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Abstract

Motivation: In recent years, several experimental studies have revealed that the microRNAs

(miRNAs) in serum, plasma, exosome and whole blood are dysregulated in various types of dis-

eases, indicating that the circulating miRNAs may serve as potential noninvasive biomarkers

for disease diagnosis and prognosis. However, no database has been constructed to integrate the

large-scale circulating miRNA profiles, explore the functional pathways involved and predict

the potential biomarkers using feature selection between the disease conditions. Although there

have been several studies attempting to generate a circulating miRNA database, they have not yet

integrated the large-scale circulating miRNA profiles or provided the biomarker-selection function

using machine learning methods.

Results: To fill this gap, we constructed the Circulating MicroRNA Expression Profiling (CMEP)

database for integrating, analyzing and visualizing the large-scale expression profiles of

phenotype-specific circulating miRNAs. The CMEP database contains massive datasets that were

manually curated from NCBI GEO and the exRNA Atlas, including 66 datasets, 228 subsets and

10 419 samples. The CMEP provides the differential expression circulating miRNAs analysis and

the KEGG functional pathway enrichment analysis. Furthermore, to provide the function of nonin-

vasive biomarker discovery, we implemented several feature-selection methods, including ridge

regression, lasso regression, support vector machine and random forests. Finally, we implemented

a user-friendly web interface to improve the user experience and to visualize the data and results

of CMEP.

Availability and implementation: CMEP is accessible at http://syslab5.nchu.edu.tw/CMEP.

Contact: chunchiliu@gmail.com

1 Introduction

Many types of diseases, especially cancer, are associated with

disease-specific biomarkers that serve as diagnosis, prognosis and

monitoring tools, and provide a better understanding of disease

pathogenesis (Weiland et al., 2012). However, some of the current

diagnostic procedures have limitations in the application of routine

health checkups, since they are invasive and inconvenient (Chen

et al., 2008; Duffy, 2007). Hence, minimally invasive biomarkers

of human disease, such as a diagnosis using blood-based liquid

biopsies, can significantly improve the disease prognosis by facilitat-

ing early diagnosis and routine clinical monitoring (Lieben, 2015).

MicroRNAs (miRNAs) are small endogenous noncoding RNAs

with approximately 22 nucleotides that can modulate up to 60%

of the protein-coding genes in the human genome at the
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posttranscriptional level (Bartel, 2004; Friedman et al., 2009).

Additionally, large amounts of miRNAs were derived from various

tissues/organs and present in stable forms in the serum, plasma,

exosome and whole blood (Alhasan et al., 2014; Chen et al., 2008).

Thus, circulating miRNAs have emerged as promising potential in

noninvasive biomarkers for human disease diagnosis and surveil-

lance using blood-based liquid biopsies (Kawaguchi et al., 2016; Ma

et al., 2012; O’Brien et al., 2017; Singh et al., 2016; Weiland et al.,

2012). Recently, several studies have identified some disease-specific

circulating miRNA signatures for various diseases (Alhasan et al.,

2016; De Rosa et al., 2018; Liu et al., 2016; Motawi et al., 2015;

Zhang et al., 2017).

Although there have been several studies that attempt to con-

struct circulating miRNA databases, e.g. miRandola (Russo et al.,

2018) and exRNA Atlas (http://exrna-atlas.org/) (Ainsztein et al.,

2015), they have not yet integrated large-scale circulating miRNA

profiles or provided the biomarker-selection function using ma-

chine learning methods. The miRandola database is a manually

curated database based on literature for extracellular circulating

noncoding RNAs, which contains the relations between circulat-

ing miRNAs and diseases from published articles. However,

miRandola has not provided miRNA expression profiles and pro-

file analyses. On the other hand, exRNA Atlas contains numerous

circulating small RNA datasets with expression profiles of various

types of diseases, but it does not provide further analysis, such

as the functional pathway enrichment with differentially

expressed circulating miRNAs or feature selection functions for

finding the circulating biomarkers of noninvasive diagnosis and

prognosis.

To fill this gap, we have developed the Circulating MicroRNA

Expression Profiling (CMEP) database (http://syslab5.nchu.edu.

tw/CMEP), which is a public database that not only contains

large-scale circulating miRNA datasets from diverse platforms

(e.g. small RNA sequencing, miRNA microarray and qRT-PCR,

etc.) but also provides miRNA expression profiling, pathway en-

richment analysis with miRNA target genes and feature-selection

methods. Figure 1 shows the framework of the CMEP construc-

tion. In the CMEP database, we systematically collected 169 cir-

culating miRNA expression-profile datasets with specific disease

conditions. To provide the comprehensive miRNA resource for

noninvasive diagnosis, we collected wide-ranging sample types,

including serum, plasma, exosome, microvesicle, urine, peripheral

blood mononuclear cells, red blood cells and platelets, etc. Each

dataset contains several groups of samples with different pheno-

types. We manually performed data curation for these circulating

miRNA datasets to create phenotype-specific subsets and to as-

sign samples to subsets according to the experimental description

of the samples. Afterwards, we comprehensively categorized sub-

sets according to disease state, disease subtypes, mutations, can-

cer stages and sample types, etc. This resulted in 66 miRNA

datasets, including 228 subsets and 10 419 samples. To identify

phenotype-specific differentially expressed miRNAs in each data-

set, we selected subsets with at least three samples, normalized

the expression profiles and then performed a t-test between the

two subsets without overlapping samples, which resulted in 194

subset pairs.

To demonstrate the functionality to biologists, the CMEP visual-

izes the expression profiles of all differentially expressed circulating

miRNAs with the significance level and expression values between

two subsets, and provides the filtering function based on the P-value

threshold, up/downregulation, or autocomplete search field.

Furthermore, the CMEP provides an enrichment analysis function,

which integrated the miRNA–target interactions from the

miRTarBase (Chou et al., 2016) and the functional pathway annota-

tions from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2017), for a better understanding of the differential-

ly expressed circulating miRNAs within specific disease conditions.

For noninvasive disease biomarker identification, we implemented

several feature-selection methods, such as ridge regression (Hoerl

and Kennard, 1970), lasso regression (Tibshirani, 1996), linear sup-

port vector classification (SVC) (Chang and Lin, 2011) and random

forests (Genuer et al., 2010; Strobl et al., 2008), into the CMEP

database to provide users with the ability to identify the crucial cir-

culating miRNAs.

In summary, the CMEP database characterizes differentially

expressed circulating miRNAs, analyzes the biological pathways

that involve the circulating miRNAs, and recognizes the relevant

miRNAs across various types of diseases in different organ systems.

The CMEP database serves as a resource to enable biological and

clinical researchers to develop new noninvasive biomarkers for dis-

ease diagnosis and routine monitoring using blood-based liquid

biopsies.

2 Materials and methods

2.1 Circulating miRNA datasets collections
We systematically collected 66 human circulating miRNA datasets

regarding diseases and the annotation data of the platforms used in

the datasets from the NCBI Gene Expression Omnibus (GEO)

