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ABSTRACT

RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting
more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred
to as the epitranscriptome. Thesemodifications can occur in all RNA species, includingmessenger RNAs (mRNAs) and non-
coding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and read-
ers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular
processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular
and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases,
including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and
editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human dis-
eases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the
crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications.
Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its ex-
ploitation toward novel epitranscriptomic therapeutic strategies.

Keywords: RNA modifications; epitranscriptomics; mRNA; posttranscriptional regulation of gene expression; human
disease; cancer

INTRODUCTION

RNA molecules can undergo more than 170 different
chemical modifications (Boccaletto et al. 2018). These
marks can decorate many types of RNA species, both cod-
ing and noncoding RNA (ncRNA), including messenger
RNA (mRNA), ribosomal RNA (rRNA), transfer RNA
(tRNA) and others. This ever-expanding set of RNA modi-
fications, collectively referred to as the epitranscriptome,
has recently emerged as a widespread facet of cotranscrip-

tional and posttranscriptional gene expression regulation
(Laurencikiene et al. 2006; Saletore et al. 2012; Nachter-
gaele and He 2017; Roundtree et al. 2017; Martinez and
Gilbert 2018; Zhao et al. 2018). These regulatory layers
are key determinants of protein levels and cellular pheno-
types (Halbeisen et al. 2008; Vogel et al. 2010; Schwan-
häusser et al. 2011; Corbett 2018).
A broad set of RNA-binding proteins (RBPs) determines

themRNA epitranscriptome: Modifications are induced by
writers, and several can be reverted by erasers. Eventually,
some modifications need readers to be decoded.
(Kadumuri and Janga 2018; Nachtergaele and He 2018;9These authors contributed equally to this work.

Corresponding authors: francesca.aguilo@umu.se,
erik.dassi@unitn.it
Article is online at http://www.rnajournal.org/cgi/doi/10.1261/rna.

077271.120. Freely available online through the RNA Open Access
option.

© 2021 Destefanis et al. This article, published in RNA, is available
under a Creative Commons License (Attribution 4.0 International), as
described at http://creativecommons.org/licenses/by/4.0/.

REVIEW

RNA (2021) 27:367–389; Published by Cold Spring Harbor Laboratory Press for the RNA Society 367

mailto:francesca.aguilo@umu.se
mailto:erik.dassi@unitn.it
http://www.rnajournal.org/cgi/doi/10.1261/rna.077271.120
http://www.rnajournal.org/cgi/doi/10.1261/rna.077271.120
http://www.rnajournal.org/cgi/doi/10.1261/rna.077271.120
http://www.rnajournal.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.rnajournal.org/site/misc/terms.xhtml


Delaunay and Frye 2019; Quinones-Valdez et al. 2019).
Through the action of these RBPs, the epitranscriptome
controls processes ranging from alternative splicing and
polyadenylation to RNA stability, localization, and transla-
tion (Gerstberger et al. 2014; Bartel 2018). These regula-
tors form complex networks of interaction leading to a
dynamic control of gene expression with deep implica-
tions for cellular physiology and pathology (Wurth and
Gebauer 2015; Dassi 2017; Quattrone and Dassi 2019;
Zanzoni et al. 2019). Given their relevance in multiple cel-
lular functions, alterations of RNA modifications and their
modifying enzymes have been observed in a broad range
of human diseases, including cancer, neurological disor-
ders and several others (Meier et al. 2016; Jonkhout
et al. 2017; Angelova et al. 2018; Jain et al. 2018;
Christofi and Zaravinos 2019; Huang et al. 2020b).

In this review, we will describe mRNA modifications and
their increasingly appreciated role as drivers of human pa-
thologies. We will give particular focus on the most abun-

dant ones, namely RNA editing (A-to-I and C-to-U),
N6-methyladenosine (m6A), and pseudouridine (Ψ), for
which we provide flashcards (Figs. 1–4) summarizing their
most important features and disease associations, and a
comprehensive list of disease-related modified sites
(Supplemental Table S1). Furthermore, we will provide
an overview of detection methods and discuss emerging
evidence on the interplay of different modifications, pro-
posing potential avenues to improve our understanding
of these pervasive RNA regulators.

EPITRANSCRIPTOMIC MARKS

RNA editing by deamination

RNA editing, mediated by several enzymes belonging to a
zinc-binding superfamily of deaminases, targets most
types of cellular RNAs. A-to-I is the most common form
of editing in human cells and is performed by the

FIGURE 1. A-to-I editing. The first column displays the structures of adenosine and inosine involved in the deamination, the consensus motif and
the A-to-I editingmain effectors. Themotif was obtained by data in Cohen-Fultheim and Levanon (2021) and plotted withWebLogo (Crooks et al.
2004). The central column shows the percentage of editing at nonrepetitive regions and Alu repeats and the functions in mRNA fate. The third
column displays A-to-I editing-associated disorders and the organs to which they are associated.
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adenosine deaminase acting on RNA (ADAR) enzymes
(Bass 2002; Mannion et al. 2015; Eisenberg and Levanon
2018). Alongside A-to-I editing, C-to-U editing is per-
formed by the Apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like (APOBEC) family of enzymes.
Both ADAR and APOBEC gene families likely originate
from the adenosine deaminase acting on tRNA (ADAT)
genes (Gerber and Keller 2001; Conticello et al. 2007),
whose encoded proteins edit the wobble position of
many tRNAs (Torres et al. 2014).

A-to-I editing

In humans, A-to-I editing (Fig. 1) is mediated by ADAR1
and ADAR2, while the catalytically inactive ADAR3 can
modulate the process. These enzymes act as homodimers
and deaminate adenosines within double-stranded re-
gions of RNA (Gallo et al. 2003; Thuy-Boun et al. 2020).

