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Abstract

Motivation: Several methods have been proposed for the paired RNA-seq analysis. However,

many of them do not consider the heterogeneity in treatment effect among pairs that can naturally

arise in real data. In addition, it has been reported in literature that the false discovery rate (FDR)

control of some popular methods has been problematic. In this paper, we present a full hierarchical

Bayesian model for the paired RNA-seq count data that accounts for variation of treatment effects

among pairs and controls the FDR through the posterior expected FDR.

Results: Our simulation studies show that most competing methods can have highly inflated FDR

for small to moderate sample sizes while PairedFB is able to control FDR close to the nominal lev-

els. Furthermore, PairedFB has overall better performance in ranking true differentially expressed

genes (DEGs) on the top than others, especially when the sample size gets bigger or when the het-

erogeneity level of treatment effects is high. In addition, PairedFB can be applied to identify the bio-

logically significant DEGs with controlled FDR. The real data analysis also indicates PairedFB tends

to find more biologically relevant genes even when the sample size is small. PairedFB is also

shown to be robust with respect to the model misspecification in terms of its relative performance

compared to others.

Availability and implementation: Software to implement this method (PairedFB) can be down-

loaded at: https://sites.google.com/a/udel.edu/qiujing/publication.

Contact: qiujing@udel.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With recent rapid developments in next-generation sequencing

(NGS) technologies, high throughput RNA sequencing (RNA-seq)

data are available to detect differentially expressed genes (DEGs) by

measuring gene expression through counts of mapped short reads.

To detect DEGs under certain conditions, a well-designed experi-

ment is usually required to discover causal relationship, where the

samples (libraries) of RNA-seq data are taken from each of the

experimental units. Among these experiments, the paired-

comparison design is a common experimental setting in RNA-seq

expression analysis, where the goal is to compare two conditions

(e.g. treatment versus control, tumor tissue versus normal tissue,

pre- versus post-infection) arranged in the same pair (e.g. subjects,

subplots, patients). Paired designs, which are special cases of

randomized complete block designs with pairs being the blocks, can

increase the precision of comparison by controlling variability
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within the pair and are therefore widely used in the real application

(Chung et al., 2013; Esteve-Codina et al., 2017; Graw et al., 2015;

Hardcastle and Kelly, 2013).

Several papers have proposed models applicable to the paired

RNA-seq data. The edgeR (McCarthy et al., 2012) and DESeq2

(Love et al., 2014) assumed negative-binomial distribution of data

and made the inference based on generalized linear model (GLM)

with additive fixed treatment and pair effect. Chung et al. (2013)

developed a full Bayesian model through a Poisson-gamma mixture,

where the gamma hierarchy was imposed to account for biological

variation among pairs while a common fold-change was assumed

for the treatment effect across all pairs for the same gene. The

ShrinkBayes method (Van De Wiel et al., 2013) provided a more

flexible full Bayesian framework for the generalized linear mixed

model (GLMM) to analyze paired RNA-seq data. Law et al. (2014)

proposed variance stabilizing transformation of the RNA-seq count

data and then put the transformed data into the limma pipeline

using the same design matrix as edgeR for the paired data to per-

form the analysis.

Note that the assumption of constant treatment effects across

pairs made by the full Bayesian model proposed by Chung et al.

(2013) might fail to be true for some data. Although the fold-

changes of expression levels might be consistent across pairs for

some genes, it has been noted by some authors that the fold-changes

of gene expression can vary among biological replicates or pairs in

the paired design. For instance, McCarthy et al. (2012) detected

over 200 genes with heterogeneous treatment effect across patients

(pairs) when analyzing the human cancer data of Tuch et al. (2010)

with a paired design. When the treatment effect acts differently

among pairs, we say there is interaction between the treatment effect

and the pair effect. For such cases, an interaction term between the

treatment effect and the pair effect should be included in the model.

However, like in any randomized complete block design, even if the

interaction between the block and the treatment effect exists, it can-

not be included because otherwise there is no degree of freedom to

estimate the error variance. Therefore, the recommended analysis

for the paired design by edgeR is to include only the pair effect and

treatment effect in the model, ignoring the interaction between the

pair and the treatment effect (see the edgeR user’s guide, October

11, 2017, page 39). Note that the same problem exists with other

GLM or linear model based approaches such as DESeq2 and limma-

voom. Another problem for the GLM or linear model based

approaches is that they treat the random pair effect as a fixed effect,

ignoring the correlation structure inherent in the paired data, which

might lead to inflated false positive rates (Cui et al., 2016).

