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Abstract

Motivation: Next-generation deep sequencing of viral genomes, particularly on the Illumina plat-

form, is increasingly applied in HIV research. Yet, there is no standard protocol or method used by

the research community to account for measurement errors that arise during sample preparation

and sequencing. Correctly calling high and low-frequency variants while controlling for erroneous

variants is an important precursor to downstream interpretation, such as studying the emergence

of HIV drug-resistance mutations, which in turn has clinical applications and can improve patient

care.

Results: We developed a new variant-calling pipeline, hivmmer, for Illumina sequences from HIV

viral genomes. First, we validated hivmmer by comparing it to other variant-calling pipelines on

real HIV plasmid datasets. We found that hivmmer achieves a lower rate of erroneous variants, and

that all methods agree on the frequency of correctly called variants. Next, we compared the meth-

ods on an HIV plasmid dataset that was sequenced using Primer ID, an amplicon-tagging protocol,

which is designed to reduce errors and amplification bias during library preparation. We show that

the Primer ID consensus exhibits fewer erroneous variants compared to the variant-calling pipe-

lines, and that hivmmer more closely approaches this low error rate compared to the other pipe-

lines. The frequency estimates from the Primer ID consensus do not differ significantly from those

of the variant-calling pipelines.

Availability and implementation: hivmmer is freely available for non-commercial use from https://

github.com/kantorlab/hivmmer.

Contact: mhowison@brown.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Several next-generation sequencing (NGS) instruments are now used

to study pathogens and viruses (Chabria et al., 2014; Qui~nones-

Mateu et al., 2014). Of the many NGS platforms and approaches

that have been developed over the past two decades, Illumina’s

sequencing-by-synthesis technology has come to dominate the mar-

ket, in large part due to increasing yields and decreasing costs

(Goodwin et al., 2016). Deep sequencing of HIV samples with

Illumina technology is frequently used in studies of viral epidemi-

ology, clinical genotyping and antiretroviral drug resistance.

For example, deep sequencing can provide for a more sensitive assay

of drug-resistance mutations (Brumme and Poon, 2016); and Sanger

sequencing, the current clinical standard, cannot reliably detect

mutations at frequencies below 20%, which might be clinically rele-

vant (Ávila Rı́os et al., 2016). A common concern in studies using

NGS, and also in establishing clinical standards for these new

approaches, is the measurement error of their sequencing protocols.

Measurement errors can arise in sample preparation (including re-

verse transcription of RNA genomes to cDNA and amplification of

viral genomes), library preparation, sequencing and base calling.
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Measurement error creates uncertainty in downstream analyses.

For example, errors introduced during genome amplification are dif-

ficult to distinguish from real mutations since they are introduced in

the early steps of the process, are exponentially amplified and may

occur at high frequency in the later steps. Recombination during

polymerase chain reaction (PCR) is difficult to distinguish from clin-

ically relevant ‘real’ viral recombination. Mutations at low frequen-

cies can be difficult to distinguish from sequencing and base calling

errors, and can confound read alignment, assembly and haplotype

reconstruction methods that rely on accurately identifying exact se-

quence overlaps among sequence reads. Beerenwinkel et al. (2012)

speculated that artifacts introduced during the reverse transcription

polymerase chain reaction (RT-PCR) step are likely the biggest chal-

lenge to accurately estimating viral diversity through reconstructing

individual haplotypes for deeply sequenced HIV data.

Many HIV studies in recent years have addressed Illumina

sequencing errors by applying a global frequency threshold—typic-

ally 1%—below which variants are excluded with the reasoning

that they are indistinguishable from amplification or sequencing

errors. This approach requires establishing a conservative estimate

of the typical error rate for the sequencing protocol, which is then

used as a threshold during variant-calling.

The most common approach to estimating sequencing error rates

is to analyze reads that come from known sequences, by aligning the

reads to the known sequence and counting the frequency of mis-

matches in the alignment. In the context of HIV, this can be accom-

plished by sequencing mixtures of HIV plasmids with known

sequences. In this study, we use this approach to introduce a new

pipeline for analysis of HIV pol sequences from the Illumina MiSeq

platform, hivmmer, and compare it to other variant-calling pipe-

lines. While existing pipelines use short-read aligners to align

Illumina reads in nucleotide space against an HIV reference (such as

HXB2; accession K03455) or a de novo assembly, hivmmer instead

uses a probabilistic aligner, HMMER (Eddy, 2011), to achieve a

more sensitive alignment in amino acid space.

2 Methods and data

2.1 Pipelines
We created a new pipeline, hivmmer (version 0.1.2), based on the

probabilistic aligner HMMER (Eddy, 2011), that consists of the fol-

lowing steps:

1. Constructs an amino acid profile Hidden Markov Model

(pHMM) from a multiple sequence alignment of all HIV-1

Group M amino acid sequences publicly available in the Los

Alamos HIV Sequence Database (http://www.hiv.lanl.gov) for

the pol gene.

2. Pre-processes the NGS data using the paired-end read-merging

tool PEAR (Zhang et al., 2014) and consolidates duplicate

sequences using the FASTQ/A Collapser tool from the FASTX-

Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The number

of duplicates is tracked to enable correct inference of frequencies

later in the pipeline. Duplicates are consolidated primarily as a

performance optimization, as it reduces the computational bur-

den of the later steps.

3. Translates each de-duplicated sequence into all six possible

frames (forward and reverse), retaining only the translated

sequences that contain no stop codons (although hivmmer does

provide an option to allow stop codons to support analyses of

non-coding regions or of degenerate sequences that contain pre-

mature stop codons).

4. Aligns the translated reads to the reference pHMM with

hmmsearch from HMMER, producing a multiple sequence

alignment of translated reads.

5. Constructs a sample-specific amino acid pHMM from the mul-

tiple sequence alignment of translated reads.

6. Repeats the hmmsearch alignment against the sample-specific

pHMM to yield additional sequences that may have been too di-

vergent from the reference sequences to align in the first

hmmsearch alignment.

7. Maps the translated amino acid coordinates in the alignment to

the original frame and coordinates in the nucleotide reads to

construct a codon frequency table (adjusting the counts for du-

plicate reads).

We compared hivmmer to two of the existing pipelines, HyDRA

[Ji et al. (2015); version 0.3.1] and shiver [Wymant et al. (2018); ver-

sion 1.4.1], both of which use the short-read aligner bowtie2

(Langmead and Salzberg, 2012). HyDRA aligns the reads to the

HXB2 reference, while shiver uses an iterative alignment to a de novo

assembly of the reads. We chose HyDRA and shiver as representatives

of a broader group of HIV alignment pipelines such as PASeq (https://

paseq.org) and MiCall (http://cfe-lab.github.io/MiCall), which are

also based on bowtie2 [for a recent comparison of these methods, see

Noguera-Julian et al. (2017)]. As additional robustness checks, we

included a naive implementation of a bowtie2 alignment without any

additional filtering or quality control (the ‘bowtie2’ method), and the

same naive bowtie2 alignment run only on successfully merged reads

from PEAR (the ‘bowtie2-pear’ method).

2.2 Data
Our study uses four publicly available HIV plasmid datasets:

1. 5VM (accession SRR961514), a ‘5 virus mix’ of plasmid sequen-

ces (89.6, HXB2, JRCSF, NL4.3, YU2) in equal proportions

(20%) sequenced by Di Giallonardo et al. (2014);

2. PL1:1 (accession SRR6725661), a mixture of two plasmid

sequences (89.6 and NL4.3) in 1:1 proportion generated in our

lab and introduced in this study (described below);

3. PL1:9 (accession SRR6725662), the same mixture as PL1:1, but

in 1:9 proportion;

4. PID (accessions SRR2097103-8), the same mixture as 5VM, but

sequenced using the Primer ID protocol by Seifert et al. (2016).