Binding to the target region is mediated by double-strand-
ed RNA (dsRNA) binding domains. Since inosines that
result from editing are read as guanosines by the transla-
tional machinery, editing can recode the mRNA and lead
to the translation of proteins different from those specified
by the genome, thus increasing the complexity of the
transcriptome.
The first edited sites were discovered on the transcripts

of theglutamate receptor 2 (GRIA2) and the serotonin 5-hy-
droxytryptamine (2C) (5-HT2c) receptors (Sommer et al.
1991; Higuchi et al. 1993; Burns et al. 1997).GRIA2 editing
is essential for brain development as it allows formation of
heteromeric complexes modulating neuronal function.
Historically, the main role of A-to-I editing was considered
to be recoding, mainly due to the importance of ADAR2-
mediated editing in brain development (Brusa et al.
1995; Higuchi et al. 2000). However, it soon became evi-
dent that many edited sites lie outside the coding regions

FIGURE 2. C-to-U editing. The first column displays the structures of cytidine and uridine involved in the deamination, the consensus motif and
the C-to-U editing main effectors. The motif was obtained by data in Rosenberg et al. (2011) and plotted with WebLogo (Crooks et al. 2004). The
central column shows the percentage of editing in the mRNA regions and the functions in mRNA fate. The third column displays C-to-U editing-
associated disorders and the organs to which they are associated. Considering that little is known on the significance of RNA editing by
APOBEC3A and APOBEC3G, all features in the figure relate to APOBEC1, and APOBEC3A/APOBEC3G are only mentioned in parentheses.
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(Athanasiadis et al. 2004; Kim et al. 2004; Levanon et al.
2004; Li et al. 2009; Bazak et al. 2014; Picardi et al. 2016,
2017; Eisenberg and Levanon 2018). Most A-to-I RNA ed-
iting sites occur on noncoding sequences such as 5′ and 3′

untranslated regions (UTRs) (Chen and Carmichael 2012),
introns, and microRNAs (miRNAs) (Luciano et al. 2004;
Blowet al. 2006; Yanget al. 2006). In humans,most of these
sites lie in Alu sequences, ancient retrotransposons whose
repeated sequences facilitate formation of double-strand-
ed structures (Athanasiadis et al. 2004; Kim et al. 2004;
Levanon et al. 2004). ADAR-mediated editing of noncod-
ing regions can modulate the RNA fate and function. For
example, changes in their primary sequence can affect
how they are targeted by miRNAs (Roberts et al. 2018) or
alter transcript splicing (Rueter et al. 1999). More impor-
tantly, insertion of I:U mismatches in place of A:U pairs
can alter the structure of the RNA itself, affecting transcript
interactions and stability (Wang et al. 2013). Indeed,
ADAR1 deficiency leads to accumulation of cytoplasmic
dsRNA that, being interpreted as a sign of viral infection,

leads to the activation of the cellular response to dsRNA
through RIG-I and MDA5 (Mannion et al. 2014; Liddicoat
et al. 2015; Pestal et al. 2015). ADAR1 homozygous defi-
ciency in mice induces embryonic lethality (Wang et al.
2000).

ADAR1 also plays a role in the physiological interferon-
mediated cellular response, as widespread editing pre-
vents translational shutdown and cell death (Hartner
et al. 2009; Chung et al. 2018). Missense mutations in
ADAR1 cause Aicardi–Goutières Syndrome, a childhood
autoimmune encephalitis characterized by increased inter-
feron (Rice et al. 2012; Gallo et al. 2017). Mutations in
ADAR1 are also associated with dyschromatosis symmetr-
ica hereditaria (DSH), a rare autosomal genetic disorder of
the skin, but the pathogenetic mechanisms are not yet
clear (Miyamura et al. 2003; Kono and Akiyama 2019).

Deficiencies of A-to-I RNA editing mediated by ADAR2
have instead been associated with diseases of the central
nervous system (Costa Cruz and Kawahara 2021).
Increased levels of GRIA2 editing have been found in
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epileptic patients (Vollmar et al. 2004). In amyotrophic lat-
eral sclerosis (ALS), alterations in editing levels of GRIA2
and other transcripts may contribute to the disease (Kawa-
hara et al. 2004; Kwak et al. 2008; Donnelly et al. 2014).
Similarly, decreases in editing levels of the 5-HT2C seroto-
nin receptor affect serotonin production and are involved
in several psychiatric disorders (Sodhi et al. 2001; Groh-
mann et al. 2010; O’Neil and Emeson 2012; Weissmann
et al. 2016), and it has also been found in the prefrontal
cortex of suicide victims (Gurevich et al. 2002a,b). Re-
duced editing was also observed in Alzheimer’s patients
(Khermesh et al. 2016; Franzén et al. 2018). Moreover,
probably due to their involvement in interferon response,
ADAR enzymes may play a role in autoimmune diseases,
such as lupus erythematosus (Laxminarayana et al. 2002,
2007; Orlowski et al. 2008; Vlachogiannis et al. 2020).
Alterations in A-to-I editing have also been associated

with cancer (Kung et al. 2018). On one hand, hypo-editing
in Alu repeats has been observed in several tumor types
(Pazet al. 2007). Low levels ofGRIA2editingwereobserved

in human gliomas (Maas et al. 2001) and overall editing lev-
els have been used to stratify glioblastoma patients (Tom-
aselli et al. 2015; Silvestris et al. 2019). On the other
hand, increased levels of ADAR1 have been observed in
esophageal, lung carcinomas (Qin et al. 2014; Anadón
et al. 2016) in lymphoproliferative diseases (Beghini et al.
2000; Jiang et al. 2013; Lazzari et al. 2017) and in hepato-
cellular carcinoma (Chen et al. 2013), sometimes associat-
ed with poor prognosis. Editing of AZIN1 is correlated to
hepatocellular carcinoma and it is involved in cell prolifera-
tion and invasion by maintaining polyamine homeostasis
(Chen et al. 2013; Qin et al. 2014; Shigeyasu et al. 2018)
and high levels of A-to-I editing of the Ras homolog family
member Q increase tumor invasion in colorectal cancer
(Han et al. 2014). Intriguingly, editing targets of ADAR2
with opposite effects have been identified in esophageal
squamous cell carcinoma (Chen et al. 2017; Fu et al.
2017). Composite effects have also been observed as up-
regulation of ADAR1 and down-regulation of ADAR2 pro-
mote hepatocellular carcinoma (Chan et al. 2014).
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Finally, viruses can hijack the A-to-I editing machinery to
trigger a proviral phenotype through editing of viral tran-
scripts (Phuphuakrat et al. 2008; Doria et al. 2009) or cellu-
lar transcripts that modulate the cellular response (Gélinas
et al. 2011; Pfaller et al. 2011; Samuel 2012).

C-to-U editing

C-to-U RNA editing (Fig. 2) was the first form of editing de-
scribed in humans when a discrepancy between transcript
and genetic sequence of the Apolipoprotein B (APOB)
mRNA was identified in the small intestine (Chen et al.
1987). Recoding of the APOB transcript leads to the trans-
lation of a truncated form -ApoB48-, that allows synthesis
of chylomicrons (Lo and Coschigano 2020).