(Edgar et al., 2002), the Sequence Read Archive (SRA) (Leinonen

et al., 2011) and the exRNA Atlas. Each dataset consists of several

subsets, where each subset is a group of samples associated with a

specific phenotype. Thus, we manually created several phenotype-

specific subsets within each dataset and then assigned samples to

subsets according to the textual description of the datasets and sam-

ples. Consequently, each subset contained a group of samples with

specific phenotypic traits or disease conditions, e.g. cancer state,

Fig 1. Framework for constructing the CMEP database. Circulating miRNA

datasets were collected from NCBI GEO, SRA and the exRNA Atlas, and then

all samples were classified into phenotype-specific subsets. To identify

phenotype-specific differentially expressed circulating miRNAs in each data-

set, we performed t-tests between each pair of subsets with no overlapping

samples from the same dataset. For each subset pair, we constructed a KEGG

functional pathway enrichment analysis that integrated the information of

miRNA–target interactions from the miRTarBase and the functional pathway

annotations of miRNA target genes from the KEGG. Furthermore, four fea-

ture-selection pipelines, such as ridge regression, lasso regression, linear

support vector classification (SVC) and random forests, were constructed

with recursive feature elimination (RFE) to identify the important circulating

miRNAs as potential biomarkers. Finally, all data and analysis functions were

integrated into a user-friendly web interface
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disease progression, a type of tissue and genotype. Finally, a total of

228 subsets with at least 3 samples were created, containing a total

of 10 419 samples. We categorized these datasets and subsets into

specific disease structures referring to the Unified Medical Language

System (UMLS) (Bodenreider, 2004). To obtain the expression

profiles of each dataset, we converted the probe IDs into human

miRNA names based on the platform annotation. If an miRNA

maps to multiple probe IDs, we calculate the average expression

values.

2.2 Phenotype-specific differentially expressed circulat-

ing miRNAs identification and pathway enrichment

analysis
To identify phenotype-specific differentially expressed circulating

miRNAs in each dataset, we selected the subsets with at least three

samples and then performed t-tests between two subsets without

overlapping samples. The comparison of two subsets is referred to

as a subset pair. There were 194 subset pairs with differentially

expressed circulating miRNAs (P-value < 0.05). In turn, to investi-

gate the phenotype-specific regulation of circulating miRNAs, which

may reveal the potential biological functional insight into circulating

miRNAs, we integrated the information on miRNA–target interac-

tions that had been downloaded from the miRTarBase (Chou et al.,

2016) release 7.0, and the functional pathway annotations of

miRNA target genes that had been collected from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,

2017) to construct a KEGG functional pathway enrichment analysis

for the target genes of differentially expressed circulating miRNAs

within a subset pair. To perform the KEGG enrichment analysis, the

hypergeometric distribution was used to calculate the statistical sig-

nificance. The calculating formula of hypergeometric test P-value is:

p ¼
Xn

i¼x

M
i

� �
N �M
n� i

� �

N
n

� �

Here N is the number of genes with any KEGG annotation; M is the

number of genes involved in the specific KEGG pathway; n is the

number of target genes of a given differentially expressed circulating

miRNA; and x is the number of n belonging to M, that is, the inter-

section of M and n. Taking the calculated P-value � 0.05 as a

threshold, CMEP will dynamically analyze to identify the signifi-

cantly enriched KEGG pathways for the target genes of a given dif-

ferentially expressed circulating miRNA selected by the user. In the

web interface, users can select differentially expressed miRNAs

using t-test P-value thresholds. When users type a miRNA name, an

autocomplete search function provides suggestions for miRNAs

after quickly searching and displaying partially matched terms.

Furthermore, we linked the circulating miRNA IDs to miRandola

(Russo et al., 2018) on the CMEP web interface.

2.3 Feature-selection pipeline construction for

circulating miRNAs
To identify the circulating miRNAs as potential biomarkers for the

detection or monitoring of various diseases, we implemented four

feature-selection methods, such as ridge regression (Hoerl and

Kennard, 1970), lasso regression (Tibshirani, 1996), linear support

vector classification (SVC) (Chang and Lin, 2011) and random for-

ests (Genuer et al., 2010; Strobl et al., 2008), to calculate the weight

associated with each feature (i.e. circulating miRNAs) and to reflect

the importance of the circulating miRNAs for phenotype-specific

subset pair classification. The scikit-learn library (http://scikit-learn.

org/) was used to implement all feature-selection pipelines. In the

web interface, CMEP performs the feature selection procedure

and visualizes the profile of features when users choose a feature-

selection method.