On the other hand, the paired baySeq (Hardcastle and Kelly,

2013) took on a very different approach by modeling the heteroge-

neous treatment effects directly through a beta-binomial model.

Specifically, it assumed a binomial model for the count data of one

sample by conditioning on the sum of counts in a pair, and then

imposed a beta distribution on the pair-specific binomial proportion

to describe the heterogeneity of treatment effect among pairs. Note

the binomial proportion is the expected proportion of reads count

from one sample out of the pair weighted by the library sizes, where

the library size is the total number of read counts for all genes in one

sample. By conditioning on the sum of the counts in a pair, this ap-

proach preserves the correlation structure of the paired data. The in-

ference of the paired baySeq was performed under the empirical

Bayesian framework with quasi-likelihood estimators for dispersion

parameters. However, their parameters of interest are not easy to in-

terpret for unequal library sizes (details will be given in Section 2.2).

In this paper, we follow the idea of the paired baySeq to model the

heterogeneous treatment effects directly with some modification in

the parameters of interest and consider statistical inference under a

full Bayesian framework.

Another issue with many current packages for the paired RNA-

seq data analysis is the false discovery rate (FDR) control. It has

been reported by several papers (Cui et al., 2016; Guo et al., 2013;

Soneson and Delorenzi, 2013) that some popular methods such as

edgeR, paired baySeq and ShrinkBayes though being powerful pro-

cedures, suffer from being too liberal in terms of FDR control. It is

valuable to develop a powerful procedure that can control FDR at

nominal levels.

In this paper, we develop a full Bayesian hierarchical model for

the paired RNA-seq data with a modified beta-binomial likelihood

to identify DEGs in the presence of heterogeneous treatment effects

among pairs. The heterogeneity of treatment effects among pairs is

incorporated to the likelihood in a different manner from the paired

baySeq so that the parameters of interest in our model have clear in-

terpretation even when the library sizes are different. Specifically,

we model the true expression abundance directly and test whether

the mean proportion of true expression abundance for one condition

out of a pair equals to 1/2. To address the issue of FDR control in a

full Bayesian framework, we take the approach of controlling the

FDR through the ‘posterior expected FDR’ that was proposed by

Newton et al. (2004).

In gene expression analysis, researchers are usually interested in

DEGs that are both statistically and biologically significant. Most

softwares identify such genes by first identifying genes that are

statistically significant and then choosing biologically significant

DEGs among them based on their fold-change estimates. Such ad-

hoc methods, however, do not take into account of the variation of

the fold-change estimates and can lead to many falsely identified

biologically significant DEGs. One advantage of our full Bayesian

approach is that it can be easily adjusted to identify DEGs that

are both statistically and biologically significant with proper FDR

control. Interestingly, Liu et al. (2015) proposed a full hierarchical

Bayesian model to identify biologically significant DEGs with FDR

control for independent RNA-seq data.

The rest of this article is organized as follows. In next section,

we present our method by describing the paired data, building the

full Bayesian hierarchical model and conducting the posterior infer-

ence. In Section 3, the performance of proposed method is examined

by simulation studies through two main aspects: the ability of rank-

ing true DEGs on top, and the power and actual FDR at different

nominal levels. We further apply our model to a real human cancer

dataset in Section 4 and investigate the biological relevance of the

results. Finally, we conclude the paper by discussing the advantage,

limitation and challenge as well as potential extensions of our

method in the discussion section.

2 Method and modeling

2.1 Data structure
For each gene g, the i-th paired RNA-seq data is ðYg

i ;Yi
0gÞ, where Yg

i

and Yi
0g represent the count data for the treatment and control

group, respectively; i denotes the i-th pair (including two libraries);

n is the number of pairs or replicates. Therefore, if we have G genes

and n pairs, the data set would have in total G rows representing

different genes and 2n columns denoting different libraries (or

samples).
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Here we assume that, given ðlg
i ; li

0gÞ; Yg
i and Yi

0g independently

follow Poisson distribution as follows:

Yg
i j l

g
i � Poiðlg

i LiÞ; Yi
0gj li

0g � Poiðli
0gL0iÞ; (1)

where lg
i and li

0g are the true relative abundance of gene g under

pair i for treatment and control group, and Li;L
0
i are the effective li-

brary sizes for the i-th pair. Here the effective library size refers to

the product of the original library size and a scaling or normaliza-

tion factor that adjusts for RNA composition effect and other poten-

tial technical effects across replicates. For the real data analysis in

this paper, we use the trimmed mean method of Robinson and

Oshlack (2010) to calculate the normalization factor.

Therefore, given ðlg
i ; li

0gÞ, the conditional distribution of Yg
i

given the sum Yg
i þ Yi

0g will be binomial distribution,

Yg
i jY

g
i þ Yi

0g; lg
i ; li

0g � binomial Yg
i þ Yi

0g;
lg

i Li

lg
i Li þ li

0gL0i

 !
: (2)

If we denote the proportion of true expression level of one sample out

of the pair to be pg
i ¼

lg
i

lg
i
þli

0g, the likelihood (2) can be rewritten as:

Yg
i jY

g
i þ Yi

0g; pg
i � binomial Yg

i þ Yi
0g;

pg
i Li

pg
i Li þ ð1� pg

i ÞL0i

 !
: (3)

2.2 A full hierarchical Bayesian model
The paired baySeq (Hardcastle and Kelly, 2013) used a beta-

binomial structure to model the heterogeneous treatment effects

observed in the paired RNA-seq data. They imposed a beta distribu-

tion on the proportion pg
i ¼

pg
i
Li

pg
i
Liþð1�pg

i
ÞL0

i

in Equation (3) and defined

its mean to be Eðpg
i Þ ¼

pgLi

pgLiþð1�pgÞL0
i
, where the parameter pg can only

be interpreted as the expected proportion of treatment mean out of

the overall pair mean when the effective library sizes for the paired

samples are the same (Li ¼ L0i). If the effective library sizes are not

equal, it is not clear what the parameter pg refers to. To have a clear

interpretation of the parameter of interest, we propose to impose the

beta distribution on pg
i instead of pg

i as follows:

pg
i j pg;/g � beta pg 1� /g

/g

� �
; ð1� pgÞ 1� /g

/g

� �� �
; (4)

where 0 < pg < 1 and 0 < /g < 1. If we denote ag ¼ pg 1�/g

/g

h i
and bg ¼ ð1� pgÞ 1�/g

/g

h i
, then pg ¼ ag

agþbg is the mean of pg
i , and /g ¼

1
agþbgþ1 is the measure of heterogeneity with larger /g indicating

larger variance. This notation will be adopted from now on in the

rest of the paper. It is easy to see that when /g ¼ 0; pg
i will follow a

degenerated distribution as Pðpg
i � pgÞ ¼ 1, which makes the likeli-

hood pðYg
i jY

g
i þ Yi

0g; pgÞ reduce to the binomial distribution. This

corresponds to the case when the treatment effect is assumed to be

the same across biological replicates, namely, pg
i � pg as in Chung

et al. (2013). Here, we allow the treatment effect pg
i to vary among

biological replicates and the parameter of interest is pg � Eðpg
i Þ. We

define a gene to be differentially expressed (DE) if the average pro-

portion of treatment mean out of the pair mean is not equal to 0.5,

i.e. pg 6¼ 1
2. The hypotheses we are interested in testing are H0 : pg ¼

1
2 versus H1 : pg 6¼ 1

2.

To test the hypotheses, we take a full hierarchical Bayesian ap-

proach by modeling the parameters pg and /g through hierarchical

prior distributions. This is another major difference of our approach

from the paired baySeq, which took an empirical Bayesian approach

by estimating the marginal distributions of pg and /g from the data.

To consider a full hierarchical Bayesian model, we rewrite the data

model components in (3) and (4) as the likelihood of Yg
i jY

g
i þ

Yi
0g;pg;/g by integrating out the nuisance parameter pg

i :

p Yg
i jY

g
i þ Yi

0g; pg;/g
� �

¼
Yg

i þ Yi
0g� �

!

Yg
i !Yi

0g!

Li

L0i

� �Y
g
i

B Yg
i þ pg 1� /g

/g ;Yi
0g þ 1� pgð Þ1� /g

/g

� �

B pg
1� /g

/g ; 1� pgð Þ1� /g

/g

� �

�2F1 Yg
i þ Yi

0g;Yg
i þ pg 1� /g

/g ; Yg
i þ Yi

0g þ 1� /g

/g ; 1� L0i
Li

� �
;

(5)

where B(x, y) is the beta function, and 2F1 a; b; c; zð Þ is Gauss’s

hypergeometric function (Abramowitz and Stegun, 1964, pp. 558)

defined by:

2F1ða;b; c; zÞ ¼ 1

Bðb; c� bÞ

ð1

0

tb�1ð1� tÞc�b�1

ð1� tzÞa dt; (6)

where 2F1ða; b; c; zÞ converges when jzj � 1. In the calculation of

the likelihood function, we use a transformation to guarantee its

convergence (see Supplementary Discussion Section 1.1 for details).

The mean and variance of Yg
i jY

g
i þ Yi

0g can be calculated based on

the likelihood function (5) (see details in Supplementary Discussion

Section 1.2).

Since both the model parameters ðpg;/gÞ fall within the range of

½0;1�, we use the following logit transformation to eliminate the

range restrictions in prior assignment:

p�g ¼ log
pg

1� pg
; /�g ¼ log

/g

1� /g : (7)

With this new parameterization, a gene is DE if p�g 6¼ 0 and

our testing hypotheses become H0 : p�g ¼ 0 vs. H1 : p�g 6¼ 0.

Based on the empirical distribution of the method of moment

estimators of p�g and /�g from the human cancer dataset by

Tuch et al. (2010) (see Supplementary Figs S1 and S2 in the

Supplementary Material), we propose a Gaussian hierarchical dis-

tribution for /�g and a mixture of 0 and Gaussian distribution

for p�g. Specifically,

/�gjl; r2 � Nðl;r2Þ: (8)

To consider a mixture of 0 and Gaussian distribution for p�g, we

introduce a latent indicator variable cg to indicate whether gene g is

DE or not. When cg ¼ 0, it is a non-DEG with p�g ¼ 0 and when

cg ¼ 1, it corresponds to a DEG with p�g 6¼ 0. When cg ¼ 1 for a

DEG, we assume that p�g follows a Gaussian distribution:

p�gjcg ¼ 1;l0; r
2
0 � Nðl0;r

2
0Þ: (9)

The hierarchical distribution of cg is given by:

cg � BernoulliðpÞ; (10)

and we assign a non-informative prior to the proportion of DEGs p

so that

p � Uniformð0; 1Þ: (11)

For the hyper parameters g ¼ ðl0;l; r
2
0; r

2Þ, we set

pðl0Þ / 1; pðlÞ / 1; r2
0 � IGða0;b0Þ, and r2 � IGða;bÞ. Here

ða0; b0; a;bÞ are fixed and all set to be 0.5 to give non-informative pri-

ors. We assume independence among these priors of hyper parameters.
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2.3 Posterior inference
The Markov chain Monte Carlo (MCMC) algorithm is performed

based on the full hierarchical Bayesian model described in Section

2.2 and the detailed steps are given in Supplementary Discussion

Section 1.3. The major statistical inference is based on the posterior

probability of the alternative hypothesis for each gene, i.e.

Pðcg ¼ 1jYÞ, where Y is the count data from all the genes. We

estimate this posterior probability by the Rao–Blackwell estimator

following Cai and Dunson (2006), i.e. P̂ðcg ¼ 1jYÞ ¼
1

I�b

PI
m¼bþ1 PðcgðmÞ ¼ 1jðp�;/�; p; gÞðm�1Þ;YÞ, where b is the number

of burn-in samples and I is the total number of iterations in the

MCMC.

The standard full Bayesian analysis selects the hypothesis

with the maximum posterior as the final decision with no con-

cern to achieve certain nominal FDR levels, as multiplicity cor-

rection happens automatically for some Bayesian analyses (Scott

and Berger, 2010). In those cases, we simply designate gene g as

a DEG if Pðcg ¼ 1jYÞ > Pðcg ¼ 0jYÞ. However, for real applica-

tions, when controlling the FDR under certain levels is desired,

such decision rule cannot always meet practical needs.

Alternatively, we can control FDR through the posterior

expected FDR (peFDR) proposed by Newton et al. (2004), where

the peFDR is defined as:

peFDR ¼ EðFDRjYÞ ¼ E

PG
g¼1ð1� cgÞdgPG

g¼1 dg
jY

2
4

3
5

¼
PG

g¼1½1� Pðcg ¼ 1jYÞ�dgPG
g¼1 dg

:

(12)

Here dg is the indicator of the decision, and cg is the indicator of

truth, both of which indicate a DEG at the value of 1. To estimate

the peFDR, we first rank all the genes by P̂ðcg ¼ 1jYÞ from the larg-

est values to the smallest. Then the estimated peFDR of the top l

genes can be calculated by

^peFDR
ðlÞ ¼

Pl
i¼1½1� P̂ðci ¼ 1jYÞ�

l
: (13)

It can be shown that the estimated peFDR for the top l genes is

monotone non-decreasing with the number l, i.e. ^peFDR
ðlÞ �

^peFDR
ðlþ1Þ

(see Supplementary Discussion Section 1.4 for the

proof). Thus for a given nominal level a, we can claim the top l genes

as DEGs if l is the largest integer such that ^peFDR
ðlÞ � a.

Although the major focus of this paper is to decide whether a

gene is statistically significant DE (i.e. p�g 6¼ 0), it is also desirable to

decide whether a gene is biologically significant DE. