
Speech-Based Activity Recognition for Trauma Resuscitation

Jalal Abdulbaqi,
Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey 
Piscataway, NJ, USA

Yue Gu,
Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey 
Piscataway, NJ, USA

Zhichao Xu,
Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey 
Piscataway, NJ, USA

Chenyang Gao,
Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey 
Piscataway, NJ, USA

Ivan Marsic,
Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey 
Piscataway, NJ, USA

Randall S. Burd
Trauma and Burn Surgery Children’s National Medical Center Washington, DC, USA

Abstract

We present a speech-based approach to recognize team activities in the context of trauma 

resuscitation. We first analyzed the audio recordings of trauma resuscitations in terms of 

activity frequency, noise-level, and activity-related keyword frequency to determine the dataset 

characteristics. We next evaluated different audio-preprocessing parameters (spectral feature types 

and audio channels) to find the optimal configuration. We then introduced a novel neural network 

to recognize the trauma activities using a modified VGG network that extracts features from 

the audio input. The output of the modified VGG network is combined with the output of 

a network that takes keyword text as input, and the combination is used to generate activity 

labels. We compared our system with several baselines and performed a detailed analysis of 

the performance results for specific activities. Our results show that our proposed architecture 

that uses Mel-spectrum spectral coefficients features with a stereo channel and activity-specific 

frequent keywords achieve the highest accuracy and average F1-score.
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I. INTRODUCTION

Activity recognition of a dynamic medical process such as trauma resuscitation is 

challenging because of fast and concurrent work as well as a noisy environment. There 

are several current research approaches that rely on video, RFID, and signals from 

medical devices to identify the medical activity type and its stages [1]–[3]. However, 

to our knowledge, there have been no approaches that rely on the speech from verbal 

communication of the team. Video and RFID data cannot provide information to recognize 

certain activities. For instance, in the trauma resuscitation, Glasgow coma score calculation 

(GCS) and airway assessment (AA) activities rely on visual examination or talking to the 

patient and can be recognized only based on verbal communication. We asked three medical 

experts to rate different modalities (speech, video and RFID-tagged object) as the best 

source for recognizing different ongoing resuscitation activities. In Table I, we averaged 

their ratings for four activities for which speech was rated the highest as a prediction 

source had they been asked to do activity recognition. In addition, a study [4] found that 

medical experts can predict resuscitation activities with 87% accuracy using only the verbal 

communication transcripts. Furthermore, previous studies showed that fusing the speech 

with the video, RFID or transcripts increases activity recognition accuracy [5], [6].

We present a speech-based activity recognition design for dynamic medical teamwork and 

empirical evaluation. Our approach is based on using one representative keyword from 

the input utterance to the activity recognition network, in addition to the audio stream. 

This keyword belongs to the most frequent words list that has been calculated for each 

activity type. In addition, to determine the challenges related to system design and dataset 

limitations, we determined the dataset characteristics related to the activities (e.g. activity 

frequency, noise-level and word frequency for each activity). Then, we analyzed different 

audio preprocessing parameters, such as feature types and input channels to find the best 

input feature setup. Using these findings, we designed an audio classification network based 

on the VGG model [7]. We evaluated our audio network and compared its performance 

with several state-of-the-art classification networks using the trauma resuscitation dataset. 

Finally, we evaluated our keyword-based network design using different settings for the 

network layers. We found that a keyword-based approach to activity recognition performed 

better than relying on manually-generated transcripts. The results show that our new 

keyword-based design increased the accuracy and the average F1-score by 3.6% and 0.184 

respectively compared to our audio network alone. Our contributions are:

• An analysis of trauma resuscitation dataset characteristics to determine the 

constraints related to speech-based activity recognition.

• Audio preprocessing analysis to find the optimal parameters for designing the 

network.

• Design of an audio classification network and comparison of its performance 

to the state-of-the-art classification models using a trauma resuscitation audio 

dataset.

