, in others
these factors can be readily uncoupled [2, 3, 14-16].
However, in nearly all cases there seem to be a consist-
ent association between the expressivity of trait and the
ploidy level increments [2, 3, 14—16].

In the past decade, transcriptome surveys have ex-
posed a large number of genes differentially regulated in
sexual and apomictic developmental pathways. Analyses
on Boechera spp. [17, 18); Boehmeria tricuspis [19]; Bra-
chiaria spp. [20, 21]; Citrus spp. [22]; Eragrostis curvula
[23]; Hieracium praealtum [24]; Hypericum perforatum
[25]; Poa pratensis [26); Panicum maximum [27); Paspa-
lum spp. [28-31]; and Pennisetum spp. [32-35] used
different strategies to reveal the molecular cohorts
modulating the trait. Although divergent evolution of
apomictic species validates a partially contrasting nature
for the detected candidate transcripts, some pathways do
seem consistently altered, especially those related to cell
cycle and cell division control, ribosome metabolism,
RNA processing, signal transduction, hormone signaling
and epigenetic mechanisms [36]. Moreover, long non-
coding and antisense RNAs [37-41], as well as, small
RNAs that target specific transcription factors [22, 42—
45] are being increasingly recognized as common mem-
bers of the apomixis cascade.

Paspalum notatum Fluggé is a warm-season perennial
grass widely distributed in the Western Hemisphere
[46], where it occurs as a primary constituent of natural
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grasslands, particularly in southern Brazil, Paraguay,
Uruguay, and north-east Argentina [47]. The species
form a multiploid complex in which the diploid cytotype
(2n = 2x =20) is self-sterile and sexual, while the tetra-
ploid one (the common race) (2n = 4x = 40) is pseudoga-
mous, aposporous apomictic and self-fertile [48]. Other
infrequent polyploid cytotypes (3x and 5x) are also apo-
micts [49]. Moreover, numerous sexual tetraploid indi-
viduals were artificially synthetized from diploids by
colchicine treatment, or obtained from experimental
crosses involving facultative apomicts [50]. Interestingly,
although sexual seeds form the endosperm under a strict
2 maternal: 1 paternal genomic contribution, apomictic
ones are more permissive and can develop under differ-
ent maternal:paternal genomic ratios (e.g., 4:1; 8:1) [49].
P. notatum has become a model system for apomixis re-
search and breeding, mainly due to the existence of
freely-crossable races of the same ploidy and different
reproductive mode, a thoroughly-characterized living
germplasm collection and advanced breeding programs
exploiting apomixis for cultivar generation [48, 50—53].
Several transcriptome surveys were conducted to
identify P. notatum apomixis-associated genes. Firstly,
transcripts expressed in sexual and apomictic florets
were compared by using differential display, allowing the
identification of a pioneer apomixis candidate gene
homologous to the maize kinesin-like motor protein
KIN-14P [28]. Then, Laspina et al. [29] identified 65
transcripts  differentially expressed in spikelets of
apomictic and sexual genotypes at premeiosis/meiosis,
several of which mapped in silico to a rice chromosome
2 region that had previously been associated with
apospory by comparative mapping [54, 55]. Moreover,
endosperm RNA representation comparisons 3-24h
after pollination revealed more than 100 differentially
expressed transcripts (DETs) in seeds that differed from
the expected 2 m:1p genome contribution ratio, formed
when apomictic plants were used as female parents in
crosses (the endosperm involved 4 m:1p, 8 m:1p or 8 m:
3p contribution ratios, depending on the cross) [56]. Be-
sides, transcripts related to endosperm development
were identified in apomictic and sexual ovaries of
Paspalum notatum 48 h after pollination, a stage prior
to post-zygotic collapse [57]. These DETs were mainly
associated with genes related to transcription, signal
transduction, growth/division, protein destination and
storage, as well as regulation of gene expression. Inter-
estingly, several differential sequences identified at the
onset of endosperm development showed high similarity
with proteins expressed in response to changes in the
levels of extracellular ATP [56, 57]. Besides, the Roche
454/FLX + long-read technology was used to produce
apomictic and sexual reference floral transcriptomes on
an equitable mix of RNA extracted from spikelets at
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different developmental states from premeiosis to an-
thesis [31]. Recently, De Oliveira et al. (2020) [58] re-
ported a global gene expression analysis using
[lumina Hi-Seq technology on RNA isolated from
leaf and floral tissues of 2x sexual, 4x sexual and 4x
apomictic genotypes. Interestingly, 89 DETs expressed
in apomictic or sexual plants mapped at the chromo-
some regions of rice syntenic to the Paspalum apo-
mixis controlling locus (ACL) [58].

All the above-cited contributions have partially dis-
closed the nature of numerous apomixis candidates and
evidenced the effects of polyploidy on gene expression.
However, our knowledge on the chronological modula-
tion of transcript levels along the sexual and the apomic-
tic reproductive routes remained limited, since previous
studies were conducted on samples collected at a par-
ticular timeframe or on mixed pools representing a
group of developmental stages. Under these experimen-
tal limitations, either part of the DETs go undetected or
those experimenting expression increments at different
developmental stages for contrasting reproductive modes
are mistakenly classified as non-differential. Moreover,
the plus/minus orientation of the expressed transcripts
remains globally unexplored, even when some apomixis
candidates (ORC3, PsACR/H5, PsACR/H.13) display
antisense differential expression [39, 59]. The lack of
comprehensive data prevents researchers from grasping
the true dimensions of heterochronic expression and
antisense regulation affecting apomixis development as
well as from inspecting their biological consequences.
The objective of this work was to gain a quantitative,
statistically significant, massive characterization of sense/
antisense transcripts expressed across four crucial repro-
ductive steps in sexual and apomictic P. notatum and,
after reciprocal comparisons, produce a detailed picture
of the main molecular pathways operative during
apomixis.