For PL1:1 and PL1:9, plasmids 89.6 (U39362) and NL4.3

(AF324493.2), obtained from the NIH AIDS Reagent Program

(https://www.aidsreagent.org/), were mixed as 1:1 or 1:9 ratios, re-

spectively, followed by amplification of the pol region using primers

previously described by Winters et al. (1998), and proof reading

polymerase Phusion (Thermofisher). Nextera XT DNA Library Prep

chemistry (Illumina) was used to fragment and add adapter sequen-

ces onto template DNA to generate multiplexed sequencing libraries

that were sequenced on Illumina’s MiSeq platform generating

2 � 250 bp paired-end reads.

5VM contains near-full-length HIV genomes, although for this

study we considered their alignment and variants only within the

first 1044 nt of the pol region (HXB2 coordinates 2253–3296). This

is also the region contained in PL1:1 and PL1:9, and is a genomic re-

gion that is clinically relevant for drug-resistance mutations. PID is a

restricted fragment within this region, with length 471 nt starting at

HXB2 coordinate 2736.

Note that both plasmids present in PL1:1 and PL1:9 (NL4.3 and

89.6) are also present in 5VM and PID. The 5VM dataset included
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an RT step, as RNA was extracted from viral particles obtained fol-

lowing the transfection of the plasmids into 293 T cells. PL1:1 and

PL1:9 were PCR amplified from plasmid DNA and did not include

an RT step.

The PID dataset comes from a study of the Primer ID method by

Seifert et al. (2016). We compared the variants in the consensus

sequences from their Primer ID consensus caller, called pidalyse, to

those from running each of the pipelines on the original reads with

the Primer ID barcodes removed. That is, we tested the pipelines

under the condition where the Primer ID is unknown.

2.3 Reproducibility
All scripts required to reproduce the results presented here are avail-

able from https://github.com/kantorlab/hiv-measurement-error and

can be executed using the SCons build system (http://scons.org).

Compiled versions of all software dependencies for 64-bit Linux and

Anaconda Python (https://www.anaconda.com) are available from

the kantorlab conda channel (http://anaconda.org/kantorlab). The

hivmmer source code is available from (https://github.com/kantor

lab/hivmmer) and a pre-compiled Docker (https://docker.com)

image is available from DockerHub at https://hub.docker.com/r/

kantorlab/hivmmer. A pre-compiled Docker image with all depend-

encies required to run the analyses described in the paper is also

available at https://hub.docker.com/r/kantorlab/hiv-measurement-

error.

3 Results

We analyzed the coverage and fragment sizes of the Illumina reads.

Figure 1 shows an overview of fragment sizes in 5VM after align-

ment to the pol region with bowtie2; PL1:1 and PL1:9 have similar

fragment size distributions (data not shown). Typically, fragment

sizes follow a skewed distribution centered around the read length,

250 nt. Fragments shorter than the read length are fully overlapping,

and yield reads that in practice can be treated as technical replicates.

Fragments sized between the read length and twice the read length

yield partially overlapping reads that can be combined into a single

sequence using a read-merging tool like PEAR (Zhang et al., 2014).

Finally, fragments larger than twice the read length yield separate

read pairs, with a positive insert size between the reads.

To compare methods, we first identified both the correct and er-

roneous variants in the underlying alignments from each method.

We defined erroneous variants as codons with >0 frequency, but

which do not exist at that position in any of the known plasmid

sequences for the given datasets. Supplementary Figures S1–S4 show

a detailed picture of this for each dataset and method. As expected,

nearly all of the erroneous variants are at frequencies below 1%,

which is a widely accepted global threshold. For the hivmmer

method, no erroneous variants occurred at frequencies above 1%

for any of the datasets. Similarly, no erroneous variants occurred at

frequencies above 1% for the shiver, hydra and bowtie2-pear meth-

ods on PL11, and for shiver and hydra on PL19. However, for other

methods and datasets, erroneous variants occur above a frequency

of 1%, as seen in Table 1. The erroneous variants with the highest

frequency for each method and dataset are shown in Supplementary

Table S1.

