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A B S T R A C T   

In December 2019, an outbreak of pneumonia caused by a novel coronavirus (severe acute respiratory syndrome 
coronavirus 2 [SARS-CoV-2]) began in Wuhan, China. SARS-CoV-2 exhibited efficient person-to-person trans-
mission of what became labeled as COVID-19. It has spread worldwide with over 83,000,000 infected cases and 
more than 1,800,000 deaths to date (December 31, 2020). This research proposes a statistical monitoring scheme 
in which an optimized np control chart is utilized by sentinel metropolitan airports worldwide for early detection 
of coronavirus and other respiratory virus outbreaks. The sample size of this chart is optimized to ensure the best 
overall performance for detecting a wide range of shifts in the infection rate, based on the available resources, 
such as the inspection rate and the allowable false alarm rate. The effectiveness of the proposed optimized np 
chart is compared with that of the traditional np chart with a predetermined sample size under both sampling 
inspection and 100% inspection. For a variety of scenarios including a real case, the optimized np control chart is 
found to substantially outperform its traditional counterpart in terms of the average number of infections. 
Therefore, this control chart has potential to be an effective tool for early detection of respiratory virus out-
breaks, promoting early outbreak investigation and mitigation.   

1. Introduction 

1.1. Background 

In December 2019, an outbreak of mysterious pneumonia from an 
unidentified origin occurred in Wuhan, China. Chinese health author-
ities identified a novel coronavirus (severe acute respiratory syndrome 
coronavirus 2 [SARS-CoV-2]) that was responsible for the outbreak 
(World Health Organization, 2020b). Coronaviruses are a large family of 
viruses that cause illnesses ranging from the common cold to more se-
vere diseases, such as middle east respiratory syndrome (MERS-CoV) 
and severe acute respiratory syndrome (SARS-CoV). SARS-CoV-2 
exhibited efficient person-to-person transmission of what became 

labeled as coronavirus disease 2019 (COVID-19), which quickly led to a 
worldwide outbreak of potentially fatal viral pneumonia. COVID-19 has 
spread around the world with over 83,000,000 infected cases and more 
than 1,800,000 deaths to date (December 31, 2020), and further 
dissemination through air travel is likely (Goscé, Phillips, Spinola, 
Gupta, & Abubakar, 2020). As a result, the World Health Organization 
(WHO) declared COVID-19 a pandemic on March 11, 2020 (World 
Health Organization, 2020a). A timeline of crucial early events related 
to SARS-CoV-2 is shown in Fig. 1 (CNN Health, 2020; National Health 
Commission of China, 2020). 

The attack rate (i.e., how rapidly the disease is spreading) of a virus is 
indicated by its reproductive number (R0). A recent study estimated the 
R0 for COVID-19 to be between 2.24 and 3.58 (Zhao et al., 2020). Per 
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this estimate, on average, every case of COVID-19 would create two to 
three new cases, exhibiting 2 to 3 times greater transmissibility than 
seasonal influenza viruses (Zhang et al., 2017). Furthermore, the mor-
tality rate of COVID-19 is currently estimated at around 3% (Wang, 
Horby, Hayden, & Gao, 2020). For comparison, the mortality rate of 
seasonal flu is less than 0.1% (Centers of Disease Control and Preven-
tion, 2019), but the mortality rate is approximately 10% for SARS-CoV 
and 34% for MERS (Jiang, Rayner, & Luo, 2020). Early detection and 
response to epidemics and pandemics, including quarantine of patients 
with confirmed infections and observation of those who have had close 
contact with infected patients, can help to mitigate outbreaks, lowering 
the attack rate and the total number of deaths (Bauer, 2015). In this 
analysis, we present how early detection of important respiratory virus 
outbreaks could be achieved through use of an optimized np control 
chart at a worldwide network of sentinel airports to improve the quality 
of surveillance. 