Soon after, a deaminase -APOBEC1- was identified as
the enzymatic core of the editing complex (Navaratnam
et al. 1993; Teng et al. 1993; Blanc and Davidson 2010).
APOBEC1 is a member of the AID/APOBEC family of de-
aminases that target cytosines in the context of single-
stranded nucleic acids (Salter et al. 2016).

Contrary to ADARs, whose targeting presents only a
slight sequence preference (guanines 5′ to the edited sites
are not favored—e.g., Cohen-Fultheim and Levanon
2021), APOBEC1 targets nucleic acids within a stronger se-
quence context (adenine/uracil 5′ to the edited site, A/U
rich regions—e.g., Rosenberg et al. 2011; Blanc et al.
2014). While APOBEC1 can target RNA autonomously,
the editing specificity and efficiency are largely deter-
mined by its cofactors APOBEC1 complementation factor
(A1CF) (Lellek et al. 2000; Mehta et al. 2000) and RNA-
binding-motif-protein-47 (RBM47) (Fossat et al. 2014;
Fossat and Tam 2014). Until advent of high-throughput se-
quencing, only a few APOBEC1-edited transcripts had
been identified beyond APOB (Skuse et al. 1996;
Yamanaka et al. 1997; Meier et al. 2005). The availability
of APOBEC1 deficient murine models allowed the identi-
fication of several other editing targets of APOBEC1 in
mice (Rosenberg et al. 2011; Blanc et al. 2014; Harjanto
et al. 2016; Cole et al. 2017; Rayon-Estrada et al. 2017).
Most of these editing sites lie in the 3′UTRs and at this
time it is still difficult to envision a global role for
APOBEC1 editing beyond its effect on selected specific
transcripts. For example, APOBEC1 deficiency in mice
promotes a proinflammatory environment in the brain,
likely mediated by lack of editing in microglia, which is cor-
related to progressive central nervous system pathophysi-
ology (Cole et al. 2017). A fascinating hypothesis posits
that APOBEC1-mediated RNA editing might increase
variability among cellular subpopulations (Harjanto et al.
2016). More important, APOBEC1-mediated RNA editing
could also act as a restriction factor against viruses andmo-
bile elements (Bishop et al. 2004; Petit et al. 2009; Ikeda
et al. 2011; Di Giorgio et al. 2020). Independently from
its editing activity, APOBEC1 binding to RNA could regu-

late transcript stability (Anant and Davidson 2000;
Prohaska et al. 2014).

A potential role in disease for APOBEC1 has been envi-
sioned since its discovery: Overexpression of APOBEC1 in
the liver of several animal models induces cancer
(Yamanaka et al. 1995) and its deficiency in cancer-prone
mice reduces the onset of neoplastic lesions (Blanc et al.
2007). Indeed, recoding of the tumor-suppressor NF1
(Skuse et al. 1996; Mukhopadhyay et al. 2002) leads to
its inhibition, and editing of NAT1 (Yamanaka et al. 1997)
could deregulate p21 (Kung et al. 2018). Noteworthy,
APOBEC1 can also target DNA and therefore, its onco-
genic potential could also be derived from its mutagenic
activity (Saraconi et al. 2014).

APOBEC1 might also be involved in the progression of
temporal lobe epilepsy through editing of glycine recep-
tors (Meier et al. 2005; Kankowski et al. 2018).

Considering how central APOB editing is for cholesterol
transport in the blood—Apobec1 deficient mice display
hypercholesterolemia—mutations/polymorphisms in
Apobec1 might increase the risk of cardiovascular diseas-
es. Yet, no inactivating mutations have been identified in
humans so far.

Beyond APOBEC1, other AID/APOBECs target RNA
(Sharma et al. 2015, 2016; Asaoka et al. 2019; Jalili et al.
2020). Among them, APOBEC3A is induced by hypoxia
and interferon in monocytes and macrophages (Sharma
et al. 2015). While its biological significance is not yet
clear, increased levels of C-to-U RNA editing in tumors
have been associated with improved survival, likely due
to a better immune response (Asaoka et al. 2019).

N6-methyladenosine

m6A, or methylation at the N6 position in adenosine (Fig.
3), is the most abundant internal modification in mRNAs
and long noncoding RNAs (lncRNAs) in eukaryotes, regu-
lating transcriptional and posttranscriptional processes
that control gene expression. m6A was first discovered in
mRNAs in 1974, and shortly after, the RRACH motif was
identified as a highly conserved m6A consensus sequence
in mammals (Desrosiers et al. 1974; Perry and Kelley 1974;
Lavi and Shatkin 1975;Wei et al. 1975; Schibler et al. 1977;
Wei and Moss 1977; Csepany et al. 1990; Harper et al.
1990; Linder et al. 2015). Furthermore, it has been shown
that m6A can be added cotranscriptionally (Ke et al. 2017),
and it has been predominantly located at long internal ex-
ons, near stop codons and along 3′UTRs (Dominissini et al.
2012; Meyer et al. 2012; Linder et al. 2015).

In mammalian cells, the core m6A methyltransferase
complex, hereafter referred to as “writers,” consists of
the heterodimer Methyltransferase-Like 3 (METTL3) and
14 (METTL14) (Liu et al. 2014), effecting the enzymatic ac-
tivity and serving as an RNA-binding scaffold, respectively
(Śledz ́ and Jinek 2016; Wang et al. 2016b). Other writer
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components, reviewed elsewhere (Lence et al. 2019), are
important for the deposition of m6A at specific transcripts.
Fat mass and obesity-associated protein (FTO) and Alkb
homolog 5 (ALKBH5) are the demethylases or “erasers”
of m6A (Jia et al. 2011; Zheng et al. 2013), suggesting
that this chemical modification can be formed and re-
moved in a reversible manner. The m6A-mark is recog-
nized by a group of proteins categorized as “readers”
which bind and decode transcripts harboring the m6A
modification into distinct RNA fates (Zaccara et al. 2019).
m6A plays a central role in several biological and patho-

logical processes (Fig. 3; Aguilo and Walsh 2017; Malla
et al. 2019). Hence, the dysregulated expression of writers,
erasers, and readers, leading to aberrant m6A patterns,
plays a role in metabolic disease, neurodegeneration,
and tumorigenesis, among others. For instance, m6A is
necessary for the function of the pancreatic β-cell, as
depletion of m6A impairs insulin secretion by decreasing
AKT phosphorylation and PDX1 protein levels (Jesus
et al. 2019). Noticeably, in type 2 diabetes patients, de-
creased METTL3/14 expression in β cells has been ob-
served (Jesus et al. 2019).
Furthermore, its diverse implications in neurobiological

processes have been highlighted in many studies
(Widagdo and Anggono 2018; Du et al. 2019; Li et al.
2019; Rockwell and Hongay 2019; Chokkalla et al. 2020).
Thus, perturbations of the m6A machinery have been ob-
served in numerous neuropathological states, including
Alzheimer’s disease, depression, and gliomas. Increased
m6A and METTL3 levels promote the development of
Alzheimer’s disease (Han et al. 2020; Huang et al. 2020a).
Moreover, decreased FTO expression has been correlated
with increased risk of Alzheimer’s disease in different ethnic
populations (Reitz et al. 2012). Polymorphisms inm6A eras-
ers havealsobeen linkedwith increaseddisease risk forma-
jor depressive disorder, and attention deficit/hyperactivity
disorder (Choudhry et al. 2013; Du et al. 2015; Huang et al.
2020c). However, conflicting evidence has been observed
in Parkinson’s disease.While a study has shown association
of polymorphism in ALKBH5 with Parkinson’s disease (Qiu
et al. 2020), another one, conducted on the Han Chinese
population was unable to identify a significant correlation
between this disease and gene variation of m6A players
(Qin et al. 2020). Whether these antithetical results are
based on ethnic differences in gene variants between the
study populations or are given by gene specific m6A mod-
ifications remains to be clarified.
The m6A modification is associated with cancer. m6A

writers, erasers, and readers act either as oncogenes or tu-
mor suppressors in several types of cancer, although the
mechanisms behind are still poorly understood (Lan et al.
2019). For instance, findings for the m6A machinery in
breast cancer can seem controversial. Hence, high and
low levels of m6A modification have been reported to be
both oncogenic and tumor-suppressive. Recent studies

have shown that METTL3 is highly expressed in breast can-
cer tissue compared to normal tissue and that silencing
METTL3 could lead to a decrease in proliferation, in-
creased apoptosis, and thereby inhibit tumor growth in
vivo and in vitro. Mechanistically, METTL3 promoted the
expression of the oncoprotein hepatitis B virus X-interact-
ing protein (HBXIP) which in turn, facilitated METTL3 ex-
pression by inhibiting miRNA let-7g which targets
METTL3 for subsequent degradation (Cai et al. 2018). In
addition, METTL3-mediated deposition of m6A at the
BCL-2 transcript increased its translation. BCL-2 is one of
the most important anti-apoptotic genes which facilitates
the survival of tumor cells enhancing thebreast cancer phe-
notype (Wang et al. 2020a). However, another study re-
vealed that the expression of METTL3, together with
METTL14 andWTAP, was significantly decreased in breast
cancer (Wu et al. 2019). Therefore, according to this study,
low m6A levels would promote breast tumorigenesis.
Indeed, depletion of m6A at large internal exons results in
prematurely polyadenylated transcripts, leading to non-
functional tumor suppressor genes (Ni et al. 2018). In addi-
tion, the eraser FTO is up-regulated in breast cancer where
it down-regulates the pro-apoptotic factor BNIP3 to medi-
ate breast cancer proliferation, progression, andmetastasis
(Niu et al. 2019). Hypoxic environments and dysregulation
of hypoxia-inducible factors (HIFs) lead to an adaptive re-
sponseplayingacentral role in tumor progression and ther-
apy resistance (Masson and Ratcliffe 2014). The expression
of the eraser ALKBH5 was induced by hypoxia/HIF-depen-
dent mechanisms, leading to decreased m6A levels that
promoted the specification of breast cancer stem cells
(CSC) (Zhang et al. 2016a). In addition, hypoxia also in-
duced the expression of the oncogenic transcription factor
ZNF217, promoting the breast CSC phenotype (Zhang
et al. 2016b). The mouse orthologue ZFP217 has been
shown to recruit the methyltransferase METTL3 into an in-
active complex in embryonic stem cells (Aguilo et al.
2015), and hence, would cooperate with ALKBH5 in nega-
tively regulating m6A levels and promoting breast
tumorigenesis.
In summary, both high and deficientm6A levelsmight in-

fluence global expression programs that lead to malignant
phenotypes, and the crosstalk amongm6A readers, erasers
and writers critically regulates the expression of key tran-
scripts to maintain cellular homeostasis (Panneerdoss
et al. 2018).

Pseudouridine

Ψ (Fig. 4) was the first RNA modification identified in the
early 1950s (Cohn and Volkin 1951; Davis and Allen
1957). It was originally described in tRNAs and has been
detected in rRNAs, small nuclear RNAs (snRNAs), other
ncRNAs, and mRNAs, representing the most abundant of
all known RNA marks (Davis and Allen 1957; Reddy et al.
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1972; Carlile et al. 2014; Lovejoy et al. 2014; Schwartz et al.
2014; Li et al. 2015; Adachi et al. 2019a,b). It consists of a
posttranscriptional isomerization of uridine, resulting in
the addition of an extra carbon–carbon bond between
the base and the sugar, and a hydrogen bond donor
(Cohn 1960; Charette and Gray 2000).

Ψ is an irreversiblemodificationwhich can occur through
two different mechanisms. The first is RNA-dependent,
mediated by the H/ACA box small nucleolar ribonucleo-
proteins (snoRNPs) complex comprised of four conserved
proteins, namely NHP2, GAR1, NOP10, and dyskerin (Yu
et al. 2005; Hamma and Ferré-D’Amaré 2010; Ge and Yu
2013; Yu andMeier 2014; Adachi et al. 2019b). In contrast,
the second is a highly conserved RNA-independent mech-
anism and involves different types of pseudouridine syn-
thases (PUS enzymes) (Koonin 1996; Kaya and Ofengand
2003). These enzymes possess a conserved catalytic
domain which enables them to recognize uridine sub-
strates and convert them toΨ (Hamma and Ferré-D’Amaré
2006; Rintala-Dempsey and Kothe 2017). Some members
of the PUS enzyme family were identified as catalyzers of
this dynamic, stress-induced modification on mRNA, spe-
cifically, PUS1, PUS7, and the mammalian homologs of
yeast Pus4—TRUB1, TRUB2 (Carlile et al. 2014; Lovejoy
et al. 2014; Schwartz et al. 2014; Li et al. 2015; Safra
et al. 2017a; Carlile et al. 2019). For some of these
enzymes, namely PUS7 and TRUB1, conserved consensus
sequence motifs were detected in both yeast and human
cells through an in vitro pseudouridylation assay (Carlile
et al. 2019). Instead, only a weak, three-nucleotide se-
quence motif (HRU) was identified for PUS1, for which in-
deed a shared structure motif was detected (Carlile et al.
2019).

To date, only a few biological functions of Ψ on mRNAs
have been identified (Adachi et al. 2019b; Borchardt et al.
2020). Previous studies have shown that pseudouridylation
contributes tomRNA stabilization and the enhancement of
translational capability in some mRNAs in vitro (Karikó
et al. 2008; Anderson et al. 2010; Schwartz et al. 2014;
Adachi et al. 2019b). In addition, artificial changes of U
to Ψ in premature stop codons resulted in stop codon
read-through both in vitro and in vivo, and in suppression
of nonsense-mediated mRNA decay (Karijolich and Yu
2011; Adachi and Yu 2020). However, Ψ-containing
mRNAs have also been shown to impede translation elon-
gation and alter tRNA selection by the ribosome (Eyler
et al. 2019). Thus, further work is needed to fully under-
stand the role of pseudouridine in determining endoge-
nous mRNAs fate.

The importance ofΨ in human pathology was highlight-
ed by numerous studies associating its dysregulation in
ncRNAs with diseases such as X-linked dyskeratosis conge-
nita, cancer, diabetes, viral infections, heart defects, and
inherited and mitochondrial disorders (Montanaro et al.
2006; Alter et al. 2009; Sieron et al. 2009; Liu et al. 2012;

Fernandez-Garcia et al. 2013; Shaheen et al. 2016; Wang
et al. 2016a; Zhao et al. 2016; Penzo et al. 2017; de
Brouwer et al. 2018; Darvish et al. 2019; Shaheen et al.
2019; Watanabe et al. 2019; Nagasawa et al. 2020).
Whether alteration of Ψ sites on mRNAs is also involved
in these or other pathologies remains to be elucidated.
Recent studies indicate, however, a potential connection.
For instance, mutations in PUS7 that segregate with intel-
lectual disability and microcephaly lead to the abolish-
ment of pseudouridylation not only in tRNAs but also in
mRNAs (de Brouwer et al. 2018; Shaheen et al. 2019).
Collectively, these results highlight the necessity for a
deeper understanding of how mRNA pseudouridylation
is related to human pathologies.

Other mRNA modifications

N6, 2′′′′′-O-di-methyladenosine

Adjacent to the N7-methylguanosine (m7G) cap, the sec-
ond nucleotide in many mRNAs can be methylated at
the 2′-hydroxyl group; if the transcription start nucleoside
is 2′-O-methyladenosine (Am), its N6 position can be fur-
ther methylated to form N6, 2′-O-dimethyladenosine
(m6Am) (Keith et al. 1978).

This modification stabilizes the mRNA by preventing
DCP2-mediated decapping and microRNA-mediated
mRNA degradation (Mauer et al. 2017). Unlikem6A, the bi-
ological function of m6Am and its role in cellular homeosta-
sis are still poorly understood.

m6Am is a reversible modification catalyzed by the writ-
er PCIF1/CAPAM (Akichika et al. 2019). PCIF1/CAPAM
knockout cells are viable, but sensitive to oxidative stress
(Akichika et al. 2019), a common adaptive advantage
found in many types of cancer. Indeed, a genetic screen
identified PCIF1/CAPAM as a putative tumor growth sup-
pressor in bladder cancer (Hensel et al. 2015). m6Am is
also erased by the demethylase FTO (Mauer et al.
2017). Hence, whether a given phenotype resulting
from the loss of FTO is due to defects in m6A or m6Am

metabolism is ambiguous and controversial: Whereas
FTO has higher demethylase activity toward m6Am, the
number of m6A sites in mRNA is at least 10-fold higher
than the number of m6Am sites. It has been proposed
that FTO localization within the cellular compartments
can vary between cell types and pathological states, be-
ing FTO-mediated demethylation of m6A and m6Am

prominent in the nucleus and in the cytoplasm, respec-
tively (Wei et al. 2018a). In agreement with this observa-
tion, cytoplasmic FTO inhibits the CSC phenotype in
colorectal cancer through its m6Am demethylase activity.
Hence, low FTO expression in patient-derived cell lines
leads to increased m6Am mRNA levels, resulting in en-
hanced tumorigenesis and chemoresistance (Relier et al.
2020).
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N1-methyladenosine

Methylation at the N1 position in adenosine (m1A) confers
a positive charge that can influence the local structure of
the RNA or its interaction with RBPs. It can be found in sev-
eral RNA species, including tRNA, rRNA and mRNA
(Dominissini et al. 2016; Li et al. 2016b, 2017b; Safra
et al. 2017b). In the particular case of this mark, the methyl
group is added by distinct isoforms of the TRMT family of
proteins, namely TRMT6/61A and TRMT10C, depending
on the cytoplasmic or mitochondrial localization of the tar-
get mRNA (Safra et al. 2017b). The methyl group blocks
the normal Watson–Crick base-pairing, resulting in errone-
ous incorporation and translation blocking. Early transcrip-
tome-wide m1A-mapping studies suggested that
thousands of transcripts could be decorated with the
m1A mark (Dominissini et al. 2016; Li et al. 2016b). In addi-
tion, it was proposed that this modification correlated with
higher translation efficiency when located in the 5′UTR of
mRNA (Dominissini et al. 2016; Li et al. 2016b). However,
a later m1A base-resolution mapping study revealed that
m1A is not widespread on mRNAs and identified only
ten and five cytosolic and mitochondrial m1A-modified
transcripts, respectively (Safra et al. 2017b). The enzyme
NADH dehydrogenase-5 (ND5) was among the m1A-
marked mitochondrial mRNAs identified. ND5 contains a
single-nucleotide polymorphism that prevents the forma-
tion of m1A in the ND5 mRNA. This mutation is linked to
Leber’s hereditary optic neuropathy, a hereditary disease
leading to acute loss of central vision (Safra et al. 2017b).
The removal of m1A frommRNA is catalyzed by ALKBH3

(Li et al. 2016b). ALKBH3 is highly expressed in human tu-
mors including prostate (Koike et al. 2012), non-small-cell
lung (Tasaki et al. 2011), pancreatic (Yamato et al. 2012),
and renal cell carcinoma (Hotta et al. 2015), and elevated
ALKBH3 expression is associated with poor prognosis.
However, whether high expression of ALKBH3 leads to ab-
errant m1A in cancer patients remains elusive. Notably,
ALKBH3 also targets other substrates than m1A-marked
RNAwhich also include abasic sites and methylated nucle-
osides of DNA (Westbye et al. 2008; Müller et al. 2010).
The readers of the m1A modification include YTHDF1-3
and YTHDC1, although the downstream effect on the
RNA fate and, therefore, disease outcome, remains to be
elucidated (Dai et al. 2018b).

5-methylcytosine

The methylation of carbon 5 in cytosine (m5C) was initially
discovered in rRNAs and tRNAs. More recently, high-
throughput techniques have revealed its presence in
mRNAs, although its prevalence is limited (Yang et al.
2017).
In multicellular organisms, m5C is catalyzed by at least

seven conserved RNA m5C methyltransferases of the
NOL1/NOP2/SUN domain (NSUN) family of proteins

(NSUN1–7) and DNMT2, being all of them specific for dis-
tinct RNA species. Although NSUN2 was originally de-
scribed as a tRNA methyltransferase (Frye and Watt
2006; Goll et al. 2006; Tuorto et al. 2012), it can also meth-
ylate other ncRNA species (Khoddami and Cairns 2013)
and mRNA (Yang et al. 2017). Several studies have shown
thatm5C sites are not randomly distributed—they aremost
abundant in proximity to the translation start codon,
3′UTRs, and near Argonaute-binding regions (Squires
et al. 2012; Amort et al. 2017; Legrand et al. 2017; Yang
et al. 2017). NSUN2-mediated m5C deposition influences
mRNA translation (Tang et al. 2015; Bohnsack et al. 2019)
nuclear-cytoplasmic shuttling (Yang et al. 2017), and
mRNA stabilization (Chen et al. 2019). For instance, m5C
deposition on the HDGF oncogene mRNA promotes its
stabilization, therefore driving urothelial carcinoma of the
bladder (Chen et al. 2019). NSUN2 is a direct target of
the oncogeneMyc, and it is required for Myc-induced pro-
liferation (Frye and Watt 2006). Consistently, NSUN2 is
highly expressed in a range of tumors such as breast can-
cer, lymph-node metastases, and colorectal cancer (Frye
et al. 2010; Okamoto et al. 2012; Yi et al. 2017). In gastric
cancer, NSUN2 can suppress p57Kip2 and therefore pro-
mote tumor growth (Mei et al. 2020). In head and neck car-
cinoma, high NSUN2 expression adversely affects other
tumor suppressors such as TP53, p16, and p27, increasing
the risk of mortality (Lu et al. 2018). Depletion of NSUN2
results in decreased growth of human squamous-cell-carci-
noma xenografts, suggesting that NSUN2 could be poten-
tially targeted for cancer therapy (Frye and Watt 2006).
Importantly, whether the oncogenic phenotypes resulting
from NSUN2 overexpression are specifically due to aber-
rant m5C deposition at mRNA, tRNA or both RNA species,
needs to be further investigated.

2′′′′′-O-methylation

2′-O-methylation (2′-O-Me) consists in the transfer of a
methyl group at the 2′-hydroxyl of the ribose of all RNA
species, predominantly of rRNA and tRNA (reviewed else-
where in Ayadi et al. 2019; Dimitrova et al. 2019; Höfler
and Carlomagno 2020).
Its deposition onmRNAwas thought to occur only at the

first 2 ribonucleotides (N1 and N2) within the 5′ cap struc-
ture (Langberg andMoss 1981; Inesta-Vaquera et al. 2018)
being deposited solely by cap methyltransferase 1
(CMTR1) and 2 (CMTR2), respectively (Bélanger et al.
2010; Werner et al. 2011; Smietanski et al. 2014).
Although, thousands of potential 2′-O-Me sites on coding
regions of human mRNAs were identified by a detection
technique known as Nm-seq (Dai et al. 2017), the same au-
thors published a later corrigendum stating that this meth-
od was suitable to identify 2′-O-Me sites in rRNA but had
led to false positives sites in mRNA due to mispriming con-
tamination. According to the authors, a refined Nm-seq
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version was able to detect a similar distribution pattern as
the original version, results confirmed by other techniques
(Dai et al. 2018a). Nevertheless, further work to validate
these newly identified sites is required.

In addition, the mechanism of 2′-O-Me deposition on
coding transcripts is still to be revealed, but it might be
guided by box C/D snoRNAs (SNORDs) as in the case of
rRNA or directly mediated by single methyltransferases
known to methylate other RNA species, such as FTSJ3
(Ge et al. 2010; Bartoli et al. 2018; Elliott et al. 2019).

The most studied function of 2′-O-Me on mRNA is rec-
ognition of self RNA by the immune system during viral in-
fections (Daffis et al. 2010; Züst et al. 2011; Devarkar et al.
2016; Leung and Amarasinghe 2016; Encinar and
Menendez 2020; Krafcikova et al. 2020; Morales et al.
2020). In addition, 2′-O-Me affects the stabilization of
mRNA and translation, including the codon reading
(Choi et al. 2018; Elliott et al. 2019). Moreover, 2′-O-Me
at N1 prevents transcripts’ degradation by blocking
decapping and exoribonuclease activities of DXO which
degrades defectively capped pre-mRNAs (Jiao et al.
2013; Picard-Jean et al. 2018).

To date, no direct association has yet been established
between 2′-O-Me onmRNA and human pathologies other
than infections with viral agents, such as HIV or coronavi-
ruses (Szretter et al. 2012; Ringeard et al. 2019; Krafcikova
et al. 2020). However, some mediators of this mark, as for
instance CMTR1, are involved in diverse pathologies,
among which are asthma and cancer (Dahlin et al. 2015;
Degryse et al. 2018; Du et al. 2018). In cancer, CMTR1 is
overexpressed in T-cell acute lymphoblastic leukemia
with JAK3mutations and undergoes gene rearrangements
with ALK, producing a fusion protein promoting non-
small-cell lung cancer development (Degryse et al. 2018;
Du et al. 2018). The role of CMTR1 in these cancers is still
to be determined, but its overexpression may cause in-
creased stability or translation of specific oncogene tran-
scripts, leading to tumor development. Furthermore,
CMTR2 was shown to be mutated in patients with lung ad-
enocarcinomas (Campbell et al. 2016). Despite these ob-
servations, it has yet to be answered whether the disease
phenotype derives from altered mRNA 2′-O-Me patterns
induced by aberrant expression of such enzymes. Further
work will be necessary to elucidate the mechanism of
2′-O-Me deposition and understand whether specific fac-
tors can act on all RNA species.

DETECTION METHODS

The efforts to detect, map, and quantify epitranscriptomic
marks revealedmany systematic properties of thesemarks,
such as abundance, evolutionary conservation, reversibili-
ty, and biological function. Detection of A-to-I and C-to-U
editing exploits a straightforward principle: Since the re-
verse transcriptase (RT) signatures can process both ino-

sines (reading them as guanines) and uracils, so a
discrepancy between RNA and DNA sequences can be
detected by RT-PCR or high-throughput sequencing
(Athanasiadis et al. 2004; Levanon et al. 2004;
Rosenberg et al. 2011; Blanc et al. 2014; Oakes et al.
2017; Piechotta et al. 2017; Malik et al. 2021; Srinivasan
et al. 2021). Moreover, bioinformatic approaches have
been developed for improving quantitation (Fig. 5A;
Piechotta et al. 2017; Cohen-Fultheim and Levanon
2021; Lerner et al. 2021; Lo Giudice et al. 2021), chemical
modifications have been used to increase specificity (Fig.
5C; Cattenoz et al. 2013; Okada et al. 2019; Sakurai
et al. 2021), and other approaches allow quantitation of
specific editing in live cells (Garncarz et al. 2013; Chieca
et al. 2021). Transcriptome-wide m6A-mapping methods,
mostly represented by antibody-based techniques (Fig.
5B) such as methyl RNA immunoprecipitation followed
by sequencing (MeRIP-seq or m6A-seq) and m6A individu-
al-nucleotide-resolution crosslinking and immunoprecipi-
tation (mi-CLIP or m6A-CLIP) (Dominissini et al. 2012;
Meyer et al. 2012; Linder et al. 2015), have revealed a
unique topology for this mark. However, these techniques
can detect both m6A and m6Am through the same anti-
body recognizing 6-methyladenine and hence, it is difficult
to distinguish between the two marks within the mRNA
5′UTR (Fig. 5B; Linder et al. 2015; Hawley and Jaffrey
2019; McIntyre et al. 2020). To overcome potential biases
of antibody-based techniques, pretreatment with chemi-
cal reagents (m6A-SEAL, Fig. 5C), or enzyme-mediated
techniques (DART-seq, Fig. 5D; Liu et al. 2013; Meyer
2019; Vandivier et al. 2019; Wang et al. 2020b) have
been developed, although they have not been widely
used yet. Recently, nanopore-based sequencing devel-
oped by Oxford Nanopore Technologies (ONT), which al-
lows the direct sequencing of native RNA, has also been
used to investigate m6A (EpiNano and MINES, Fig. 5E).
ONT signatures will advance our knowledge of m6A biol-
ogy as this technology allows the novo identification of
this and other marks at single-nucleotide resolution with-
out RNA immunoprecipitation or pretreatment (Liu et al.
2019; Lorenz et al. 2020).

Ψ sites are detected by single-nucleotide resolution
transcriptome-wide techniques based on combining
high-throughput sequencing with chemical reagents pre-
treatment such as N-Cyclohexyl-N′-(2-morpholinoethyl)
carbodiimide methyl-p-toluenesulfonate (CMC), a cova-
lent adduct that blocks the RT activity (Fig. 5C; Carlile
et al. 2014; Lovejoy et al. 2014; Schwartz et al. 2014;
Li et al. 2015). Among these methods are pseudo-seq,
Ψ-seq, PSI-seq, and CeU-seq (Li et al. 2016a; Penzo et al.
2017; Adachi et al. 2019a). Non-CMC based methods,
such as RNA bisulfite sequencing (RBS-seq), have also
been developed (Khoddami et al. 2019).

For the detection of the othermRNAmodifications, tran-
scriptome-wide mapping either by coupling an antibody-
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based approach to Dimroth rearrangement or by using an
m1A-induced RT mismatch signature (namely m1A-seq,
Fig. 5B), are used to detect the m1A mark (Dominissini
et al. 2016; Li et al. 2016b). m5C can be determined by
bisulfite sequencing (Fig. 5C) in which unmodified cyto-
sines are converted to uracils after bisulfite treatment,
whereas m5C sites are protected from deamination allow-
ing the detection by high-throughput sequencing (Wei
et al. 2018b). Additionally, m5C can be also detected by
antibody-based techniques (Fig. 5B) such as m5C-seq
and m5C-RIP or enzyme-mediated approaches (Fig. 5D)
such as Aza-IP and methylation i-CLIP (Edelheit et al.
2013; Hussain et al. 2013; Khoddami and Cairns
2013). In conclusion, the detection of 2′-O-Me is currently
performed by methods based on pretreatment with
chemical reagents (Fig. 5C) such as RibOxi-seq and Nm-
seq (Dai et al. 2017; Zhu et al. 2017; Motorin and
Marchand 2018).

PERSPECTIVES

RNA modifications have risen as major factors in posttran-
scriptional regulation of gene expression. However, the
breadth of their action and its implications for cell physiol-
ogy and pathology are still far from being sufficiently
understood.

Mechanism

The first aspect in need of further attention is the compo-
sition of the machinery behind these modifications.
While writers and erasers were, in general, more thorough-
ly characterized, our knowledge of reader proteins is limit-
ed, andwe are likelymissing those proteins with secondary
or moonlighting roles as modification readers. This knowl-
edge will be instrumental in fully appreciating how these
marks influence RNA fate. Secondly, while there is evi-
dence supporting the possibility of a dynamic life cycle
for several modifications, a neglected aspect is the magni-
tude of this dynamicity. Are RNA modifications continu-
ously written and erased, or subject to less frequent
cycles of deposition and degradation? Understanding
this aspect could help elucidate their role in cellular pro-
cesses requiring a fast response and in those with a slower
unfolding.

Interplay

Up to now, most of the epitranscriptomics literature fo-
cused on individual RNA marks, their physiological func-
tions, and consequences of their dysregulation. Recently,
new data suggested that different epitranscriptomic marks
could coexist on the same transcript, and that a potentially
widespread cooperative and competitive interplay could
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control the RNA fate, likely through RBPs (Dassi 2017).
While the extent of this crosstalk is still unclear, several re-
search groups described potential, mostly correlative, oc-
currences of such mechanisms (Li et al. 2017a; Dai et al.
2018b, 2020; Sokołowski et al. 2018; Wei et al. 2018a;
Xiang et al. 2018; Huang et al. 2019; Seo and Kleiner
2020). For instance, both m6A and m5C methylation sites
were found in a specific region of the p21 mRNA.
Furthermore, it has been shown that the m6A modification
can facilitate m5Cmethylation and vice versa. This cooper-
ation can synergistically enhance p21 translation in a mod-
el of oxidative stress-induced cellular senescence (Li et al.
2017a). This study also suggests that since NSUN2 (m5C)
and METTL3/14 (m6A) methylate many coding and
ncRNA species (Hussain et al. 2013; Liu et al. 2014;
Kadumuri and Janga 2018), their interplay may act beyond
p21 (Li et al. 2017b) and affect several other transcripts.
However, the prevalence of m5C in mRNAs is limited
(Yang et al. 2017), and considerably lower than that of
m6A. Thus, it is unclear whether this interplay can happen
at a broader scale beyond p21mRNA, and further work will
be necessary to understand its amplitude. Similarly,
mRNAs encoding the four Yamanaka factors, exogenously
modified with both Ψ and m5C, showed an increased effi-
ciency in cellular reprogramming to a pluripotent state
with respect to unmodified mRNAs (Warren et al. 2010).
In both studies, the proximity of the modifications has
been identified as the basis of their interplay. However,
themolecular mechanisms behind this cooperation are still
to be described. Also, a negative correlation between A-
to-I editing and m6A methylation was observed (Xiang
et al. 2018). In contrast to previous studies, this mutually
exclusive interaction has been investigated and attributed
to RNA structural features preventing ADAR1 binding,
rather than direct competition (Xiang et al. 2018).
Globally, while these studies highlight the co-occurrence
of multiple marks on the same RNA molecules, the exis-
tence of direct cooperative and competitive mechanisms
between those still needs to be demonstrated.

On the other end, RBPs controlling the life cycle of RNA
modifications appear to interact with marks other than
their canonical one. For instance, the YTHDF2 m6A reader
may “integrate” epitranscriptomics marks by also reading
m1A and m5C (Dai et al. 2018b, 2020; Lao and Barron
2019; Seo and Kleiner 2020). A conserved residue of
YTHDF2 (Trp432) is required for the recognition of all three
modifications, albeit the affinities for m1A and m5C are
lower than those for m6A. This lower affinity, coupled to
the scarcity of both marks in mRNAs, leaves the actual oc-
currence and phenotypic impact of this “integration” as a
question still to be answered. If confirmed, also other YTH
domain-family proteins could behave similarly (Dai et al.
2018b, 2020; Seo and Kleiner 2020), as might be expected
given their observed redundancy (Zaccara and Jaffrey
2020). Onemay thus wonder how thesemechanisms could

induce or affect pathological states (Meier et al. 2016;
Kadumuri and Janga 2018; Christofi and Zaravinos 2019;
Huang et al. 2020b). Few studies have explored the rela-
tion between cancer and the crosstalk of different enzymes
controlling the same modification (Panneerdoss et al.
2018), and how multiple modifications can concurrently
control disease states has yet to be established. In
Supplemental Table S1, we collect alterations of RNA
modifications and editing in several diseases, obtained
from the literature on this topic. As shown there, several tu-
mor types are associated with the altered deposition of
multiple modifications. This catalog could allow the iden-
tification of disorders associated with multiple RNA modi-
fications and thus possibly affected by their interplay.

Overall, it appears that RNA marks may “talk” through
direct cooperation or competition, and through the inte-
gration of multiple modifications by their reader proteins.
Nevertheless, further work will be necessary to demon-
strate the actual occurrence and elucidate the amplitude
of this interplay, the complexity of the induced regulatory
networks and its importance in shaping cell physiology. Is
this behavior a form of “epitranscriptomic signaling,” al-
lowing to coordinate the outcome of different pathways?
And do changes in the RNA secondary structure interact
to alter the transcript life cycle or are reader enzymes re-
quired for this crosstalk to modulate cell phenotypes?
The answers could bring a new layer of complexity to epi-
transcriptomics, leading the field into uncharted avenues
of even greater possibilities.

Disease

Since RNAmodifications represent such a basic layer in the
biology of the cell, loss of these modifications is often fatal
(Brusa et al. 1995; Wang et al. 2000; Geula et al. 2015) and
might have profound effects on cell viability. This is proba-
bly the reasonwhyonly inactivatingmutations in fewgenes
associated with the epitranscriptome have so far been
causatively linked to genetic diseases (Miyamura et al.
2003; Bykhovskaya et al. 2004; Rice et al. 2012). Yet, asso-
ciation of RNA modifications with the onset and progres-
sion of several human diseases is increasingly being
uncovered. Particularly in cancer, several marks appear to
play a key role in shaping the prognosis. However, the mo-
lecular mechanisms are still not fully understood. Are these
modifications disease drivers or mere passengers? It is
clear that in some cases alterations in the mediators of
these RNAmarks have direct effects on cellular tumor-pro-
moting features (Frye et al. 2010; Qin et al. 2014). As such,
alterations in these pathways could be selected in the can-
cer evolutionary process. On the other hand, a direct in-
volvement in the onset of tumors has not been
conclusively shown yet. Could these modifications be tar-
geted to alter the course of the pathology? In
Supplemental Table S1 we have highlighted the presence
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of opposite roles that can be played by RNAmarks-regulat-
ing factors at an intra- and intertumor level. Can the affect-
ed pathways explain these disease-specific behaviors?
Furthermore, tumors with potential alterations in multiple
RNA marks have been identified. Can alterations to multi-
ple enzymes controlling the life cycle of the different mod-
ifications be regarded as “double hits” leading to
oncogenesis?
Answering these questions will greatly expand our

knowledge on the role of epitranscriptomics in disease on-
set and progression, ultimately enabling us to design nov-
el, highly specific therapeutic strategies against still
incurable diseases.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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