To measure the overall effectiveness of each method, we plotted

the cumulative number of erroneous variants as we lowered the glo-

bal frequency threshold from 2 to 0.1% (Fig. 2). From this plot, we

find that hivmmer alignments accumulate fewer errors across all

datasets. Both shiver and HyDRA perform better than the naive

implementations of bowtie2 alignments, likely due to their addition-

al filtering and quality control strategies. The bowtie2-pear method

performs better than bowtie2 in almost all cases, except on 5VM.

Supplementary Table S2 reports the number of reads retained in

each method’s alignment.

Next, we considered the frequencies of correct variants after

thresholding at 1%, and compared their distribution across methods

(Fig. 3). While we expect the frequencies to follow the mixture pro-

portions (e.g. multiples of 20% for 5VM, 1:1 for PL1:1, and 1:9 for

PL1:9), in reality the frequencies deviate from these expected values.

This could be due to sample preparation or preferential primer

amplification.

Although the true proportions of plasmid sequences in each data-

set are unknown, the primer ID data analyzed with the pidalyse

method is arguably their best empirical measurement. Under this as-

sumption, we calculate the mean squared error of the variant fre-

quencies from the pidalyse method compared to those from the

hivmmer, hydra and bowtie2 methods to assess their accuracy. The

mean squared error is lowest for hivmmer (1:69� 10�5), followed

by hydra (6:71� 10�5) and bowtie2 (6:73� 10�5).

On all datasets, we can test the null hypothesis that at least one

of the distributions is significantly different from the others using

the Friedman test, a non-parametric analog to the repeated measures

ANOVA. This test fails to reject the null for PL1:1 (P ¼ 1.000) and

PL1:9 (P ¼ 0.998). The Friedman test is significant for 5VM

Fig. 1. Histogram of fragment sizes in the 5VM data set showing the propor-

tion of reads that are either technical replicates (fragment is less than the

maximum read length; leftmost bars), overlapping (fragment is between the

read length and twice the read length; middle bars), or paired-end (fragment

is larger than twice the read length; rightmost bars)

Table 1. Number of erroneous variants occurring above 1%

frequency

hivmmer shiver HyDRA bowtie2 bowtie2-pear pidalyse

5VM 0 4 9 15 94 —

PL11 0 0 0 1 0 —

PL19 0 1 0 2 0 —

PID 0 53 — 69 — 2

Deep Illumina sequencing of HIV 2031
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(P < 0.001), and we performed a post-hoc analysis of pairwise

Wilcoxon tests, adjusting the P-values for multiple comparisons

using the Holm–Bonferroni method (Supplementary Table S3). The

adjusted pairwise tests find that only the bowtie2-pear method dif-

fers from the others. Therefore, none of the three pipelines

(hivmmer, HyDRA or shiver) differed significantly in their measure-

ment of the variant frequencies for the correctly called variants (all

of which are above the range of frequencies for the erroneous var-

iants). No correct variants were missing or occurring at frequency

¡1% for any of the methods or datasets.

The Primer ID protocol was designed to control for the artifacts

during sample preparation that could be potentially skewing our

recovered frequencies of correctly called variants. We compared the

cumulative error rate and distribution of variant frequencies be-

tween three of the pipelines (HyDRA, hivmmer and bowtie2, as the

initial de novo assembly of the PID dataset failed for shiver, and the

PID dataset has no overlapping reads that would benefit from read-

merging in bowtie2-pear) and the pidalyse method for calling the

consensus sequence of each Primer ID template (Seifert et al., 2016).

Because these consensus sequences should represent individual tem-

plates, we expect that the frequency of variants across templates

would correspond to the plasmid mixture proportions (e.g. multiples

of 20% for 5VM). The Primer ID method does indeed reduce the

accumulation of erroneous variants, and hivmmer better approaches

this performance than HyDRA (Fig. 4a). The Primer ID consensus

sequences, however, also do not recover the correct frequency pro-

portions as one might expect (Fig. 4b). This is consistent with the

results reported by Seifert et al. (2016), and they ascribe the discrep-

ancy to ‘noisy RT qPCR quantification.’

4 Discussion

We have introduced a new variant-calling pipeline, hivmmer, whose

alignments exhibit lower error rates than existing pipelines on deep

Illumina sequencing of HIV plasmid data.

4.1 Global thresholding
Our results validate that in some cases the 1% global thresholding

method will work as expected, as measured on plasmid datasets and

assuming the variant-calling pipeline has similar accuracy to the pipe-

lines tested here. Some studies have conducted their own validation of

a global threshold. For example, one of the earliest studies to use the

global thresholding approach with Illumina MiSeq data was con-

ducted by Dudley et al. (2014), who analyzed HXB2 plasmid sequen-

ces to determine a higher threshold of 2%. Fisher et al. (2015)

Fig. 2. The accumulation of erroneous variants at decreasing thresholds, across datasets and alignment methods. For 5VM, hivmmer alignments display the low-

est cumulative error rate. For PL1:1 and PL1:9, the cumulative error rates are closer among the methods, but hivmmer alignments display fewer errors at thresh-

olds below 0.25%

Fig. 3. The distribution of frequencies for correct variants after thresholding at 1%. Each point represents the frequency of a codon in the plasmid sequences. The

overlapping codons with frequency near 1.0 represent identical sites across all plasmid sequences. At sites where the plasmid sequences differ (points not near

1.0), we expect the frequencies to follow the mixture proportions of the plasmid sequences in the dataset. Statistical tests of matched comparisons among the

methods show no significant differences, except for bowtie2-pear on the 5VM dataset
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conducted additional validation for the occurrence of non-nucleo-

side reverse transcriptase inhibitor drug-resistance mutations at fre-

quencies over 1% in their study using 250 clonal sequences. They

also presented a method for error correction using a Bayesian

Dirichlet mixture of multinomial probabilistic model to distinguish

sequencing error from true low-frequency variants at posterior prob-

abilities �99.99%.

Ode et al. (2015) developed an adaptive threshold approach for

Illumina MiSeq sequencing based on per-site quality scores and

demonstrated that it could reduce mismatches to below a frequency

of 1% at most sites on varying mixtures of pNL4-3 and pNL101

plasmid sequences. Their method computes an average quality score

across all reads at a reference site and they threshold the variant calls

at that site with average score �20 and frequency �1%.

Others, however, have applied thresholding without validation.

Studies by Ekici et al. (2014), Pessôa et al. (2014) and Pessôa et al.

(2016) applied thresholds of 1% without providing any citation or

methodological justification for this approach to error correction. A

review of clinical applications of deep HIV sequencing by Casadellà

and Paredes (2017) proposed a rule of thumb of a 1% threshold

without citation. However, they emphasized that the frequency

threshold is likely limited by the number of RNA molecules in the

sample, and caution that the frequencies that are retained between 1

and 100% are likely skewed by many sources of bias during

sequencing. This is confirmed in our results where we do not recover

the expected frequencies given the plasmid mixture proportions.

Our results show that erroneous variants can occur at frequen-

cies above 1 for some methods and datasets. Thus, the rule of thumb

of a 1% threshold that is currently explored in the literature can ac-

tually identify erroneous variants. The number of erroneous variants

varied across methods and datasets, and was higher for the bowtie2

method and for the 5VM dataset (Table 1). Ode et al. (2015)

claimed in their analysis that they found mismatches occurring at as

high as 6.4% frequency at some sites. Both their results and ours

clearly establish the heterogeneity in error profiles, and that a global

threshold is overly conservative at most sites.

Going forward, studies using deep Illumina sequencing of HIV

to analyze variants at low frequencies should include control

datasets and detailed analysis of the error profile, such as the one we

have presented in this study. One potential study design is to use a

PhiX control library that can be readily incorporated into Illumina

sequencing runs (http://www.illumina.com/products/phix_control_

v3.html). The control can then be used to establish an error profile

for the HIV samples of interest in that lane.