Results

Sequencing and de novo assembly

To get a compressive characterization of sense/antisense
transcripts expressed during the P. notatum reproduct-
ive development, Illumina TruSeq floral cDNA libraries
representing two reproductive modes (apomixis and
sexuality) and four developmental stages (premeiosis,
meiosis, postmeiosis, anthesis), each one including three
biological replicas, were sequenced with Illumina HiSeq
1500 technology. The procedure involved 24 libraries
and generated a total of 60.94 Gb, of which 97% had a
Phred value > 30. After demultiplexing, 292,647,558 pass
filter (PF) reads were selected, which, after cleaning and
trimming, yielded 234,957,559 high-quality reads (Q
score > 30) (available under the NCBI SRA accession
PRJNA511813). De novo assemblies were carried out
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with the Trinity software [60, 61], considering two
groups of samples (apomictic and sexual), each of them
containing 12 libraries. In a first trial, the available
Roche 454/FLX + P. notatum reference floral transcrip-
tome [31] was used as a guide reference. Then, a second
de novo assembly, without any reference, was con-
structed to detect novel transcripts. Table 1 shows the
output basic statistics derived from both procedures. As
expected, the de novo assembly without a guide refer-
ence generated a higher number of contigs for both
samples, probably reflecting the inclusion of low
expressed transcripts and/or allelic variants absent in the
Roche 454/FLX + transcriptome. Subsequently, the four
assemblies were concatenated in one file and filtered to
obtain 199,074 non-redundant transcripts corresponding
to a global transcriptome assembly (GTA), representing
both reproductive modes (apomixis and sexuality), and
the four developmental steps (premeiosis, meiosis,
postmeiosis, anthesis) (Table 1). This transcriptome
shotgun assembly was deposited at DDBJ/EMBL/Gen-
Bank under the accession GIUR00000000. With an
average length of 1182.31bp and an N50 of 1508 bp,
the assembled sequences resulted in good quality for
annotation (Table 1). Mapping of raw reads onto the
GTA with Bowtie2 and TopHat showed 99.09 and
98.3% of match with the reference, respectively. These
results indicated the GTA covered almost the
complete set of sequence reads. To validate the as-
sembly identity, a BLASTN assay was performed onto
the Roche 454/FLX + reference transcriptome [31].
Ninety-four % of the transcripts showed homology
with the reference and 92% of them exhibited more
than 95% identity (Fig. 1). A survey of the assembled
contigs with  TransDecoder identified 108,011
(54.24%) entities with protein-coding capacity, while
BUSCO estimated a gene coverage of 93.1% (35.6%
single copy and 57.5% duplicated genes). This value
was higher than the coverage achieved with the Roche
454/FLX + reference transcriptome [31], which rounds
about 82.2% (Additional file 1).

Table 1 Statistics of Paspalum notatum assemblies
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Global transcriptome assembly (GTA) annotation

A total of 101,079 transcripts produced robust top
BLASTN hits against the NCBI NT database (E-value:
le '% % query coverage >30), and more than 98% of
them matched to monocot sequences, mainly corre-
sponding to S. bicolor, S. italica, P. hallii and Z. mays
(Fig. 2). Besides, more than 96,350 transcripts showed
significant hits against the UniProt database (taxon iden-
tifier: 58,024, BLASTP, E-value: 1 x e”°). In total, 66,617
transcripts were grouped into 755 Cellular Component-,
88,776 into 558 Biological Process-, and 15,620 into 147
Molecular Function-GO terms. Additional file 2 (A-C)
shows the 30 most representative GO terms for each
category. Besides, 43,275 transcripts were annotated into
168 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, with carbon metabolism, biosynthesis of
amino acids, spliceosome, endocytosis, mRNA surveil-
lance and glycolysis/gluconeogenesis as the most repre-
sented routes (Additional file 2, D).

Apomixis vs. sexuality differential expression analyses
Based on the GTA, we analyzed the expression level of
the complete set of sense and antisense transcripts by
using the DESeq2 package. Comparisons included: i) a
global differential expression analysis (GDEA), in which
pairwise comparisons concerned the reproductive modes
(apomictic vs. sexual) considering all developmental
stages together (i.e., involving reads generated from all
developmental stages), and ii) a stage-specific differential
expression analysis (SSDEA) between reproductive
modes at each developmental phase (i.e., involving reads
generated from each particular developmental stage).
From the 199,074 total contigs, 188,823 passed the fil-
ters established for the GDEA (see Materials and
Methods) and revealed 19,352 DETs with highly signifi-
cant differential expression (False Discovery Rate: FDR <
0.001, Log,FC > |3]) between apomictic and sexual sam-
ples (Additional file 3). Most of the them (13,205; 68%)
resulted upregulated in apomictic libraries (positive
Log,FCs), while only 6147 (32%) were upregulated in

Statistics Assemblies

de novo with Roche 454/FLX + as guiding reference de novo without reference GTA®

Sex Apo Sex Apo All
Number of contigs 80,177 79,040 100,114 103,699 199,074
%GC 50.32 49.82 48.60 48.17 4873
Median contig length 781 791 980 903 897
Average contig 1012.51 102335 1285.99 1186.29 118231
N50 1199 1218 1696 1528 1508
Number of contigs 81,179,923 80,885,743 128,745,833 123,016,839 235,450,926

“Global transcriptome assembly
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sexual ones (negative Log,FCs) (Additional file 4). A
heat map based on transcripts per million (TPM) values
shows the general picture of sense transcripts expression
patterns in both apomictic and sexual libraries (Add-
itional file 5, A). Similar analyses involving antisense
reads showed they targeted only 11,417 transcripts
(6.04%) and, in most cases, covered only part of the se-
quences. The GDEA performed with these sequences
(based on the number of reads mapped onto the GTA)
showed only 100 differentially expressed antisense tran-
scripts (DEATSs) (FDR < 0.05, Log,FC > |3]). Fifty-five of
them (55%) were upregulated in the apomictic libraries
and 45 (45%) in the sexual one (Additional files 6 and
7). A heat map showing the number of counts mapped
onto the differentially represented transcripts revealed
the general antisense expression patterns based on TPM
values for both apomictic and sexual libraries (Add-
itional file 5, B). A comparison among DETs and DEATSs
revealed 18 transcripts common to both differential
expression analyses.

In the stage-specific differential expression analysis
(SSDEA), the filtered raw reads corresponding to each
developmental stage (premeiosis, meiosis, postmeiosis,
anthesis) were mapped onto the GTA and compared be-
tween apomictic and sexual libraries. The highest num-
ber of DETs occurred at premeiosis, where, out of 124,
569 expressed transcripts, 23,651 (FDR < 0.001, Log,FC >
|3]) showed differential representation (Additional file 8,
S1). At meiosis, out of 131,993 total transcripts, 22,830
DETs were identified (Additional file 8, S2), while at
postmeiosis and anthesis, 19,100 (from 139,643) and 17,
962 (from 139,460) transcripts were found differentially
expressed, respectively (Additional file 8, S3 and S4).
Considering the percentage of DETs overexpressed in
apomictic plants, the largest number was detected at
meiosis (72%) followed by premeiosis (69%), postmeiosis
(68%), and anthesis (56%), showing the same tendency
observed in the GDEA analysis, in which upregulated
transcripts were more abundant in apomicts. A Venn
diagram showing the number of transcripts with a sig-
nificantly different level of expression between the apo-
mictic and the sexual libraries at each developmental
stage is presented in Fig. 3a. This analysis showed 5268
DETs common to all developmental stages (Fig. 3a).
Nevertheless, a considerable proportion of the DETs ap-
peared to be stage-specific. For instance, 5029 (21.30%)
DETs were differentially expressed only at premeiosis.
Likewise, at meiosis, postmeiosis and anthesis, other
5048 (22.11%), 4792 (25.01%) and 7500 (41.75%) stage-
specific DETs were detected, respectively. Interestingly,
the highest proportion of stage-specific DETs was de-
tected at anthesis, when parthenogenesis start in most
apomictic ovaries. A similar analysis carried out for the
antisense transcripts showed 115, 120, and 164 DEATs
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(FDR < 0.05; Log,FC > |3|) at premeiosis, meiosis and
postmeiosis, respectively (Additional file 9, S1-S3). The
largest number of DEATs corresponded to anthesis,
since 495 transcripts carrying antisense sequences were
detected (Additional file 9, S4). Once again, the number
of upregulated DEATSs was higher than the downregu-
lated ones at premeiosis (59% vs. 41%), meiosis (63% vs.
37%) and postmeiosis (54% vs. 41%). The opposite
behavior was observed at anthesis, with 203 (41%) over-
represented and 292 (59%) downrepresented transcripts
in apomictic libraries. A Venn diagram showing stage-
specific DEATSs is provided in Fig. 3b. Thirty-two (32)
DEATs common to the four stages of development were
observed (Fig. 3b). Furthermore, 42, 38, 59 and 396
stage-specific DEATs (i. e, occurring only at one par-
ticular stage) were detected at premeiosis, meiosis, post-
meiosis, and anthesis, respectively. Here again, a large
proportion of stage-specific transcripts, in this case anti-
sense ones, occurs at anthesis, concurrent with the onset
of parthenogenesis (Fig. 3b).