1.2. Statistical process control 

Using effective surveillance tools is essential for the early detection 
of outbreaks of coronaviruses and other respiratory viruses. When used 
for outbreak detection, statistical process control (SPC) charts have been 
proven to be effective, easy to implement, and inexpensive (Wiemken 
et al., 2017; Woodall, 2006). SPC charts were originally developed by 
Walter Shewhart in the 1920s for monitoring production processes 
(Montgomery, 2019). Since the early 1990s, there has been a growing 
interest in applying these charts to healthcare (Ahamed, Campbell, 
Horan, & Rosen, 2018; Lawson, Hall, Esnaola, & Ko, 2012), including 
those related to the detection and monitoring of outbreaks (e.g., Baker 
et al. (2018); Shu, Su, Jiang, and Tsui (2014); Sogandi, Aminnayeri, 
Mohammadpour, and Amiri (2019); Xie, Tsui, Xie, and Goh (2010)). 
Sogandi et al. (2019) proposed a Bernoulli state-space model for moni-
toring multi-stage medical processes. The proposed model performed 
well under different shifts and was able to identify the out-of-control 
stage efficiently. Grigg (2019) discussed the problem of maintaining 
patient ordering according to the treatment timeline for different charts. 
They recommended that compromising on the fullness of presentation of 

the historical data is the best way to preserve patient ordering on any 
chart. Gould and Wang (2017) proposed an effective method for routine 
monitoring of safety information for programs that include blinded tri-
als. A comprehensive literature review of the various applications of SPC 
charts in healthcare can be found in Suman and Prajapati (2018), Ten-
nant, Mohammed, Coleman, and Martin (2007), and May, Simpson, 
Hart, Rowett, and Perrier (2009). 

A control chart is a visual tool that can provide early identification of 
statistically significant changes in data. For effective process moni-
toring, several studies have proposed to optimize the parameters of 
different types of charts in various applications. For instance, Rahim and 
Sultan Khalaf (1997) presented an optimal design of exponentially 
weighted moving average (EWMA) chart parameters using genetic al-
gorithms. The results showed that the optimal design reduces the false 
alarm probability (i.e., the probability that the control chart gives an 
out-of-control signal, while the process is actually in control) and is 
powerful in detecting serious shifts. Haridy, Wu, Khoo, and Yu (2012) 
proposed an algorithm for the optimal design of a Syn-np chart which 
combines the synthetic chart and the np chart. The proposed chart was 
more effective than the np chart by 73% and the synthetic by 31%. 
Shamsuzzaman, Khoo, Haridy, and Alsyouf (2016) proposed an opti-
mization design of the combined Shewhart Xchart and EWMA chart. The 
charting parameters and the allocation of detection power between the 
elements of both charts were optimized based on the loss function. 
Muhammad, Yeong, Chong, Lim, and Khoo (2018) developed an algo-
rithm for the optimization of coefficient of variation (CV) control chart. 
The results revealed that the proposed optimized CV chart outperforms 
five existing CV charts in literature in almost all scenarios. 

For the early detection of outbreaks of coronaviruses and other res-
piratory viruses, this study proposes a monitoring scheme that utilizes 
an attribute chart — namely, the np chart — with optimized parameters. 
Furthermore, we introduce the average number of infections (ANI) as an 
effective measure of the overall detection speed of the control chart for 
monitoring the infection rate. Finally, the use of the proposed moni-
toring scheme is illustrated by different scenarios. 

The proposed monitoring scheme, which is shown in Fig. 2, can be 
used as a monitoring tool at selected metropolitan airports where 

Fig. 1. A timeline of early stages of the COVID-19 outbreak.  
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checkpoints are established. Sampling is actually a common practice in 
airports when 100% is impossible due to the limited resources (Bauer, 
2015; Civil Aviation Authority, 2017). By the proposed scheme, airports 
would screen passengers to detect fevers potentially related to respira-
tory viruses. A typical screening procedure would include thermal 
screening by measuring the skin temperature using various tools, such as 
thermal cameras, thermal imaging, or forehead thermometer guns (Air 
Technology, 2020). Alternatively, if available, airports could use auto-
mated temperature screenings using artificial intelligence (GovInsider, 
2020). Surveillance for other symptoms, such as cough or shortness of 
breath, might also be incorporated into the model to determine the 
likelihood of respiratory virus infection. If outbreak onset is already 
known to have occurred, it would be important to increase the inspec-
tion rate (i.e., increase the sample size n and decrease the sampling in-
terval h) if 100% inspection is impossible so that a greater percentage of 
infected passengers could be evaluated. However, the proposed moni-
toring scheme can also be used continuously where either rational 
subgrouping or 100% inspection is adopted (Air Technology, 2020). 