4.2 Overlapping reads as technical replicates
One potential reason why hivmmer outperforms the other methods

is that it more closely models the fragment distribution through its

use of the PEAR read merger. As shown in Figure 1, the majority

of reads are completely overlapping (e.g. technical replicates) or

partially overlapping in deep Illumina sequencing of HIV. In par-

ticular, the fragment distribution is non-normal, while many short-

read aligners, including bowtie2, assume a normal distribution of

fragments. Read-merging in the bowtie2-pear method also

improves the performance of the naive bowtie2 alignment; how-

ever, the performance is still not comparable to hivmmer’s, indicat-

ing that read-merging alone is not sufficient and other factors such

as the alignment and filtering strategies contribute to the final

performance.

PEAR is able to use this replicate information to correct errors at

sites where the replicates disagree, by comparing quality scores.

Read-merging based on quality scores has been used previously in

studies of HIV (Lapointe et al., 2015; Lee et al., 2017), as well as in

other non-HIV contexts. For example, it was tested by Chen-Harris

et al. (2013) in a study with 1 kb regions of the rabies and BCV

viruses. They showed that the PCR error rate exceeds the sequencing

error rate at high enough quality scores, and they called variants

using a position-dependent model to determine an optimal quality

score threshold. Preston et al. (2016) developed a similar protocol

called Paired-End Low Error Sequencing that combines barcoding

with overlapping read pairs to correct for both PCR and sequencing

error and accurately detect rare variants. Although that specific

protocol has only been tested with Escherichia coli and nematode

DNA samples, the concept is directly relevant to HIV, where bar-

coding is already in use through the Primer ID protocol.

Fig. 4. The cumulative error rates (a) and distribution of correctly-called variants (b) in alignments for the PID data set. The pidalyse method exhibits the fewest

alignment errors, since it uses the primer IDs to call consensus sequences for each fragment; hivmmer performs closer to pidalyse than HyDRA or bowtie2

Deep Illumina sequencing of HIV 2033
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4.3 Primer ID
Our results confirm that the consensus sequences generated by the

Primer ID method do achieve lower error rates than any of the pipe-

lines. Primer ID is an area of active research, and most recently

Boltz et al. (2016) extended the existing methods by using shorter

PCR primers and more stringent consensus criteria, in a method

they call ultrasensitive single-genome sequencing (uSGS). In compar-

isons with the earlier methods from Jabara et al. (2011), Zhou et al.

(2015) and Seifert et al. (2016), they found that the uSGS technique

yielded more unique Primer IDs and overall consensus sequences.

However, an important limitation of all of the Primer ID techni-

ques is the difficulty of multiplexing multiple samples in the same

lane, which is a common practice to reduce sequencing cost. In fact,

because of the short length of the HIV genome, sufficient depth of

coverage can be achieved with many fewer reads than a full lane of

Illumina sequencing provides. In the extreme case, this was demon-

strated with the successful application of ‘wide’ sequencing by

Lapointe et al. (2015) to sequence a region of the pol gene from

1143 patient samples in a single Illumina MiSeq run.

In situations where the cost of Primer ID is prohibitive, there are

still other avenues for controlling RT-PCR error. Orton et al. (2015)

developed a computational model for the accumulation of errors fol-

lowing multiple PCR cycles. They validated this model using

Illumina GAIIx sequencing of foot-and-mouth disease virus

(FMDV) (not HIV) plasmid sequences with varying rounds of PCR

amplification, including a condition with no amplification, and

found that RT-PCR errors were concentrated in specific areas

related to known variability in the FMDV genome, and not evenly

distributed across the genome. They also found that most of the

errors came from the PCR amplification rather than the RT step in

sample preparation. Overall, their recommendation is to use the

highest fidelity enzymes and minimize the number of PCR cycles.

Zanini et al. (2017) presented an Illumina MiSeq protocol with

single-round PCR and a new primer design for HIV, and found an

error rate of 0.1% that they attribute to PCR error, after removing

low quality base calls. They validated the correlation between base

calling errors and quality scores with a PhiX spike-in. Furthermore,

they tested for in-vitro recombination and found it in nearly 10% of

reads generated from nested PCR, but almost none in those from

single-round PCR.

Thus, a viable alternative to Primer ID in future experiments

may be to combine a sequencing protocol using high fidelity

enzymes and single-round PCR with hivmmer.

5 Conclusion

The ideal sequencing technology for genomic studies of HIV would

generate full-length reads, without error, of individual virus particles

from a patient. Although this is not technically possible with today’s

technology, understanding the causes and corrections for measure-

ment errors and optimizing ways to avoid them will get us closer to

that goal. Newer, longer-read and single-molecule sequencing tech-

nologies such as PacBio and Oxford Nanopore also hold promise in

addressing these limitations, although they currently have much

higher error rates than Illumina sequencing (Goodwin et al., 2016).

Thus, even with newer and improved sequencing technology, under-

standing measurement error will still be a priority for making robust

inferences from HIV sequencing data.

We have introduced a new variant-calling pipeline, hivmmer,

whose alignments exhibit lower error rates than existing pipelines

on deep Illumina sequencing of HIV plasmid data. One limitation of

this study is that plasmid datasets contain limited viral populations

that do not represent the much larger diversity of quasispecies in clin-

ical HIV samples. Though plasmid datasets are less ambiguous about

what variants are present in the sample population, allowing valid-

ation of NGS pipelines, further research is required to demonstrate

pipelines’ effectiveness on well-described HIV clinical samples.

A second limitation is that hivmmer, like other methods, cannot

differentiate erroneous variants that arise from experimental errors

(in amplification or sequencing), analytic errors or natural variation.

A remaining challenge is to develop methodologies that better differ-

entiate these processes and prevent discarding potentially clinically

significant variants.

A third limitation is that our study focuses on the pol region,

which is a relatively conserved region of the HIV genome. Future

work on measurement error will also need to consider more variable

regions, such as env, which will require a careful inspection of inser-

tions and deletions.

Another area for future research is the use of machine-learning

techniques to tune error correction methods to the biases of a specif-

ic sequencing run using control data from that run. As noted above,

a PhiX control library could provide this source of control data per

run. However, a concern with both machine-learning methods, and

with the widely-used thresholding approach to variant-calling ana-

lyzed here, is the potential of overfitting to the control data. Any ro-

bust method will need to be cross-validated on a wide range of HIV

data before it can be trusted as a general-purpose tool. It will be im-

portant to benchmark error correction methods on datasets from

different labs that use varying protocols. This can be facilitated by

more public sharing of HIV datasets, several of which have already

been deposited with the Sequence Read Archive.

Further refinement of error correction methods for deep Illumina

sequencing of HIV that combine protocols to reduce PCR errors

with machine-learning classification of sequencing errors will be a

valuable and important step toward more robust, and ultimately

clinically-trusted, tools for HIV genotyping. Overall, these clear

directions for future work will benefit the HIV research community

by enabling more robust inference. In the specific context of drug-re-

sistance mutations, more robust error correction will allow for more

sensitive detection of emerging resistance at very low variant fre-

quencies and the continued exploration of their significance.

Acknowledgements

This research was conducted using computational resources and services at

the Center for Computation and Visualization, Brown University.

Funding

This work was facilitated by the National Institutes of Health, including

[R01AI108441] and the Providence/Boston Center for AIDS Research

[P30AI042853].

Conflict of Interest: none declared.

References
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Pessôa,R. et al. (2014) Deep sequencing of HIV-1 near full-length proviral

genomes identifies high rates of BF1 recombinants including two novel cir-

culating recombinant forms (CRF) 70_BF1 and a disseminating 71_BF1

among blood donors in Pernambuco, Brazil. PLoS One, 9, e112674.
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