Gene ontology and KEGG pathway classification

Next, we established a Gene Ontology (GO) classifica-
tion for all sense transcripts expressed at each develop-
mental stage (Additional file 8). Based on this catalogue,
we carried out a KEGG pathways prediction to identify
specifically-modulated molecular routes (i.e., upregulated
or downregulated in apomictic plants) (Additional file 10).
Homologous recombination, endocytosis, thiamine me-
tabolism, monobactam biosynthesis, lysine biosynthesis,
protein export, RNA polymerase, photosynthesis-
antenna proteins, mismatch repair, mRNA surveillance
pathway, fructose and mannose metabolism, various
types of N -glycan biosynthesis, terpenoid backbone
biosynthesis and phenylalanine metabolism pathways are
regulated (by upregulation or repression) only at
premeiosis, a clear turning point in which the onset of
apospory initials occurs (Additional file 10). In the rest
of the developmental stages these routes are similarly
expressed in flowers of apomictic and sexual plants. Be-
sides, mitogen-activated protein kinase (MAPK) signal-
ing pathways, glycosphingolipid biosynthesis and
galactose, pyrimidine, sphingolipid and biotin metabo-
lisms are modulated exclusively during meiosis. More-
over, valine, leucine and isoleucine degradation, ABC
transporters, circadian rhythms, autophagy, plant-
pathogen interaction, fatty acid metabolism, aliphatic
and aromatic aminoacid biosynthesis and selenocom-
pound metabolism are regulated exclusively at postmeio-
sis. Finally, protein processing in the endoplasmic
reticulum, ribosome, citrate cycle, oxidative phosphoryl-
ation, phagosome, nitrogen metabolism, alanine, aspar-
tate and glutamate metabolism, carbon fixation in
photosynthetic organisms and fatty acid elongation are
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Fig. 3 Venn diagrams displaying differential expression overlapping across developmental stages. a DETs occurring at different developmental
stages. A total of 5268 DETs are differentially represented at all developmental stages. The developmental stage with the largest amount of stage-
specific DETs is anthesis (7500). The developmental step with a largest amount of total DETs is premeiosis (23,651). b DEATs occurring at different
developmental stages. A total of 32 DEATSs are differentially represented at all developmental stages. The developmental step with a largest
amount of stage-specific DEATSs is anthesis (396). The developmental step with a largest amount of total DEATSs is anthesis (495)
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modulated only at anthesis, when parthenogenesis starts.
Protein interaction predictions among members of these
stage-specific routes analyzed by comparisons with the
STRING database [62], revealed they integrate tight net-
works worth to get functionally explored (Fig. 4).

A similar GO analysis was conducted for DEATSs
(Additional files 9 and 10), but this time up- and down-
regulated entities were not distinguished due to the low
number of candidates involved. We were able to identify
sequences involved in mRNA surveillance and ubiquitin-
mediated proteolysis modulated only at premeiosis;
others related to cyanoaminoacid metabolism modulated
during postmeiosis; and pentose/glucuronate intercon-
versions, vitamin B6 metabolism, flavonoid biosynthesis,
ether lipid metabolism and fatty acid elongation occur-
ring exclusively at anthesis. Interestingly, DEATs related
to endocytosis and spliceosome resulted exclusively reg-
ulated at two developmental stages: meiosis and anthesis
(Additional files 9 and 10).

Then, Gene Ontology (GO) Enrichment analyses were
performed on a subset of 5268 DETs which were com-
mon to the four developmental stages analyzed (i.e.,
transcripts that were found differentially expressed at all
stages of sexual and apomictic developments) (Add-
itional file 11). The most represented GO terms regard-
ing Cellular Component (CC) were ribonucleoprotein
complex, nuclear lumen, vacuolar membrane, vacuolar
part and chloroplast thylakoid. The most represented

Biological Process (BP) terms were protein localization
to organelle, the establishment of protein localization to
organelle, nucleotide biosynthetic process, nucleoside
phosphate biosynthetic process and pyruvate metabolic
processes. The Molecular Function (MF) main classes
were structural molecule activity, structural constituent
of ribosome, adenyl nucleotide binding, adenyl ribonu-
cleotide binding and ATPase activity. Moreover, the
main KEGG-predicted pathways were ribosome, carbon
metabolism and spliceosome (Additional file 11).

The same study was applied to common DEATs. In
this case, out of 32 total transcripts, only a few could be
assigned to GO terms corresponding to CC (nucleus),
MF (zinc ion binding, stearoyl-CoA9-desaturase activity,
ATP binding and amylase activity) and BP (mature ribo-
some assembly) (not shown). Although the limited num-
ber of DEATs did not allow a proper KEGG pathway
evaluation, we could identify that fatty acid metabolism,
MAPK signaling pathway, starch/sucrose metabolism
and plant hormone signal transduction pathways were
changed (not shown).

Transcriptome dynamics

Matrixes representing the normalized raw read counts for
each transcript in each one of the libraries are provided in
Additional file 12 (S1 and S2 for sense and antisense tran-
scripts, respectively). The advantage of counting with sam-
ples representing different developmental stages allowed
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us to perform a cluster analysis to identify groups of tran-
scripts with similar expression patterns (Fig. 5). Normal-
ized counts were used to execute a hierarchical clustering
using a simple euclidean distance metric and a complete
linkage method, to find some structure in our transcript
expression trends and consequently partition our tran-
scripts into different groups. To enable the analysis, sub-
sets of transcripts were used, corresponding to: 1) all
DETs and DEATS; 2) transcripts that were differentially
expressed at all the developmental stages (common DETs
and DEATS). 3) stage-specific DETs and DEATSs (pre-
meiosis, meiosis, postmeiosis and anthesis). The number
of transcripts within each cluster is displayed in Table 2.
Clustering analysis split all DETs into six clusters
displaying distinct expression patterns (Fig. 5a). Clus-
ter 1 included transcripts up-regulated in the sexual
samples at all stages (Fig. 5a). Clusters 2 and 3
showed transcripts up-regulated in apomictic samples
at all stages, while clusters 4, 5 and 6 displayed vari-
able divergent expression patterns (Fig. 5a). Particu-
larly, Cluster 6 includes a group of transcripts
showing expression heterochronicity, with entities
overexpressed at postmeiosis/anthesis in apomictic
plants but at premeiosis/meiosis in sexual ones (Fig.
5a). In the case of all DEATs, two major clusters
were established (Fig. 5c). In Cluster 1, members
show variable expression in sexual samples in the
course of development, while in apomictic ones the
expression seems lower or null (Fig. 5¢). The opposite
behaviour was observed in Cluster 2 (Fig. 5¢).

Interestingly, the analysis of the common DETs (tran-
scripts that were differentially expressed at all develop-
mental stages) revealed a striking contrast between
sample types (Fig. 5b). Clusters 1, 3 and 4, showed up-
regulation in apomictic samples across the four
developmental stages, while the same transcripts were
consistently repressed in sexual ones (Fig. 5b). The op-
posite occurred in Clusters 2, 5 and 6 (Fig. 5b). In the
case of common DEATs, Cluster 1 showed high
expression increasing in the course of development in
apomictic samples, but low modulated expression in
sexual ones (Fig. 5d). The opposite occurred in Cluster 2
(Fig. 5d).

A similar study was conducted with the stage-specific
DETs and DEATSs. Clustering graphs are presented in
Additional file 12 (S3 and S4, respectively). In all cases
(premeiosis, meiosis, postmeiosis and anthesis), tran-
scripts were organized into 6 different clusters with
contrasting behaviour. Expression heterochronicity is
clearly visible in clusters like DETs Postmeiosis 5 and
DETs Anthesis 5.

Differential expression of transcription factors

To investigate the nature, the level and the expression
timing of transcription factors (TFs) detected in the apo-
mictic and sexual samples, we contrasted our Illumina
transcriptomes against the Plant Transcription Factor
Database (http://planttfdb.cbi.pku.edu.cn). Based on the
BLASTXx top hits, we identified 63,076 (31.67%) transcripts
highly similar to TFs, corresponding to 60 different families
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Table 2 Number of transcripts included in each cluster with similar expression pattern

Cluster All_DE Common Premeiosis Meiosis Postmeiosis Anthesis
DETs (sense transcripts)
1 6068 1542 2225 1871 1593 1742
2 1621 612 1682 2730 2474 5239
3 11,314 2008 536 295 355 305
4 100 854 191 55 225 130
5 222 141 376 46 76 61
6 27 111 19 51 69 23
Total 19,352 5268 5029 5048 4792 7500
DEATs (antisense transcripts)
1 42 25 24 21 28 269
2 58 7 18 17 31 127
Total 100 32 42 38 59 39

(29,847 of them with more than a 50% ID), several of
which had previously been associated with reproductive
development in Arabidopsis [63] (Additional file 13). The
most abundant types corresponded to MYB, bHLH, NAC,
WRKY, ERF, C2H2, FAR1, B3, C3H, bZIP, G2-like, M-
type MADS, GRAS, LBD, TRIHELIX and ARF family pro-
teins (Additional file 14, A). Comparative analyses showed
that 6449 (10.22%) were DETs, of which 2078 were upreg-
ulated in sexual samples and 4371 in apomictic ones (Add-
itional file 13). Afterwards, the number of upregulated TFs
corresponding to each family was represented in a heat
map (Additional file 14, B). Some families of TFs showed
members upregulated at different developmental stages for
apomictic or sexual plants (Additional file 13, Add-
itional file 14, B). For instance, the MYB family shows a
high number of members upregulated at premeiosis in
apomictic libraries, while a few members are upregulated
at anthesis in sexual libraries. Some families, like MYB,
bHLH, ERF, WRKY, B3, ARF and AP2 showed a higher
number of upregulated members in the apomictic samples
across all developmental stages. Moreover, some families
(like SAP and NZZ/SPL) presented up-regulated members
only in the apomictic samples (not even one member was
found upregulated in sexual plants). Moreover, others, like
LFY, presented up-regulated members at all stages in the
apomictic plant, but only at postmeiosis in the sexual geno-
type. An interesting case is that of LBD family proteins,
which presented a higher number of upregulated members
at anthesis in the sexual plant (Additional file 14, B).

Differential expression of transcripts associated with

plant hormones

A search for hormone-related transcripts expressed during
the apomictic and sexual reproductive developments was
performed by testing our transcriptomes against the Arabi-
dopsis hormone-related protein database (http://hormones.
psc.riken.jp/pathway_ja.html). A BLASTx analysis showed

3781 top hits associated with plant hormones and related
compounds, including 714 related with auxin, 595 with jas-
monate, 592 with cytokinin, 520 with abscisic acid, 517 with
gibberellin, 487 with brassinosteroids, 245 with salicylic acid
and 111 with ethylene (Additional file 15). Of them, 56 (re-
lated to auxin), 70 (related to jasmonate), 39 (related to
cytokinin), 42 (related to abscisic acid), 46 (related to gib-
berellin), 36 (related to brassinosteroids), 21 (related to sali-
cylic acid) and 5 (related to ethylene) transcripts resulted
differentially expressed between the apomictic and sexual
samples (DE Hormones) (Additional file 15, Fig. 6).