• A new keyword-based neural network for activity recognition that combines the 

audio stream and the most frequent words from the input transcript.
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The rest of the paper is organized as follows: Section II analyzes the dataset attributes. We 

describe the audio preprocessing in Section III and describe the model design in detail in 

Section IV. The experimental setup and the results are presented in Section V. We review the 

related work in Section VI. We conclude and propose future work in Section VII.

II. RELATED WORK

In recent years, activity recognition for medical purposes has been growing quickly. Most of 

the current research relies on the sensors and visual modalities such as the passive RFID and 

the videos, and there are few works based on audio and verbal information.

RFID-based activity recognition considered an object-use detection problem. Early work 

compared different machine learning approaches as a binary classifier to predict the medical 

object motion that related to certain activities [8]. A different strategy to place the RFID tags 

showed an improvement in the activity recognition accuracy [9], [10]. Recently, employing 

a convolutional neural network (CNN) as a multi-class classifier outperformed the previous 

approaches [2]. Although, RFID has advantages such as being small, cheap and battery-free, 

its accuracy and scalability is limited by the radio noise and the limited number of activities 

that use taggable objects.

Visual-based activity recognition exploits the visual data from RGB or depth camera to 

map the medical team movement and actions into activities. Early research used a single 

camera video recording with the Markov Logic Network model to predict the activities 

[1]. Recently, deep learning has been applied to visual-based activity recognition. The 

convolutional neural network has been applied for video classification using time-stacked 

frames with a slow fusion network to process the short-range temporal association of 

activities [11]. To address the short-range temporal limitation, a long short term memory 

network (LSTM) has been integrated with the VGG network with a region-based technique 

to generate an activity mask [12]. Despite the decent progress in utilizing virtual data, it 

has several limitations. The RBG camera raises the issue of patient privacy and, as with the 

RFID, not all activities can be predicted by visual tracking the medical team movement and 

actions.

Text-based activity recognition employed the transcript of the verbal communication 

between the medical team to predict the activity type. Recent research applied a multi-head 

attention architecture [13] to predict a speech-reliant activity from the transcripts and the 

environmental sound [6]. The drawback in this approach is that obtaining the text requires 

additional automatic speech recognition (ASR).

The audio modality was used as an auxiliary to other modalities in works [5], [6]. These 

papers analyzed the audio ability to improve the accuracy of the activity recognition. In [5], 

the authors built a multimodal system to recognize concurrent activities by using multiple 

data modalities: depth camera video, RFID sensors and audio recordings. Each modality 

processed and the features extracted by a separate convolutional neural network (CNN), 

and then all of them fused using Long Short-Term Memory (LSTM) network to the final 

decision layer. They did not provide quantitative analysis to distinguish the difference 
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between each modality performance. In [6], the authors created a multimodal transformer 

network to process the transcribed spoken language and the environmental sound to predict 

the trauma activities. The quantitative analysis showed the average accuracy 36.4 when 

using only audio, and the accuracy increased to 71.8 when using both modalities.

III. DATASET COLLECTION and CHARACTERISTICS

The dataset was collected during 86 trauma resuscitations in the emergency room at a 

pediatric teaching hospital in the U.S. Mid-Atlantic region between December 2016 and 

May 2017. We obtained approvals from the hospital’s Institutional Review Board (IRB) 

before the study. All data generated during the study were kept confidential and secure 

in accordance with IRB policies and Health Insurance Portability and Accountability Act 

(HIPAA). The audio data was recorded using two fixed NTG2 Phantom Powered Condenser 

shotgun microphones. These microphones pointed in two locations where the key members 

of a trauma team normally stand. The recordings were manually transcribed and each 

sentence was assigned the activity label by trauma experts. In this section, we present an 

analysis of the following three characteristics of the dataset that can affect the activity 

recognition outcome: activity frequency, noise level and words frequency for each activity.

The fine-grained activities have been grouped into 30 high-level categories. Different 

categories occurred with different frequencies, which is the total number of utterances that 

include a given activity category for the 86 resuscitations cases (Table II). As seen, the 

activities are not distributed uniformly over the dataset utterances. Some activities occurred 

very frequently, while others were rare. There are several reasons for this variation. First, 

the length of conversation between the medical team is different for each activity. Some 

activities require several inquiries and reports, while other activities may have a single 

sentence to report the patient’s status. Second, each patient required different evaluation 

and management activities based on the patient injury, demographics and medical context. 

Finally, as mentioned above, the activity categories are a high-level groups that sometimes 

include several low-level activities (Table III). Hence, when an activity group (e.g. Extremity 

Assessment) has several low-level activities, this tends to correspond to increased verbal 

communication of the medical team. As a result of this non-uniform activity distribution, it 

is hard to train a neural network model for the activities that had associated least-frequent 

utterances, even for activities that cannot be recognized from other modalities (e.g. Airway 

Assessment), because of insufficient data to train and evaluate the model. Therefore, we 

chose the top five activities that had associated highest-frequency utterances in Table II for 

the purpose of our experiments: Extremity, Back, GCS Calculation, Face, and Circulation 

Control. All other utterances that do not belong to these activity categories are assigned to 

the “OTHER” category.

The second important dataset parameter that can influence the recognition performance 

is the ambient noise. The resuscitation environment presents several challenges to speech-

based activity recognition. Concurrent speakers (“cocktail party” problem), rapid speech and 

ambient noise adversely affect the speech quality and reduce activity recognition accuracy. 

To estimate the clarity of the medical team speech, we performed a subjective evaluation 

of the trauma resuscitation dataset. In this evaluation, we categorized the noisiness of 

Abdulbaqi et al. Page 4

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



audio recordings into three levels based on the human ability to understand the reports of 

patient vital signs and examination results. Three medical experts worked on this assessment 

listening to the 86 resuscitation cases. Each case had been labeled with one of the three noise 

categories (low, medium and high) and the average is shown in Table IV. As seen, about 65% 

of cases were labeled as low-noise, while about 19% and 16% were labeled as a medium- 

and high-level, respectively. Thus, about 35% in our dataset are either unintelligible or 

it is hard to understand what the medical team said during the resuscitation, which is 

challenging for the neural network performance. To study the effect of the ambient noise on 

the recognition of our selected activities, we calculated the number of noisy cases for each 

chosen activity (Fig. 1). Fig. 1 shows the fraction of the resuscitation cases by their noise 

level for each activity. As seen, the noise is distributed almost uniformly among the activities 

in our experiment. Therefore, it is not expected to affect some activities more than others in 

terms of prediction accuracy.

The keywords about patient medical status are the most important information of the team 

verbal communication in the trauma resuscitation, which sometimes indicates the activity 

explicitly (e.g. GCS in Fig. 2). To find the priority of the keywords with respect to the 

related activities, we first filtered most of the stop words. Then, we calculated the most-

frequent words for each activity (Fig. 2). As seen, most of the shown keywords either have 

a direct relationship with the activity (e.g. “spine” for BACK) or have indirect meaning 

such as the body position (e.g. right or left for extremity). Also, we can see that there 

are several words that have no relationship with the activities, but they frequently occur 

as a part of the inquiry response (e.g. “okay”) or just part of a repeated sentence (e.g. 

“get”). However, our intuition is that as long as these words occur frequently during certain 

activity then these words are valuable for the neural network to predict the correct activity. 

Hence, our hypothesis is that these keywords can be combined with the audio stream and 

fed into the neural network to increase the activity recognition accuracy. Extracting these 

keywords can be done automatically using a word-spotting model. We believe that extracting 

such keywords is easier and more efficient than recognizing the whole utterances using an 

ASR system. In this work, we evaluated the concept of combining given text keywords 

and the audio stream to improve activity recognition performance. Although evaluating a 

word-spotting model is not part of this work, we will consider that in our future research.

IV. DATA PREPROCESSING and CONFIGURATION

Our main input data is the utterance-level audio stream. In addition, we considered using 

one keyword from the most-frequent words list as an additional input. The keyword input 

is encoded as a one-hot one-dimensional vector, and the audio stream is converted into a 

spectrogram. Spectrogram representation reduces the dimension of the data and provides 

better information representation [14]. This section describes the data preprocessing and an 

analysis of two parameters variation effect on the activity recognition outcomes: feature type 

and input channels.

The keyword feature represented as a one-hot vector of size 78 to represent the total 60 

words list (10 keywords per activity). The one-hot vector size had been incremented by 0.3 

to reduce the one-hot hash function collision probability. The audio recordings were sampled 
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at 16MHz. We used 40 filter banks for the short-time Fourier transform with a 2048 window, 

25% overlap and Hann window type. The audio stream utterances had different time lengths 

(Fig. 3). The average utterance time duration was 2.42 seconds with a standard deviation of 

2.28. Our neural network required a fixed input length, which can be implemented in several 

ways. First, we could choose a small input size that most of the utterences have such as 1-2 

sec or 2-3 sec, but this would reduce the total nmnber of samples. Second, we could specify 

a fixed length such as the average value and then truncate all the longer utterances, but our 

experiments showed tha the lost information would significantly reduce the. Therefore, we 

resized all the utterance lengths to be 20 seconds by zero-padding the beginning and end of 

each utterance. The final feature map length was 600. Following the work [6], we segmented 

the input feature map into 10 frame sub-maps to avoid processing distant audio frames. The 

input sample shape for every single channel was (60, 40, 10).

We tried two types of audio spectrogram feature: Mel-frequency cepstral coefficients 

(MFCC) and Mel-frequency spectral coefficients (MFSC). MFCC feature extraction has 

been successfully applied in speech recognition [15] and audio classification [16]. However, 

MFCC includes the discrete cosine transform (DCT), which can compromise the locality, 

especially for the convolutional neural network (CNN) [17]. Therefore, several audio 

classification works used MFSC instead [18]. Furthermore, we analyzed the effect of adding 

the dynamic features: the first and second temporal derivatives (delta and the delta-delta 

coefficients, respectively). Adding the dynamic features can increase the accuracy and the 

robustness of speech recognition [19]. Table V shows the evaluation results for both feature 

types and their derivatives. The results show that MFSC features dominante over the MFCC 

with and without their derivatives. The reason is the locality issue introduced by DCT of 

MFCC transform mentioned above. Also, we noticed that adding the derivatives to the 

MFCC feature type slightly increased the accuracy, while adding the derivatives for the 

MFSC degraded the accuracy. Therefore, we concluded that the static MFSC is the best 

feature type for our dataset and architecture, and we used it in the next experiments.

As mentioned in Section II, our audio data were recorded using two microphones. As a 

consequence, each audio recording included two channels. We combined the two channels 

in five different configurations (Table VI). In the first two configurations, we used only one 

of the channels. In the third setup, we doubled the dataset by feeding both channels as a 

distinct samples. In the last two setups, we used both channels together either by summing 

them up and averaging into a single channel, or by feeding them as a two-channels. Table 

VII shows the accuracy and the average F1-score for each configuration. The accuracy of 

the last two setups, when the two channels are combined, is higher than the first three setups 

when the input is one channel only. The reason is that the labels were transcribed based on 

both channels, so when one of input channels is omitted, some utterances may have wrong 

labels and consequently the neural network failed to predict the activity on the evaluation 

dataset. Combining the two-channels achieved higher accuracy. However, the average of the 

two channels had slightly lower accuracy than including both channels. Thus, in the next 

evaluation experiments, we considered the configuration that used the static MFSC feature 

type and feeding the network with both channels.
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V. MODEL ARCHITECTURES

We considered the speech-based activity recognition as a multi-class classification problem. 

This section first presents a modified VGG [7] network for the audio branch, which we 

used to evaluate the configurations described in Section III. Then, we introduced a new 

architecture that fuses the output of the proposed audio network with the keyword network 

to predict the activities.

A. The Audio Network

Previous neural network architectures designed for image processing have been adjusted 

successfully to work on audio processing [18], [20] such as VGG [7], ResNet [21] 

and DenseNet [22]. The VGG network shows a better performance compared to other 

architectures for audio classification applications [18], [23]. Because deeper CNN networks 

often do overfitting on small size datasets, we adapted the VGG network based on the 

trauma dataset (Fig. 4). Our modification included adding a batch normalization [24] to 

the convolutional neural networks (CNN) to speed up the training operation and assist the 

regularization. We also used the dropout [25] and Gaussian noise to prevent overfitting and 

increase generalization. For the activation function, we used rectified linear units (ReLUs) 

and the last classification layer included the global average pooling followed by a softmax 

activation function to calculate the prediction probabilities.

B. Keyword and Fusion Networks

As shown in Fig 5, we designed an architecture that consists of a keyword network, an audio 

network, and a fusion network. We used a fully-connected network (FCN) layer with the 

ReLU activation function to generate the keyword feature representation. We empirically 

evaluated different sizes and number of layers to find the optimal network configuration 

(Table VIII). The results show that using a single FCN layer with size 128 achieved the best 

performance. Increased number of FCN layers (deeper) or the number of FCN layer units 

(wider) decreased the performance. The fusion network concatenated the audio network 

output features (a) and the keyword module outputted features (w) into one vector (y):

y = γ concat φ w , ψ a

where φ, ψ and γ are the fully connected network layers (FCN), and y is the output of the 

fusion, which includes another FCN and ReLU activation function to generate the high-level 

feature representation for the final softmax layer classification (Fig. 5).

We compared different fusion methods such as attention, but it did not perform well due to 

audio and keyword missalignment issues. This issue will be addressed in our future work.

VI. EXPERIMENTS SETUP and RESULTS

We trained and evaluated the proposed model on the trauma resuscitation dataset. We used 

the utterances from the five most frequent activities and the total number of utterances was 

3557. The dataset was randomly shuffled and split into 80% and 20% as a training set 

and a testing set, respectively. Each sample was considered independently, which contains 

Abdulbaqi et al. Page 7

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an utterance-level audio stream, the related one keyword, and the correspondence activity 

label assigned by the trauma experts. Due to the small data size, we applied the fivefold 

cross-validation. We trained all networks together as end-to-end using early fusion approach. 

We use Adam [26] optimization with 0.001 as the learning rate and categorical crossentropy 

loss function. Each experiment took about two hours. We implemented all the experiments 

using Keras API of the TensorFlow library [27] with two Nvidia GTX 1080 GPUs.

Fig. 6 shows the diagrams of possible architectures for speech-based activity recognition. 

The first design (Fig. 6 (a)) integrates an automatic speech recognition (ASR) module with 

a text-based activity recognition (TAR) module. The overall performance of this design 

highly depends on both modules. Although the previous TAR model [6] achieved 69.1 

accuracy and 0.67 average F1-score on a resuscitation dataset, their model used the human 

transcripts and assumed the ASR system can achieve human parity. Unfortunately, our ASR 

experimental results showed a high word error rate (WER) on the resuscitation dataset 

using two different architectures: attention-based seq2seq [28] and N-gram [29], which 

achieved WER of 100.3 and 75.8, respectively. We believe that the poor audio quality 

caused by the distant-talking, ambient noise, fast speaking rate, and concurrent speakers 

reduced the overall activity recognition performance, which made this model infeasible. 

The second architecture predicts the activity type directly from the audio (Fig. 6 (b)). 

Our evaluation result showed that the model achieved 30.8% in accuracy and 0.231 in 

average F1-score. Compared with the above two architectures, the proposed model (shown 

in Fig. 6 (c)) achieved 45.4 in accuracy and 0.415 in F1-score, which outperformed the 

previous approaches that used the audio directly or required the full utterance transcript. 

This comparison result demonstrates the strength of using the keyword as an additional 

feature to the speech-based activity recognition architecture.

We further compared our audio network with other state-of-the-art classification 

architectures such as VGG16-19 [7], DenseNet [22], ResNet [21] and NASNetMobile [30] 

(Table IX). The result showed that our audio network outperformed others in terms of 

accuracy and the average F1-score by a range of 1.3% – 8.9% and 0.02 – 0.129, respectively. 

This is because the general deep architectures usually suffer from overfitting when applied 

to the audio processing [18].

We made a quantitative analysis by comparing the performance of the three models using 

different inputs: audio-only, keyword only, and both audio and keyword (Table X). The 

result showed that using both audio and keyword features outperformed using audio-only or 

keyword only, which confirmed our hypothesis that keywords can boost the performance of 

the audio-only model, but not to replace it.

Table XI shows the F1-score for each activity by different modalities. The audio network 

had better performance on Extremity and Back activity than GCS, Face and Circulation 
Control. Different factors can cause these variations: imbalanced dataset and the noise 

level. As seen in Table II, the number of utterances that include each activity decreased by 

100 from Extremity to Circulation Control revealing an unequal distribution between the 

activities. This imbalance caused the neural network classifiers to get biased towards the 

high-frequency activities more than low-frequency activities. As for the noise level, Fig. 1 
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shows that GCS and Face had relatively higher noise than other activities, which may impact 

the prediction performance. The third column of Table XI shows the F1-scores of each 

activity for the final model that fuses both the audio stream and keywords. The scores were 

boosted for almost all activities.

VII. CONCLUSIONS and FUTURE WORK

We introduced a novel model for speech-based activity recognition and empirically 

evaluated it on a trauma resuscitation dataset. In our design, we extend the input features 

of the audio stream by integrating keywords—single-words from the most frequent words 

list associated with each activity. The new structure showed a substantial increase in the 

accuracy and the average F1-score 3.6% and 0.184, respectively, compared to the audio 

network alone. Due to the high word error rate of the ASR output caused by the fast 

speaking rate, concurrent speakers, and high ambient noise, our approach that relies single 

keywords instead of the entire ASR generated utterances is more efficient. We also analyzed 

the trauma resuscitation audio constraints, such as activity recurrence, noise level and most 

frequent words. In the evaluation results, we found that the imbalance of the activity 

frequencies in the trauma resuscitation, as well as the noise, reduced the accuracy of the 

audio network. Also, we explored audio stream preprocessing factors, such as different 

ways of combining the audio channels and features types. We found that the static MFSC 

features and the stereo channel configuration had the best performance. We introduce a 

new audio network based on the VGG model and provided an evaluation comparison with 

various classification architectures. Our model with relatively few layers, outperformed 

other classifiers.

Introducing the keyword features is promising, but further experiments on integrating 

the word-spotting models with the current architecture are needed for a more accurate 

evaluation. Also, we will evaluate more architectures for the fusion and keyword modules.
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Fig. 1. 
Cases noise-level distribution for each activity.
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Fig. 2. 
The most frequent unique words for each activity.
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Fig. 3. 
Utterance-level audio length distribution.
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Fig. 4. 
Our audio network architecture. BN: Batch Normalization, ReLU: Rectified Linear Unit.
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Fig. 5. 
Final model architecture after adding the keyword features. FCN: Fully Connected Network, 

ReLU: Rectified Linear Unit
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Fig. 6. 
Speech-based activity recognition proposed architectures. a. An architecture that uses the 

predicted transcripts from automatic speech recognition. b. An architecture that predicts the 

activity type directly from the audio. c. Same as in (b) with an additional one keyword input 

obtained from word-spotting.
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TABLE I.

ACTIVITIES FOR WHICH THREE MEDICAL EXPERTS RATED HIGHEST SPEECH AS THE MODALITY FOR ACTIVITY 

RECOGNITION

Activity Audio (%) Video (%) RFID tag

GCS Calculation 80 7.5 Non

Airway Assessment 80 20 Non

Medications 80 20 Partial

CPR 65 45 Partial
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TABLE II.