2. Implementation and design of the np chart 

The np control chart is an attribute chart that can be used to monitor 
the number of infections (d) found in a sample of arriving passengers, 
which is assumed to follow a binomial distribution. The process being 
monitored is considered to be in control if d satisfies LCL ≤ d ≤ UCL, 
where LCL and UCL are the lower control limits and upper control limits 
of the np chart. In other words, if d ≤ LCL, then a downward p shift will 
be signaled and if d ≥ UCL, then an upward p shift will be signaled. 
However, this analysis focuses on designing a one-sided upper control 
chart that only detects an increase in the infection rate since decreasing 
the number of infections where d ≤ LCLnp is the desirable target. The np 
control chart process monitoring is implemented as follows:  

1. A sample of n passengers is taken at the end of each sampling interval 
h and the number of infections, d, is counted for this sample. The 
policymakers could then make real-time decisions on managing the 
infected cases, such as quarantine.  

2. The resulting d is plotted for each sample on the np chart.  
3. If d ≥ UCL, then a potential outbreak is declared and in this case, a 

100% inspection is recommended. Otherwise, the process is in con-
trol, and step 1 is repeated for the next sample. 

The charting parameters (i.e., n, h and UCL) need to be decided in an 
optimal and effective way. With the aim of carrying out the optimal 
design for the np chart, several specifications need to be set. The design 
specifications of this study are summarized below:  

• p0 is the in-control infection rate;  
• τ is the allowable minimum value of the in-control average time to 

signal (ATS0);  
• r is the inspection rate; and  
• pmax is the maximum out-of-control infection rate 

The abovementioned specifications are commonly used to design 
attribute control charts (Bourke, 1991; Gan, 1993; Haridy, Rahim, 
Selim, Wu, & Benneyan, 2017; Reynolds & Stoumbos, 1998; Wu, 

Shamsuzzaman, & Pan, 2004). The in-control infection rate p0 is 
assumed to be known, as it is considered to be the baseline or expected 
infection rate that does not require investigation. In addition, the value 
of τ is set based on the requirements of the false alarm rate that is 
deemed to be acceptable and can be managed by airports. The sampling 
rate r is determined according to the availability of resources such as 
manpower and inspection tools (e.g., thermometers and testing kits). 
The maximum out-of-control infection rate, pmax, is decided based on the 
shift size the authority is interested to detect. 

3. The measure of performance 

The performance of a control chart is often evaluated using different 
measures of performance. A measure called the average time to signal 
(ATS), which is the expected time from when a shift with a particular 
size occurred until the control chart indicates an out-of-control signal (i. 
e., outbreak), is usually recommended (Li, Zou, Gong, & Wang, 2014). 
Nevertheless, it is not easy to predict the size of an outbreak. Therefore, 
in this study, we introduce a performance measure that is the average 
number of infections (ANI) to evaluate the overall performance of the 
proposed np chart over a wide range of shifts in the infection rate. The 
ANI is actually a weighted average of the out-of-control ATS values over 
different shifts in an infection rate, hence it is a better measure for the 
overall performance of a control chart. 

When an increasing shift in the infection rate occurs, the infection 
rate will change from p0 to p. The ANI is the average number of in-
fections that occurred over a shift range of p0 < p ≤ pmax prior to control 
chart detection. The infection rate is considered to be in control when p 
= p0 and out of control when p0 < p ≤ pmax with a maximum infection 
rate at p = pmax. 

If N is the number of arrivals per unit time and ATS(p) is the out-of- 
control ATS value that corresponds to a particular infection rate p, then 
the ANI produced by a control chart across the p range (p0 < p ≤ pmax) 
can be calculated as follows: 

ANI = N ×

∫pmax

p0

p × ATS(p) × fp(p)dp (1)  

where fp(p) is the probability density function of p which is assumed to 
follow uniform distribution in this research and can be estimated as 
follows: 

fp(p) = 1/(pmax − p0) (2) 

The out-of-control ATS(p) at a particular infection rate p can be 
calculated as follows: 

ATS = h/[1 −
∑UCL

i=0
Cn

i (1 − p)n− ipi] (3) 

N in Eq. (1) is assumed to be constant. As a result, it may be removed 
while not affecting the optimization design and comparative study. 