Apomixis candidates survey

In previous work, several genetically-linked, differentially-
expressed or functionally-associated apomixis candidate
genes were reported in P. notatum and other related spe-
cies [36, 50, 58, 64]. Additional file 16 shows some of these
candidate genes (with their respective identifiers) and 49
DETs displaying significant similarity them, as well as the
stages at which differential expression is detected, the
Log,FC and padj values for each developmental stage and
the annotation of the sequence. Ocassionally, different
DETs showed the same annotation but displayed contrast-
ing expression profiles, pointing to the existence of tran-
scripts variants of the same gene expressing at distinct
reproductive stages. Ten (10) DETs showed different ex-
pression levels at all developmental stages, three were spe-
cific for premeiosis, five for meiosis, three for postmeiosis
and nine for anthesis (Additional file 16). The rest re-
vealed differential expression levels at more than one
stage. The identities of DET's include, among others, KIN-
14P [28], ENHANCED DISEASE RESISTANCE 2 APOS-
TART1I/2 [65], FIE [66], LORELEI-like (N20) [67], SERK1/
[68], TGSI [69], ORC3 [39], MAP3K (N46) [41], GIDI1
[70] (Additional file 16). Moreover, an examination of the
candidate expression levels revealed some variation be-
tween stages and/or reproductive modes. For example,
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transcript TRpn_185717 which codifies for an ARGO-
NAUTE 104 protein [71], showed a constant higher level
of expression in the apomictic genotype during all the de-
velopmental stages, while its expression decreased from
premeiosis to anthesis in the sexual one (Fig. 7a). Tran-
script TRpn_57024, with high similarity to a gibberellin
receptor (GIDI), exhibited an insignificant expression in
the apomictic genotype at all developmental stages with a
peak at anthesis, while it was steadily expressed at low
levels in sexual genotypes (Fig. 7b). Two other genes,
ORC3b (TRpn_33086/TRpn_96407) and APOSTART2
(TRpn_175767 /TRpn_52614) showed the same expres-
sion patterns that exhibited in the in vivo experiments re-
ported in P. simplex and P. pratensis (Fig. 7c-f) [39, 65].

Discussion

Apomixis in Paspalum notatum is a genetically heritable
trait controlled by a single complex-locus (ACL), which
shows non-mendelian segregation against apomixis and
a strong restriction of recombination involving around
36 M[bp [72-74]. The ACL is localized in a chromo-
some fragment syntenic to subtelomeric segments of rice
chromosomes 2 and 12 and maize chromosomes 1 and
3 [55, 75, 76]. This genomic region displays typical het-
erochromatin features, like the presence of repetitive ele-
ments, gene degeneration and cytosine hypermethylation
[75, 77]. The complex genomic topography together
with the unavailability of a reference genome have ser-
iously compromised the identification of genes control-
ling the trait by positional map-based approaches. As a
consequence, transcriptomic surveys became essential
tools for identifying apomixis-related genes in the spe-
cies [48, 50].

In the early 2000s, PCR-based methods were used to
predict several P. notatum transcripts associated with
the occurrence of agamospermy [28, 29]. These prelim-
inary amplification analyses, although rather limited,
served well to the selection of candidates and the estab-
lishment of further functional characterizations that led,
finally, to the identification of major components of the
apomixis pathway in this species. In particular, the
MAP3K-encoding QGJ (QUI-GON JINN) transcript, ini-
tially identified by Laspina et al. (2008) as clone N46,
was validated in sexual and aposporous plants through
RNA in situ hybridization experiments [41] and func-
tionally classified as an inducer of aposporous embryo
sacs (AESs) formation in Paspalum RNAi lines [41].
Moreover, TGS1 (TRIMETHYLGUANOSINE SYNTHA
SE 1) [29] was also confirmed to express differentially in
sexual and aposporous ovules by RNA in situ
hybridization experiments [69] and classified as an AESs
repressor in Paspalum antisense lines [78]. The func-
tional association between the apospory induction/re-
pression pathways directed by QGJ and TGSI is
currently under investigation.

The development of the first P. notatum floral tran-
scriptomes of reference for apomictic and sexual geno-
types widened the opportunities for identifying
reproductive genes and provided a whole catalogue of
full-length molecules related to traits of agronomical
interest [31]. However, the scarcity of reliable statistical
information due to the absence of replicates was a ser-
ious challenge to network interaction predictions and
functional analysis preparation [31]. Moreover, since the
reference transcriptomes were produced from bulked
samples representing different developmental stages, the
temporal variation of expression during development
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remained unexplored at a wide-genome level. Indeed,
stage-specific qRT-PCR analyses were carried out for
some of the candidates in several genotypes of contrast-
ing reproductive modes, in order to evaluate the chrono-
logical evolution of the expression in the course of
development. Finally, no information on the antisense/
sense orientation of the DETs was available, a fact that
partially constrained the elucidation of the mechanisms
involved in the sexuality/apomixis transition. In particu-
lar, since the differential expression of several retrotran-
sposons [79], long non-coding RNAs (IncRNAs) [40]
and pseudogenes [39] was associated with the occur-
rence of apomixis in Paspalum, determining the sense/
antisense nature of these groups of transcripts is central

to disclose their possible role on molecular mechanisms
regulating reproduction.

The set of sequences presented here considerably
increases the number of transcripts available from the
Roche 454/FLX + reference library [31] and offers in-
formation on the expression dynamics for each se-
quence in the course of development. The GDEA
analysis showed 13,205 (68%) and 6147 (32%) tran-
scripts up- and down-regulated during apomixis, pro-
viding full-length sequences for most of them and
pointing to a greater complexity for the molecular
control of agamospermy with respect to sexuality.
Meanwhile, the SSDEA study revealed a higher num-
ber of DETs than GDEA, a clear indication of
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expression heterochronicity for a considerable number
of transcripts (that is because those genes showing
upregulation at different developmental stages in apo-
mictic and sexual plants are classified as ‘non-differ-
ential’ in the GDEA). Particularly, a large number of
DETs and DEATSs was detected at anthesis, which re-
veals an abundance of exclusive pathways at this
stage. Regarding this, chronological differences in the
onset of the sexual and apomictic embryonic periods
should be taken into account: in apomictic plants,
parthenogenesis of the 2n (non-reduced) egg cell
starts at the end of megagametogenesis, while in sex-
ual plants, the legitimate n (reduced) egg cell remains
quiescent until fertilization [78]. Then, at least a part
of the differentially expressed transcripts detected at
anthesis might be related alternatively to the induc-
tion of parthenogenesis or to embryo development,
since, at anthesis, embryos are forming in apomictic
plants only. Besides, other genes like those related to
pollen-stigma interactions or pollen discharge into the
egg cell could also be integrating this particular group
of DETs.

We found 11,417 antisense transcripts expressed in
flowers, and hundreds of them were differentially repre-
sented in sexual and apomictic genotypes. These results
confirmed the evidence reported in previous articles, in
which both sense and antisense transcripts were
detected in apomictic and sexual genotypes at variable
representation levels or altered localization [39, 41, 68].
Several of these transcripts, like those homologous to
SERK2, MAPK3 and ORC3 [39, 41, 68] where found here
represented by antisense strands and thus, a regulatory
mechanism based on complementary hybridization
might be associated with them. The confirmation of
such a modulation process will require further
functional analysis. Interestingly, a methylation-mediated
silencing mechanism was reported to control partheno-
genesis in other species of the Paspalum genus [77]. We
detected a higher number of DEATSs occurring at anthe-
sis, in comparison with other developmental stages.
Moreover, the anthesis DEATSs have a tendency (59%) to
appear downregulated in apomictic plants. Our results
indicate that: 1) antisense-mediated regulatory mecha-
nisms might be particularly active at anthesis in sexual
plants; and 2) silencing of a considerable number of
DEATSs occurs in apomictic plants at this particular
stage. It will be interesting to investigate the influence of
genome methylation in the down-regulation of DEATSs
during apomixis, and its consequences on the represen-
tation of DETs and the emergence of autonomous em-
bryos in the absence of fertilization.