RESUSITATION ACTIVITIES WITH MOST UTTERANCES

# Activity Code Utterances

1 Extremity E 836

2 Back BK 701

3 GCS Calculation GCS 610

4 Face F 514

5 Circulation Control CC 407

6 Log Roll LOG 389

7 C-Spine CS 380

8 Medications MEDS 358

9 Pulse Check PC 289

10 Blood Pressure BP 256

11 Ear Assessment EAR 246

12 Eye Assessment EY 246

13 Exposure Control EC 220

14 Abdomen Assessment A 208

15 Breathing Assessment BA 206

16 Airway Assessment AA 197

17 Head H 175

18 Exposure Assessment EA 174

19 CPR CPR 160

20 Chest Palpation CP 150

21 Breathing Control BC 137

22 Pelvis Assessment PE 122

23 LEADS LEADS 116

24 Endotracheal Tube Endorsement ET 109

25 Neck Assessment NECK 96

26 Intubation I 50

27 Genital Assessment G 44

28 NGT NGT 30

29 Bolus B 18

30 Relieve Obstruction RO 13

Total activity-labeled utterances 7457
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TABLE III.

FOUR HIGH-LEVEL ACTIVITIES and THEIR RELATED LOW-LEVEL ACTIVITES

High-Level Activity Low-level Activity

GCS Calculation

Verbalized

Motor Assess

Verbal Assess

Eye Assess

Extremity Assessment

Right Upper

Left Upper

Right Lower

Left Lower

Medications Medications

Airway Assessment Airway Assessment

CPR

Chest comp

Shock

Defib pads

ID
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TABLE IV.

A SUBJECTIVE EVALUATION of NOISE for ALL 86 RESUSCITATION CASES by THREE RATERS

Noise Level Number of Cases

High 14

Medium 16

Low 56

Total 86
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TABLE V.

THE ACCURACY and AVERAGE F1-SCORE for DIFFERENT FEATURES TYPES

Feature type Accuracy Average F1-Score

MFCC
Static 26.0 0.162

Dynamic (Δ, ΔΔ) 27.7 0.200

MFSC
Static 30.8 0.231

Dynamic (Δ, ΔΔ) 30.0 0.210
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TABLE VI.

INPUT CHANNEL CONFIGRATION

Input Configuration Number of Samples Input Dimension

CH1 only 3557 (60, 40, 10)

CH2 only 3557 (60, 40, 10)

Unite CH1 with CH2 3557×2 (60, 40, 10)

(CH1 + CH2)/2 3557 (60, 40, 10)

Combine CH1 & CH2 3557 (60, 40, 20)
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TABLE VII.

THE ACCURACY AND AVERAGE F1-SCORE FOR DIFFERENT INPUT CHANNELS CONFIGURATIONS

Input channels Accuracy Average F1-score

CH1 only 22.2 0.106

CH2 only 22.9 0.121

United CH1 with CH2 22.6 0.115

(CH1 + CH2)/2 30.2 0.217

Combined CH1 & CH2 30.8 0.231
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TABLE VIII.

RESULTS COMPARSION BETWEEN DIFFERENT KEYWORKD AND FUSION MODULES LAYER STRUCTURE

Audio + Keyword Accuracy % Average F1-Score

(1-layer, 64) 44.9 0.412

Deeper (2-layers, 64) 44.9 0.409

Deeper (2-layers, 128) 44.8 0.409

Wider (1layer, 256) 44.7 0.409

(1-layer, 128) 45.4 0.415
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TABLE IX.

RESULTS COMPARSION BETWEEN OUR NETWORK AND OTHER CLASSIFICATION MODELS

Classification Models Accuracy % Average F1-Score

NASNetMobile [24] 21.9 0.102

VGG19 [14] 27.7 0.182

DensNet [17] 28.2 0.190

ResNet [16] 28.0 0.196

VGG16 [14] 29.5 0.211

Our Network 30.8 0.231
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TABLE X.

RESULTS COMPARSION BETWEEN KEYWORD AND AUDIO MODELS

Modality Type Accuracy % Average F1-score

Audio only 30.8 0.231

Keyword only 38.3 0.344

Audio + Keyword 45.4 0.415
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TABLE XI.

THE F1-SCORE FOR EACH ACTIVITY FOR DIFFERENT MODALITIES

Activity F1-score

Audio Keyword Audio + Keyword

Extremity 0.366 0.532 0.524

Back 0.448 0.375 0.582

GCS Calculation 0.124 0.314 0.313

Face 0.054 0.389 0.385

Circulation Control 0.045 0.242 0.255

OTHER 0.351 0.212 0.429
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