4. The optimization model 

This section presents the optimization model and algorithm for the 
np chart. The optimal design is carried out based on the four design 
specifications listed in Section 2. The optimization procedure to 

Fig. 2. The proposed monitoring scheme.  

S. Haridy et al.                                                                                                                                                                                                                                  



Computers & Industrial Engineering 156 (2021) 107235

4

compute the optimal parameters of the np chart in minimizing ANI as 
the objective function is given as follows: 

Objective : Minimize ANI  

Constraint : ATS0 ≥ τ (4)  

Constraint : r =
n
h

(5)  

Design variables : n, h and UCL  

where n is the independent variable, while the h and UCL are the 
dependent variables on the n, r and specified value of τ, respectively. The 
above-mentioned model will provide the optimal values of n, h and UCL 
that will minimize ANI over a shift range of (po ≤ p ≤ pmax), and 
meanwhile, ensure that the in-control ATS0 is greater than or equal to a 
predefined value of τ. The ATS0 represents the expected time the control 
chart takes to give a false alarm signal. The ATS0 of the np chart can be 
calculated as follows: 

ATS0 = h/α (6)  

where α is the probability that the np chart gives an out-of-control signal 
when the infection rate is actually in-control. α can be determined as 
follows: 

α = 1 −
∑UCL

i=0
Cn

i (1 − p0)
n− ip0

i (7) 

The optimization design of np chart is implemented as follows:  

1. Specify the design specifications p0, τ, r and pmax.  
2. Initiate ANImin variable to store the minimum value of ANI and set 

the initial value of ANImin to very large number.  
3. Search the optimal value of n, starting with n = 1 and increase its 

value in an increment of 1.  
4. For each n, find h (=n / r) that satisfies constraint (5).  

• For each pair of (n, h), find α using Eq. (6) where ATS0 = τ (i.e., α =
h / τ) and then the value of UCL using Eq. (7) so that constraint (4) 
can be fulfilled.  

• For the identified n, h and UCL, find the corresponding value of 
ANI using Eq. (1).  

• If the calculated ANI is less than the current ANImin, replace the 
latter by the former and the current values of n, h and UCL are 
stored as temporary optimal solution.  

5. For each trail n value, step 4 will be repeated until ANI cannot be 
further minimized. The optimization algorithm is terminated if the 
ANI keeps increasing for 60 consecutive iterations. The optimal np 

charting parameters n, h and UCL will be the values that produce the 
minimum ANI, while satisfying constraints (4) and (5). 

The optimization algorithm of the np chart is summarized as shown 
in Fig. 3. 

The above search mechanism is reliable and straightforward as the 
only independent design variables, n, is integral, and therefore all its 
possible values can be examined. It can complete the optimization 
design of the np chart in a few seconds of CPU time on a personal 
computer. In addition, the results can be used to study the effect of the 
sample size on the performance of the np chart. C programming lan-
guage was used to code the design algorithm of the np chart. It can be 
obtained from authors upon request. 

5. Comparative studies 

This section shows the results of optimizing the charting parameters 
of the np chart, including n, h and UCL. It also conducts a comparative 
study between the optimized np chart and the traditional np chart for 
one real case and five simulated scenarios. The optimized np chart 
proposed in this study is named as npoptimal chart whereas, the tradi-
tional np chart is referred to as the nptraditional chart. Both ANI and ATS 
are used as measures of performance to compare the npoptimal and 
nptraditional charts and to attain a clear conclusion on how the sample size 
affects the performance of the monitoring chart. 

5.1. Comparison under real case 

This study is conducted from late December 2019 through January 
2020 at an international airport with limited resources that do not allow 
100% inspection. The name of the airport is not disclosed due to 
confidentiality reasons. The screening procedure is performed by 
checking the temperature using thermometer guns. A symptomatic 
passenger will be detected if he has a significant fever (i.e., his tem-
perature exceeds 100.4F). Based on the available resources, the airport 
can only inspect 100 arrivals every hour (i.e., r = 100/hour) and it can 
handle one false alarm signal every 27 days on average (i.e., τ = 648 h). 
The in-control infection rate that does not reflect a potential outbreak 
(po) = 0.01, whereas the maximum out-of-control value of the infection 
rate the airport is interested to detect is 10 times the in-control infection 
rate (i.e.,pmax = 10po). It is worthy to mention that the shift is assumed 
to follow a uniform distribution. Fixed values of n and h are used as 
design specification for the nptraditional chart without any optimization. 
Thus, we can consider that nptraditional inspects a sample of 100 arrivals 
per hour. Contradictory, both n and h are optimized under the given 
inspection rate r in this study. As highlighted previously, the optimal 

Fig. 3. The optimization algorithm of the np chart.  
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design of the np chart came up with the optimal combination of n, h and 
UCL, which produces the minimum ANI while satisfying the constraints 
(4) and (5). Applying the optimization algorithm, we found that the 
optimal charting parameters of the npoptimal chart are to inspect a sample 
of size 185 (i.e., n = 185) at every time interval of 1.85 h (i.e., h =
1.85hr) using UCL = 6. The values of the charting parameters and the 
corresponding ANI values for both charts are shown below: 

nptraditional chart: n = 100, h = 1, UCL = 5 and ANI = 0.2469. 
npoptimal chart: n = 185, h = 1.85, UCL = 6 and ANI = 0.1248. 
Fig. 4 shows the effect of n on the ANI values. It can be seen that the 

ANI values have a decay and rise pattern till they reach one point (i.e., 
the optimal sample size n = 185) where the ANI value does not go lower 
any further. Fig. 4 also shows that the proposed npoptimal chart out-
performs nptraditional chart in terms of ANI under the same design 
specifications. 

The values of ANI are compared based on a defined relative perfor-
mance index (RPI) which can be calculated as: 

RPI =
ANItraditional − ANIoptimal

ANIoptimal
(8) 

RPI shows the percentage of improvement achieved by the npoptimal 
chart compared to nptraditional chart. Under the studied case, the RPI 
shows an improvement of 98% (0.2469− 0.1248

0.1248 ≈ 98%)in the ANI of the 
npoptimal chart compared to that of the nptraditional chart. One interpre-
tation of this result is that inspecting a sample of 185 every 111 minutes 
can detect an outbreak almost two times faster than inspecting a sample 
of 100 every hour while satisfying the same constraints on the false 
alarm rate and inspection rate. 

As shown in Fig. 4, there are several valley points (VPi). These valley 
points are always the local minima on the curve of ANI against n, and 
ANI is actually a concave-upward function of n at these valley points. 
This is due to the fact that the UCL at a valley point is always the tightest, 
and the corresponding ATS0 is just slightly larger than the specified τ. It 
also results in the smallest ANI in the neighborhood of a valley point. If 
the sample size n is increased by one from the sample size at a valley 
point, the UCL has to be increased by one in order to meet the constraint 
(4). Consequently, the in-control ATS0, as well as the ANI, will increase 
sharply. Therefore, the optimal sample size (noptimal) is identified as one 
of the valley points. For instance, the optimal sample size (noptimal = 185) 
is associated with the 4th valley point (VP4). 

Moreover, the nptraditional and npoptimal charts are compared in terms 
of the out-of-control average time to signal ATS. Fig. 5 shows the per-
formance of both np charts in terms of the normalized ATS (ATS nptra-

ditional / ATS npoptimal). As can be seen from Fig. 5, the npoptimal chart is 

more effective than nptraditional chart for detecting p shifts over almost 
the whole given range. Also, it can be noted that as the shift increases, 
the nptraditional chart performs roughly similar to the npoptimal chart. In 
other words, the superiority of the npoptimal chart over the nptraditional 
chart decreases with increasing the shift size in the infection rate. 