Two of the main ontology classes previously associated
with apomixis in Paspalum corresponded to transcrip-
tion factors [31, 50] and hormones [31, 50, 80]. Here, we
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identified a number of transcriptional regulators show-
ing differential expression in reproductive organs of apo-
mictic and sexual plants. Some of them, like MYB family
members, show heterochronic upregulation in the apo-
mictic and sexual libraries, with expression reaching
peaks at different developmental stages. MYB proteins
share the conserved MYB DNA-binding domain that is
crucial to the control of proliferation and differentiation
in several cell types [81]. Besides, upregulation in the
apomictic libraries was observed for members of the
bHLH, ERF, WRKY, B3, ARF and AP2 family, all of
them previously related to plant development through
cell division, proliferation and differentiation control
[82]. We also identified numerous members of different
hormonal pathways, especially the auxin and jasmonate
routes, that show differential regulation during apomixis,
a fact that had been anticipated when analyzing the rep-
resentation of miRNAs in reproductive organs of sexual
and apomictic plants [80]. Currently several members of
these pathways are under functional characterization to
determine its role in apomixis development. Besides, the
expression characterization for several transcripts previ-
ously associated with apomixis provided information on
the specific stages these transcripts are modulated and a
proof of concept that the use of the catalogue presented
here might contribute to a thorough comparison of both
reproductive pathways.

The Illumina sequence database reported here repre-
sents a detailed chronological characterization of the
sense/antisense gene expression landscape in reproduct-
ive organs of sexual and apomictic counterparts of the
same species. The derived information could be of use
in Paspalum research programs dealing with gene ex-
pression during sexual and asexual seed formation, as
well as the molecular breeding of apomixis. Moreover, it
will allow the identification of apomixis candidate genes,
which could be further characterized in expression and
function in other apomictic species. The reported infor-
mation could not be completely systematized in a single
scientific article, since a number of different analyses
can be conducted, depending on the need of each spe-
cific research project. However, the main use for this
tool no doubt will be the comprehensive identification
of candidate genes that can be used as molecular
markers in apomixis-based breeding programs or to in-
duce asexuality from sexual genetic backgrounds
through genetic engineering. In particular, it will allow
for rapid discrimination of some of the sequences con-
trolling apomeiosis and parthenogenesis, due to its po-
tential to expose differential expression at specific stages.
Such discrimination was impracticable when using the
formerly-produced apomictic vs. sexual transcriptomic da-
tabases, since their construction invariably involved only
one reproductive stage or a bulk of stages. Currently, the
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Paspalum genome is in process of sequencing and assem-
bly in our laboratory and the apospory controlling locus
(ACL) is being identified by positioning markers that were
fully linked to the trait in former genetic mapping experi-
ments. In this context, mapping the stage-specific candidate
sequences exposed here onto the Paspalum ACL will help
to identify the genomic controllers of apomixis, while RNA
in situ hybridization will reveal the precise site of expres-
sion in reproductive tissues. Eventually, functional analysis
will disclose the reproductive phenotypes that can be in-
duced after up- or down- regulation in precise cell types
pointed by the in situ analysis. Moreover, genetic engineer-
ing will allow the harnessing of these candidates to repro-
duce the desired reproductive phenotypes in species of
interest, using the appropriate promoters. On another note,
an additional application of this database, among many
others, will be aimed at clarifying the functionality of the
expression originated from the heterochromatic non-
recombinant ACL, since mapping the antisense transcripts
identified here onto the Paspalum genome will reveal
which of these transcripts emerge from this particular
region.

Difficulties involved in the elucidation of the molecular
control of reproduction in P. notatum range from the usual
complexities of all reproductive systems (the molecular in-
tricacy of the routes involved, the high temporal variation
rate, the involvement of cell-specific expression patterns,
among others) to those derived from the particular nature
of apomictic species, like the evolutionary and physical
characteristics of the ACL and the involvement of poorly
characterized polyploid heterozygous genomes. Despite all
these drawbacks, during the last years, an unprecedented
research effort led to detailed characterization of the oper-
ational molecular routes for both P. notatum reproductive
modes, through the establishment of publicly available solid
reference transcriptomes [31] and replicate SRNA libraries
[80]. Here, we are deepening the characterization of the
molecular transcriptional landscape operational in sexual
and apomictic plants, by providing a chronological, high
yield, orientation-sensitive transcript database covering all
reproductive stages from premeiosis to anthesis. We hope
that this contribution will serve as a basis to promote future
research on the functional mechanisms controlling agamo-
spermy in plants and as a valuable resource for those plant
breeders who are focused on the introduction of apomixis
technology into their cultivar improvement programs.

Conclusions

Here we introduce a complete sense/antisense gene ex-
pression catalogue from florets of apomictic and sexual
P. notatum, involving four subsequent reproductive de-
velopmental stages, from premeiosis to anthesis. This
comprehensive sequence collection quantitatively reveals
apomixis vs. sexual heterochronic expression and sense/
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antisense mediated regulation. In particular, contrasting
transcriptional and hormonal control was detected and
thoroughly characterized. Our analysis exposed a consid-
erable alteration of sense/antisense expression occurring
at the onset of parthenogenesis. The experimental ap-
proach used in this work established a set of differen-
tially expressed sequences well beyond the former group
of candidates detected in Paspalum, which even discrim-
inated the sequence orientation, giving important clues
on antisense-mediated transcriptional and post-
transcriptional regulation. This dataset will be applied to
a more efficient selection of apomixis candidate genes,
contributing to the future development of molecular
tools for harnessing the trait.

Methods

Plant material

The following P. notatum genotypes were used for this
study: i) Q4117, a tetraploid (2n = 4x = 40) natural obligate
apomictic accession originated from Southern Brazil [83],
and ii) C4-4x, an artificially generated completely sexual
induced autotetraploid (2n =4x =40) genotype, obtained
after chromosome duplication of a sexual diploid plant by
colchicine treatment [84]. Vegetative replicates of these
plants are being maintained in experimental plots at
Instituto de Botdnica del Nordeste (IBONE), CONICET-
UNNE, (Corrientes, Argentina) and Instituto de Investiga-
ciones en Ciencias Agrarias de Rosario (IICAR),
CONICET-UNR (Rosario, Argentina). Q4117 and C4-4x
flowering periods overlap (Q4117: November to April;
C4-4x: January to April). Flowering conditions are the
same for both genotypes. Voucher specimens of this ma-
terial are kept at the Herbarium CTES-IBONE (publicly
available), under deposition numbers: C4-4X (Quarin, C.
L. 4260, barcode CTES0541627, cardboard No. 330064);
Q4117 (Quarin, C. L. 4117, barcode CTES0541626, card-
board No. 233851).