Since the goal is to identify the subset of features that can classify

the subset pair, the ridge regression was implemented by logistic

regression (Fan et al., 2008) with L2 norm regularization, and lasso

regression was implemented by logistic regression with L1 norm

regularization. Moreover, every forest contained 100 decision trees

in random forests. All feature-selection algorithms were applied

with recursive feature elimination (RFE) (Guyon et al., 2002) to ex-

tract the specific numbers of relevant circulating miRNAs.

To validate the feature-selection methods and to compare the

performance of each feather-selection method, we selected the sub-

set pair ‘Prostate cancer versus Normal’, which have 86 samples

from dataset GSE71008 for demonstration. The samples in dataset

GSE71008 were randomly equally split into training and test sets.

The training set was used to select features using REF. The test set

was used to calculate the performance using the linear SVM

classifier.

3 Results

3.1 The web interface
The web interface of CMEP comprises four distinctive panels (Fig. 2)

as follows: Disease panel (upper left), Dataset panel (upper right),

Subset pair panel (lower left) and Expression profiling panel (lower

right). The disease panel consists of two components, the sample type

selection box and the disease tree. Users will first select the desired

sample type (serum, plasma, urine, etc.), and the disease tree will

interactively display all corresponding diseases using UMLS classifica-

tion, such as breast cancer and colon cancer. After selecting a disease

type, the dataset panel displays all related datasets and information

including the dataset’s GSE numbers, sample type and title. Once a

particular dataset is chosen, the subset pair panel shows all subset

pairs, such as normal versus disease, within the dataset. After selecting

a subset pair, the expression profiling panel shows the differential ex-

pression profile of the subset pair’s miRNAs. Within the expression

profile panel, the dataset title with GSE number, subset titles and

number of samples are provided. Users can choose up/down regula-

tion and P-value threshold to filter the results. The miRNA search

box with autocomplete function is provided to access the miRNAs

that are particularly of interest. For each miRNA, the t-test P-value

and subset mean values are calculated, and the expression profile is

visualized by a heat map to denote the expression levels.

3.2 KEGG enrichment analysis and feature selection
For each miRNA in the expression profiling panel, by interacting

with miRTarBase to search for miRNA’s target genes, pathway en-

richment analysis calculates the overlapped genes to discover signifi-

cantly enriched biological pathways (Fig. 3).

To unveil more relevant miRNAs in the dataset, we applied ma-

chine learning algorithms, such as the linear support vector classi-

fier, ridge regression, lasso regression and random forest

classification for feature selection. Within each of the feature-

selection methods, the desired number of features can be freely

chosen by the user’s interest (Fig. 4).
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3.3 Example applications
To demonstrate the biological applications of CMEP, we used data-

set GSE71008 as an example to show the differentially expressed

circulating miRNA profile, feature selection function and KEGG

pathway enrichment analysis. Within the dataset, we used a subset

pair (prostate cancer versus normal) containing 86 samples (36 pros-

tate cancer samples and 50 normal samples) in total.

3.4 Differentially expressed circulating miRNAs
To demonstrate how differentially expressed circulating miRNAs

assisted users in evaluating the statistically significant miRNAs within

a large amount of the rest, hsa-mir-146b was taken as an example

(Fig. 5). Users can intuitively notice that the 5 most statistically signifi-

cant miRNAs within the subset pair are hsa-mir-146a (P-value

2.73E�8), hsa-mir-150-5p (P-value 2.33E�7), hsa-mir-144-5p (P-

value 3.16E�7), hsa-mir-223-3p (P-value 6.29E�7) and hsa-mir-

146b (P-value 8.10E�7). The subset-pair mean values were also cal-

culated to provide more in-depth insight into the miRNA variation be-

tween normal samples and prostate cancer samples. The heat map

graphically represents the miRNA expression of each of the samples,

with red representing high expression and blue representing low ex-

pression. In the miRNA expression profile, users can easily observe

that the fifth miRNA, hsa-mir-146b, is obviously down-regulated

among the prostate cancer samples. Interestingly, a previous study

showed that hsa-mir-146, which was a potential tumor suppressor,

was significantly reduced in prostate cancer tissues (Ding et al., 2016).

3.5 Feature selection
CMEP provides four feature selection methods, which are lasso re-

gression, ridge regression, linear support vector classifier and ran-

dom forest classifier, which are all integrated with a recursive

feature elimination algorithm to examine the significance of each of

the miRNAs in the dataset. In the GSE71008 subset (prostate cancer

versus normal), we performed the four different feature selection

methods and selected 20 miRNAs using each of the methods. The

four feature selection methods obtained 45 unique miRNAs, and 15

miRNAs were documented in different studies related to prostate

cancer previously. For example, Okato et al. reported that hsa-mir-

150-5p expressed the antitumor property in prostate cancer by tar-

geting SPOCK1 (Okato et al., 2017). Interestedly, the expression

profile of hsa-miR-150-5p also showed that it was down-regulated

among the prostate cancer samples, which consolidated the validity

of the feature selection methods. hsa-mir-150-5p was selected by all

four feature selection methods, suggesting that it may be one of the

most important circulating miRNA biomarkers for prostate cancer.

To further investigate the predictive capacity of the feature-

selection methods, we split the original prostate cancer versus nor-

mal subset into a training subset and testing subset in a ratio of 1: 1.

We performed the four methods of the training subset, selecting 1

feature to 50 features and using the same training subset to fit the

model using different classifiers such as the support vector classifier

or logistic regression. Then, we used the testing set to validate the

Fig 2. The CMEP web interface provides four major panels as follows. (A)

Disease panel (upper left): The sample type box shows all available sample

types. The diseases tree lists all diseases according to UMLS classification in

a hierarchical manner. (B) Dataset panel (upper right): All datasets of the

selected disease are listed with sample type and title. (C) Subset pair panel

(lower left): All subset pairs within datasets are listed. (D) Expression profiling

panel (lower right): The differential expression profile of miRNAs is graphical-

ly presented, with corresponding P-values calculated by t-test. The feature se-

lection functions apply machine learning algorithms to search for important

miRNAs

Fig 3. Web interface of KEGG pathway enrichment analysis. The target genes

of the miRNA are overlapped with pathway genes, in order to calculate the P-

value. The pathway with a smaller P-value has a higher ranking

Fig 4. Web interface of feature selection methods. The four feature-selection

methods, random forest classification, lasso regression, ridge regression, lin-

ear SVC allow users to select any numbers of features

Fig 5. The miRNA expression profile of GSE71008 (Prostate cancer versus

Normal). The miRNA expression profile calculates the P-values by t-test and

the miRNAs are ranked by the P-value. The hsa-mir-146b is the fifth miRNA in

the expression profile, and its expression is shown down-regulated in pros-

tate cancer samples. This finding is proven by a previous study that mir-146b

expression in prostate tumor cells is significantly decreased compared to that

in normal prostate cells
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area under the curve (AUC) of the receiver operating characteristic

curve (ROC Curve) (Fig. 6).

By implementing the features selected by four different methods

and performing validation, we observed that under the linear SVC,

the AUCs of the four feature-selection methods obtained an overall

similar performance, but random forest-selected features appeared

to perform better when fewer numbers of features were selected

(14-22 features, with AUCs > 0.95), while other feature-selection

methods, such as lasso regression, ridge regression and SVC had

increasing AUCs (AUCs > 0.80) when more features were selected.

From a statistics point of view, we preferred to use fewer, more

important features to prevent overfitting. From the above results,

the four feature-selection methods were all effective in predicting

important miRNAs, which assisted biologists in discovering poten-

tial candidates for further biological experiments.

To demonstrate whether feature selection followed by machine

learning was outperformed by solely using machine learning, we

tested another dataset, GSE98181, to perform linear SVC 5-fold

cross-validations, with and without feature selection (Fig. 7). To

examine their performance, ROC analysis was implemented. The

results showed that all feature-selection methods followed by

linear SVC had AUCs ranging from 0.79 to 0.99, which significantly

outperformed linear SVC without feature selection (AUC ¼ 0.48),

suggesting that the feature selection methods substantially improved

performance. Interestingly, miR-29a-3p, which was simultaneously

selected by three feature-selection methods, was found to be docu-

mented in the previous published research (Pei et al., 2016). The re-

search found that miR-29a promoted breast cancer cell proliferation

and was upregulated in the breast cancer cell line, which was

consistent with our expression profile on breast cancer samples and

normal samples with mean values of 0.58 and 0.19, respectively.

3.6 KEGG pathway enrichment analysis
To further explore how miRNAs were involved in different biological

pathways, 15 miRNAs from GSE71008, which were selected from

the previously mentioned feature-selection methods and were proven

to be related to prostate cancer, underwent KEGG pathway enrich-

ment analysis. Six miRNAs (mir-223-3p, mir-451a, mir-125a-5p, mir-

233, mir-143 and mir-221) showed that their target genes were signifi-

cantly enriched to the prostate cancer pathway. This gave users a

more thorough understanding of the miRNA’s attributes.

4 Conclusions

In this study, we processed large-scale datasets collected from NCBI

GEO, SRA and exRNA Atlas to extract the differentially expressed

circulating miRNAs, implemented the KEGG pathway analysis for

the target genes of the circulating miRNAs, and constructed four

feature-selection pipelines to identify the crucial circulating miRNAs

as potential noninvasive biomarkers for diagnosis or prognosis in

various types of diseases. We integrated and visualized all data and

functions into the CMEP database. Although CMEP was developed

with the goal of collecting, processing, analyzing and visualizing all

publicly circulating miRNA data regarding various types of disease,

it still has limitations that arise from the characteristics of the data.

First, the circulating miRNA datasets were generated using different

array or sequencer platforms, which caused most of datasets to have

different numbers of circulating miRNAs and different scales of ex-

pression values. Second, the circulating data was generated from

various research teams with diverse experiment back-grounds,

designs and protocols, which resulted in inevitable batch effects and

potential quality issues between different datasets in CMEP. To

summarize, we have therefore applied the strategy of only compar-

ing subsets within the same dataset and have demonstrated the per-

formance of feature selection across different datasets in this study.

Despite these limitations, the CMEP characterizes differentially

expressed circulating miRNAs, analyzes the bio-logical pathways

they involve, and provides the feature-selection methods for identi-

fying the crucial circulating miRNAs. Moreover, the systematic and

user-friendly web interface can assist users in accessing the informa-

tion on CMEP efficiently. We anticipate that CMEP can facilitate

biological and clinical researchers in better studying the biological

insight of the circulating miRNAs and develop new noninvasive bio-

markers for diagnosis and routine monitoring. Finally, as more and

more circulating miRNA datasets are generated and provided, we

Fig 6. The performance of four feature selection methods in subset pair

‘Prostate cancer versus Normal’ of GSE71008 using linear SVM with different

numbers of features. All four feature-selection methods had a similar per-

formance ranging from 1 to 50 features. Ridge regression and linear SVC per-

formed poorly when less than 5 features were selected (AUCs < 0.80), while

the random forest method (0.85<AUCs < 0.90) and lasso regression method

(0.75<AUCs < 0.95) performed pretty well. The random forest method per-

formed better when fewer features were selected (14–22 features, AUCs >

0.95), while other methods had increasing AUCs (AUCs > 0.80) when more

features were selected

Fig 7. ROC curve of the 5-fold cross-validation linear SVC model. The ROC

curve showed that the linear SVC model performed better when feature-se-

lection methods were included, as their AUCs ranged from 0.79 to 0.99, which

were significantly higher than those without feature selection (AUC¼0.48)
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will keep the data in our CMEP database updated to ensure that it

can provide comprehensive information on circulating miRNAs.
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