5.2. Sensitivity analysis 

In most processes, the process shift usually follows a specific prob-
ability distribution. However, as Siddall (1983) pointed out, if there is 
uncertainty about a random variable except for its bounds, then uniform 
distribution might be an excellent option to represent that variable. 
Many researchers designed control charts assuming that the process shift 
follows uniform distribution (Castagliola, Celano, & Psarakis, 2011; 
Sparks, 2000; Domangue and Patch, 1991), while others used beta dis-
tribution (Ou, Wu, & Goh, 2011) and Rayleigh distribution (Haridy, 
Maged, Kaytbay, & Araby, 2017; Wu, Shamsuzzaman, & Pan, 2004) to 
describe the process shift. 

In this section, a sensitivity analysis is conducted for the case in 
Section 5.1 (i.e., τ = 648 h, p0 = 0.01, r = 100/hour and pmax = 10p0) to 
study how the charts will perform if the estimated distribution of the p 
shift is not uniform. The nptraditional and npoptimal charts are designed for 
three other cases in which p shift follows a beta distribution as shown in 
cases 1, 2 and 3 of Table 1. The probability density function of the beta 
distribution can be determined as follows: 

fp(p) =
Γ(a + b)
Γ(a)Γ(b)

⋅
(p − p0)

a− 1⋅(pmax − p)b− 1

(pmax − p0)
a+b− 1 (9) 

The skewness of a beta distribution depends primarily on the pa-
rameters a and b. If (a < b), the probability distribution of the p shift will 
be skewed to right (Fig. 6(a)) and most of the shifts cluster to the lower 
end. If (a > b), the probability distribution of the p shift will be skewed to 
the left (Fig. 6(c)), and most of the shifts cluster to the upper end. 
Finally, if (a = b), the distribution of the p shift will be symmetric (Fig. 6 
(b)). Cases 1, 2, and 3 in Table 1 serve as representatives of different 
types of non-uniform probability distributions of p shift. 

The RPI values in Table 1 show that, under any probability distri-
butions of p shift, the npoptimal chart always outperforms the nptraditional 
chart. The superiority of the npoptimal chart over the np chart is more 
significant when fp(p) is skewed to the right (case 1). This finding is 
justifiable as the npoptimal chart uses a relatively large sample size (n =
100), making it less sensitive for detecting large p shifts. When the beta 
distribution is symmetrical (case 2), it can also be observed that the RPI 
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value for case 2 when the beta distribution is symmetric is close to that 
of the uniform distribution in Section 5.1. It can be concluded that the 
npoptimal chart always considerably outperforms the nptraditional chart 
regardless of the probability distribution of the p shift. The distribution 
of p shift may only influence the degree of the superiority of the poptimal 

chart over the nptraditional chart. 

5.3. Comparison under different scenarios 

The performance of the nptraditional and npoptimal charts is further 
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Fig. 5. The normalized ATS of the nptraditional and npoptimal charts.  

Table 1 
Control Charts under Different Distributions of p Shift.  

Case Distribution 

Distribution 
parameters Chart n h UCL ANI RPI 

a b 

1 Beta 
skewed to right 

2 4 nptraditional 100 1 5 0.572 120% 
npoptimal 128 1.28 5 0.260 

2 
Beta 

symmetrical 3 3 
nptraditional 100 1 5 0.167 

80% npoptimal 185 1.85 6 0.093 

3 
Beta 

skewed to left 4 2 
nptraditional 100 1 5 0.082 

24% npoptimal 128 1.28 5 0.066  

Fig. 6. Three Beta Probability Density Functions of p Shift.  
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compared under five more scenarios with different design specifications 
to demonstrate the improvement that can be achieved by optimizing n. 
The overall improvement is represented in terms of RPI, which is 
calculated using Eq. (8). The results are shown in Table 2. 

As it can be observed from Table 2, the RPI values shows the supe-
riority of the npoptimal chart over the nptraditional chart throughout the 
five scenarios. For instance, in case 4 where r = 20, τ = 900, p0 = 0.03 
and pmax = 5p0, the npoptimal chart is able to make a reduction by 505% in 
the average number of infections (ANI) compared to the nptraditional 
chart. This indicates that the npoptimal chart is substantially more 
powerful for detecting the entire range of the shifts under such design 
specifications. 