RNA isolation

Inflorescences at different stages of the reproductive de-
velopment were collected from both the Q4117 (apomic-
tic) and C4-4x (sexual) plants. The classification of the
reproductive stages was carried out following the proto-
col described by Laspina et al. [29], by analyzing in
parallel both the mega- and microsporogenesis as well as
the mega- and microgametogenesis processes. Four
stages were considered: (I/II) premeiosis: megaspore
mother cells (MMCs) and apospory initials (Als) are vis-
ible in ovules, while tetrads start to appear in anthers;
(III) meiosis: uninucleate pollen and female meiosis oc-
curs in the sexual genotype; (IV-VI) postmeiosis: uninu-
cleated/binucleate  pollen, and first division of
megagametogenesis; and (IV) anthesis: binucleate pollen
and mature embryo sacs [29]. Total floral RNA was
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extracted with the SV RNA Total Isolation Kit (Pro-
mega) and quantified using the Quant-iT RiboGreen
RNA Reagent and Kit (Invitrogen). Three replicates were
established, corresponding to different floral RNA ex-
tractions from the same genotypes (Q4117 and C4-4x).
The RNA quality was evaluated with RNA 6000 Pico-
Chip (Agilent Bioanalyzer 2100).

Library preparation and lllumina HiSeq sequencing
Library preparation and sequencing experiments were
carried out at Instituto de Agrobiotecnologia de Rosario
(INDEAR), Rosario, Argentina. Libraries were built using
the TruSeq® Stranded mRNA kit (Illumina) starting from
1pg of total RNA. Procedures for mRNA purification
(using oligo-dT hybridization), RNA fragmentation,
double-stranded c¢DNA  synthesis, end-adenylation,
ligation of adapters and enrichment (amplification) of li-
brary fragments were performed following the protocol
described in TruSeq® Stranded mRNA Illumina (October
2017). The library quality was checked with the DNA
1000 Kit (Agilent Technologies), using 1 ul of each prep-
aration in a 2100 Bioanalyzer. Libraries resulted in
double-stranded DNA fragments with an average size of
260 bp. Three biological samples were processed for
each one of the developmental stages (premeiosis, mei-
osis, postmeiosis, anthesis), for both reproductive modes.
Thus, a total of 24 (3 x 4 x 2) libraries were constructed.
Before sequencing, the individual libraries were quanti-
fied by qPCR (Light Cycler 480 Roche) and normalized
to a concentration of 3 nM. One equimolar pool of all li-
braries was prepared and quantified by qPCR (Light Cy-
cler 480 Roche) using the Qiagen Library Quantification
Kit. The pool was used for the generation of clusters in
the sequencing cell. A sequencing run was performed by
generating paired ends (PE) 2x 100 bp reads in a
HiSeq— Illumina device.

Bioinformatics methods

Raw reads were de-multiplexed and checked for quality
using the FastQC software (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Adaptors, duplicated
sequences, ambiguous reads, and low-quality reads were
removed by using Trim Galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/).
The high-quality reads (QC > 30) were used for assem-
bling the transcriptomes with Trinity v2.0.2 [60, 61].
The available Roche 454/FLX + P. notatum reproductive
transcriptome generated by Ortiz et al. [31] was initially
used for a reference-guided assembly with the parame-
ters:“--SS_lib_type RF --normalize_by_read_set --min_
contig_length 400”, and --genome_guided_bam. Then, a
second de novo assembly (without a reference) was
carried out using the default parameters. The four
assemblies (apo_over reference, sex_over reference, apo_
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without reference and sex_without reference) were com-
bined in one file and the non-redundant transcripts were
selected using CD-HIT [85]. The quality of the assem-
blies was measured using QUAST [86]. The raw reads
were mapped to the global assembly using Bowtie2 (v
2.3.2.0) [87] and TopHat (v2.1.1) [88]. The transcrip-
tome coverage was evaluated using Benchmarking Uni-
versal Single-Copy Orthologs (BUSCO, version 3.0.2)
[89, 90] with the following commands: “Python run_
BUSCO.py —i sequence_file —o output_name -l lineage
—m tran”, “Python generate_plot.py —wd working direc-
tory” and the “liliopsida_odb10” dataset. The coding
competence for all expressed transcript sequences was
predicted using the TransDecoder software (https://
github.com/TransDecoder/TransDecoder.wiki.git) ~with
the default parameters (-m 100). For differential expres-
sion analysis, RNA-seq reads were analyzed with the
Kallisto v.0.44.0 software to determine transcript counts
and abundances. The libraries were normalized by size
and low-count transcripts were filtered out (<3 in the
three replicas of each library). Differential expression
analysis and the corresponding p-values were estimated
using the Bioconductor software package DESeq2 [91].
The p-values attained by the Wald test were corrected
for multiple testing using the Benjamini-Hochberg
method. The adjusted p-values (DESeq2 padj or FDR)
thresholds for considering transcripts as DETs/DEATSs
were < 0.001 and <0.05 for sense and antisense tran-
scripts, respectively. Moreover, analyses of DETs were
restricted to those showing an absolute value of
Log,FC > |3|. Comparisons of gene expression between
modes of reproduction were carried out considering all
stages of development (global comparison) or each de-
velopmental stage (stage-specific comparison). Venn dia-
grams were created by using the jvenn online tool/
software (http://jvenn.toulouse.inra.fr/app/example.html)
[92]. The transcriptome dynamics was analyzed with R:
normalized counts were used to execute a hierarchical
clustering using a simple euclidean distance metric and
a complete linkage method.

GO analysis and pathway mapping of the Paspalum
notatum transcriptome

Transcripts were analyzed by their function using
BLASTn (https://www.ncbinlm.nih.gov) on the NCBI
NT database. A similar analysis was performed on the
Oryza sativa database available at the Gramene webpage
(http://www.gramene.org/). The GO numbers were ob-
tained by using ClusterProfiler [93] (http://www.
geneontology.org) over the Arabidopsis database. Add-
itionally, DETs were submitted to KEGG pathways ana-
lysis (KEGG: Kyoto Encyclopedia of Genes and
Genomes) (https://www.genome.jp/kegg/ko.html) [94—
96] and classified with the single-directional best hit for
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transcriptional factors (plant transcriptional factors data-
base, http://planttfdb.cbi.pku.edu.cn, http://planttfdb.
gao-lab.org) and hormone families (UniVIO: http://
univio.psc.riken.jp/, http://hormones.psc.riken.jp/
pathway_ja.html). Moreover, critical differentially
expressed pathways were analyzed by STRING (https://
string-db.org) [62] to infer their possible function and
association between them.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-021-07450-3.