5.4. Comparison of detection speed 

This section shows a comparison of the detection speed of the 
nptraditional and npoptimal charts under the same scenarios shown in 
Table 2. For each scenario, 30 samples with a random number of in-
fections (d) are generated by simulation using inverse transform 
method. It only requires the sample size and infection rate in order to 
simulate d. The first 15 samples are generated to satisfy the in-control 
condition, and the rest are generated to be out of control. Both sam-
ples follow a binomial distribution with the same n but different infec-
tion rates (i.e., p0 for the in-control and i × p0 for the out-of-control 
where i represents the increase in the shift). The values of i are indi-
cated in Table 3. For each chart, the same sample size in Table 2 is used. 
For example, the first 15 samples in scenario I when using the nptraditional 
chart are generated using a binomial distribution B(40, 0.03), while the 
other 15 samples are generated with B(40, 0.06) (i.e., using a sample size 
of n = 40 and an infection rate of p = 2 × 0.03 = 0.06). 

Table 3 shows the sample at which both charts will detect the shift (i. 
e., the detection sample). The detection sample in Table 3 indicates that 
the npoptimal chart always gives an out-of-control signal faster than the 
nptraditional chart. This demonstrates that the former has a better detec-
tion speed than the latter and consequently it is adopted for the early 
detection of an outbreak. Fig. 7 illustrates the detection speed of both 
the nptraditional and npoptimal charts under the settings given in scenarios 
I-V in Table 3. It is obvious that the npoptimal chart always gives an out- 
of-control signal before the nptraditional chart. This demonstrates that the 
former has a better detection speed than the latter and consequently it is 
adopted for the early detection of an outbreak. 

5.5. Comparison under 100% inspection 

In this section, the performance of the nptraditional and npoptimal charts 
is compared under 100% inspection using the same design specification 
in Section 5.1 (i.e., τ = 648 h, p0 = 0.01 and pmax = 10p0) and assuming 
that the airport has sufficient resources to carry out such inspection. A 
predetermined n of 100 arrivals is used for the nptraditional chart, while it 
is optimized in the design of the npoptimal chart. In 100% inspection, 

optimizing the sample size n means adjusting the grouping of the 
inspected units (Montgomery, 2019; Reynolds & Stoumbos, 1999). The 
optimization model of the np chart under 100% inspection can be 
formulated as follows: 

Objective: Minimize ANI 
Constraint: ATS0 ≥ τ 
Design variables: n and UCL 

For 100% inspection, n and UCL are the only parameters to be 
optimized as there is no sampling interval h. In addition, there is no 
constraint on the inspection rate r as the sampling inspection is no longer 
implemented. 

The values of the charting parameters and corresponding ANI values 
for both nptraditional and npoptimal charts are indicated below: 

nptraditional chart: n = 100, UCL = 2 and ANI = 6.4344. 
npoptimal chart: n = 40, UCL = 1 and ANI = 3.4073. 

The RPI = 6.4344− 3.4073
3.4073 ≈ 89% indicates that the npoptimal chart has a 

better overall performance than the nptraditional chart by 89%. Fig. 8 
shows the performance of both np charts in terms of the normalized ATS 
(ATS nptraditional/ATS npoptimal). It is clear that the npoptimal chart out-
performs the nptraditional chart for detecting the whole range of p shifts. In 
the meantime, Fig. 8 indicates that the superiority of the npoptimal chart 
over the nptraditional chart increases with increasing the shift size in the 
infection rate. This result is justifiable because the npoptimal chart uses a 
sample size (n = 40) smaller than that of the nptraditional chart (n = 100). 

The performance of the nptraditional and npoptimal charts is further 
compared under the same five scenarios in Section 5.2 under 100% in-
spection. The same design specifications (τ, p0 and pmax) for each sce-
nario are used. The design specifications, charting parameter, ANI and 
RPI of both charts are all shown in Table 4 for each scenario. 

The overall performance of the npoptimal chart, in terms of ANI, is 
always better than, or at least equal to, that of the nptraditional chart 

Table 2 
A comparison of the nptraditional and npoptimal charts for sampling inspection under five different scenarios.  