Additional file 1 Gene coverage of P. notatum assemblies estimated
with BUSCO. Busco_454: aAnalysis carried out using the Roche-454 refer-
ence transcriptome [31]. Busco_TRPN: analysis performed with the lllu-
mina GTA reported here. TRPN stands for Trinity Paspalum notatum
Assembly (Global Assembly).

Additional file 2 GO and KEGG analysis of P. notatum GTA. (A-C): 30
most representative GO terms for each category. CC: cellular component.
BP: Biological Process. MF: Molecular Function. (D): 30 most represented
KEGG pathways. TRPN stands for Trinity Paspalum notatum Assembly
(Global Assembly).

Additional file 3. Sense apomictic vs. sexual differentially expressed
transcripts (DETs) derived from the GDEA. IDs, transcripts lengths,
Log,FCs, p-adjust values and NCBI descriptions (top hit) were included in
the table. Positive Log,FCs indicate overexpression in apomictic plants.
Negative Log,FCs indicate overexpression in sexual plants.

Additional file 4. Comparative analysis of sense transcript
representation in apomictic and sexual libraries. Volcano comparative
plots were constructed both globally and separately for each
developmental stage. Red dots correspond to DETs at p-adjust < 0.001
and Log,FC > 131. Positive Log,FCs indicate overexpression in apomictic
plants. Negative Log,FCs indicate overexpression in sexual plants.

Additional file 5. Heatmap of sense and antisense transcripts showing
differential expression between apomictic and sexual libraries at four
developmental stages (premeiosis, meiosis, postmeiosis, anthesis). (A):
sense transcripts. (B) antisense transcripts. AP1, AP2, AP3: triplicate
samples of apomictic premeiotic libraries. AM1, AM2, AM3: triplicate
samples of apomictic meiotic libraries. APo1, APo2, APo3: triplicate
samples of apomictic postmeiotic libraries. AAT, AA2, AA3: triplicate
samples of apomictic anthesis libraries. SP1, SP2, SP3: triplicate samples of
sexual premeiotic libraries. SM1, SM2, SM3: triplicate samples of sexual
meiotic libraries. SPo1, SPo2, SPo3: triplicate samples of sexual
postmeiotic libraries. SA1, SA2, SA3: triplicate samples of sexual anthesis
libraries. Repd: reproductive mode.P: premeiosis. M: meiosis. Po:
postmeiosis. A: Anthesis.

Additional file 6. Antisense apomictic vs. sexual differentially expressed
transcripts (DEATs) derived from the GDEA. IDs, transcript lengths,
Log,FCs, p-adjust values and NCBI descriptions (top hit) were included in
the table. Positive Log,FCs indicate overexpression in apomictic plants.
Negative Log,FCs indicate overexpression in sexual plants.

Additional file 7. Comparative analysis of antisense transcript
representation in apomictic and sexual libraries. Volcano comparative
plots were constructed globally and at each developmental stage. Red
dots indicate DEATSs at p-adjust < 0.05 and Log,FC > I3I. Positive Log,FCs
indicate overexpression in apomictic plants. Negative Log,FCs indicate
overexpression in sexual plants.

Additional file 8. Stage-specific apomictic vs. sexual differential expres-
sion analysis for sense transcripts (DETs). Section 1 (S1): premeiosis. Sec-
tion 2 (S2): meiosis. Section 3 (S3): postmeiosis. Section 4 (S4): anthesis.
IDs, transcript lengths, Log,FCs, p-adjust values and NCBI descriptions
(top hit) and GO annotations were included in the table. Positive Log,FCs
indicate overexpression in apomictic plants. Negative Log,FCs indicate
overexpression in sexual plants.
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Additional file 9. Stage-specific apomictic vs. sexual differential expres-
sion analysis for antisense transcripts (DEATs). Section 1 (S1): premeiosis.
Section 2 (S2): meiosis. Section 3 (S3): postmeiosis. Section 4 (S4): anthesis.
IDs, transcript lengths, Log,FCs, p-adjust values and NCBI descriptions
(top hit) and GO annotations were included in the table. Positive Log,FCs
indicate overexpression in apomictic plants. Negative Log,FCs indicate
overexpression in sexual plants.

Additional file 10. KEGG pathways for DETs and DEATSs regulated at
different stages of sexual and apomictic developments. DETSs: several
pathways show a differential representation only at a given
developmental stage (i. e, the bottom nine molecular routes change
only at anthesis). DEATSs: Spliceosome and endocytosis DEATs are
expressed exclusively at meiosis and anthesis. Several pentose/
glucuronate interconversion transcripts are expressed as DEATs only at
anthesis.

Additional file 11 GO classification and KEGG pathways of common
DETs that are differentially expressed across all stages of sexual or
apomictic development. (A): cellular components (CC). (B): biological
process (BP). (C): molecular function (MF). (D): KEGG pathways: ribosome,
carbon metabolism and spliceosome are represented by numerous
members at a p-value < 0.05.

Additional file 12. Transcriptome dynamics. Sections 1 and 2: Matrix of
GTA sense (S1) and antisense (S2) transcripts displaying the normalized
number of raw reads corresponding to each transcript in each library.
Sections 3 and 4: graphics displaying the evolution of expression for
particular clusters of sense (S3) and antisense (S4) differentially expressed
candidates (DETs and DEATs, respectively) in sexual and apomictic
libraries.

Additional file 13. List of sequences associated with transcription
factors occurring in the GTA. The length of the transcripts, the Log,FCs
between apo and sex libraries, the p-adjust value, the %ID and the e-
value (for the BLASTx top hit) are included for each member of the list.

Additional file 14 Classification and expression analysis of transcription
factors (TFs) expressed during P. notatum floral development. (A): Relative
abundance of the identified TF families. (B): Heat map representing the
number of upregulated members corresponding to each TF family at
four developmental stages in apomictic and sexual genotypes of P.
notatum. AP: apomixis, premeiosis. AM: apomixis, meiosis. APo: apomixis,
postmeiosis. AA; apomixis, anthesis. SP: sexual, premeiosis. SM: sexual,
meiosis. SPo: sexual, postmeiosis. SA; sexual, anthesis.

Additional file 15 List of transcripts related to plant hormones
occurring in the GTA. The length of the transcript, the Log,FCs between
apo and sex libraries, the p-adjust value, the %ID with Arabidopsis tran-
scripts, the similarity e-value and descriptions (for the BLASTx top hit) are
included for each member of the list.

Additional file 16. List of apomixis candidates and their associated
transcripts expression levels, at different developmental stages. Several
genes associated with apomixis in previous studies are differentially
represented in the current analysis. Identifier: number assigned to the
previously characterized apomixis candidate at GenBank/NCBI. DE stages:
differential expression detected at each stage, red numbers indicate
statistically significant differential expression. The NCBI description of the
BLASTx top hits and the GO analysis for each DET was incuded in the last
five columns.
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