Scenario Chart pmax τ po r n h UCL ANI RPI 

I 
nptraditional 5po 300 0.03 40 

40 1 5 0.739 
151% npoptimal 119 2.975 8 0.294 

II 
nptraditional 15po 300 0.03 40 

40 1 5 0.331 
37% npoptimal 32 0.8 4 0.241 

III 
nptraditional 15po 900 0.005 120 

120 1 4 0.186 
92% npoptimal 164 1.367 4 0.097 

IV 
nptraditional 5po 900 0.03 20 

20 1 4 3.968 
505% 

npoptimal 134 6.7 9 0.656 

V 
nptraditional 5po 900 0.03 40 

40 1 6 2.202 
437% 

npoptimal 119 2.975 9 0.410  

Table 3 
A comparison of the detection speed of the nptraditional and npoptimal charts.  

Scenario Chart Shift (i) p (=i × p0) after shift Detection sample 

I nptraditional 2 0.06 23 
npoptimal 0.06 18 

II nptraditional 5 0.15 22 
npoptimal 0.15 19 

III nptraditional 8 0.04 23 
npoptimal 0.04 17 

IV 
nptraditional 3 

0.09 27 
npoptimal 0.09 16 

V 
nptraditional 4 

0.12 24 
npoptimal 0.12 17  
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Fig. 7. A comparison of the detection speed of the two np charts under five simulated scenarios.  
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across the five scenarios. RPI values illustrate the improvement in the 
overall detection effectiveness that can be achieved when the npoptimal 
chart is used instead of the nptraditional chart for each scenario. 

6. Conclusion 

This paper proposes a monitoring scheme for early detection of 
outbreaks caused by coronaviruses and other important respiratory vi-
ruses. For respiratory viruses with high transmissibility and mortality 
rates, such as SARS-CoV-2, early detection of important clusters of in-
fections provides critical information to public health representatives 
and policymakers. In particular, early detection of respiratory virus 
activity at sentinel airports would allow for near real-time decisions 
about the potential need for specific virologic testing, patient quaran-
tine, travel restriction, and other important outbreak investigation and 
mitigation measures. 

The proposed monitoring scheme suggests using an optimized np 
control chart for monitoring the infection rate of respiratory viruses. In 
this scheme, clinical symptoms that are simple to monitor are used as 
surrogates for infection. The suggested optimized np chart is compared 
with the traditional np chart under both sampling inspection and 100% 
inspection using different settings. The results reveal that the former 
substantially outperforms the latter for detecting a wide range of shifts 
in the infection rate. Furthermore, the optimized np chart is as simple as 
the traditional np chart to implement. An out-of-control signal on the np 
chart could be a potential outbreak. The design and implementation of 

the developed np chart are simple, especially for healthcare practi-
tioners without a background in control charts. Adopting the proposed 
monitoring scheme in sentinel airports could help identify the origin of 
the virus, compare infection rates at different locations, and initiate 
early mitigation measures. 

In this research, the number of infections d is assumed to follow a 
binomial distribution. It would be worthwhile to conduct a sensitivity 
analysis in future research by assuming different distributions of d. 
Furthermore, the number of arrivals per unit time (N) is assumed to be 
constant; however, it might vary over time in airports. In this case, 
further study can be conducted employing N as a measure of risk by 
determining the exact average number of infections (ANI). This adjust-
ment will allow decision-makers to manage the infected cases effectively 
by providing the required resources and responses, if an outbreak exists. 
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Table 4 
A comparison of the nptraditional and npoptimal charts for 100% inspection under five different scenarios.  

Scenario Chart pmax τ po n UCL ANI RPI 

I nptraditional 5po 300 0.03 40 2 5.202 26% 
npoptimal 9 1 4.127 

II nptraditional 15po 300 0.03 40 2 9.020 172% 
npoptimal 9 1 3.310 

III nptraditional 15po 900 0.005 120 1 4.269 20% 
npoptimal 74 1 3.537 
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npoptimal 20 2 6.976 

V nptraditional 5po 900 0.03 40 3 7.804 11% 
npoptimal 20 2 6.976  
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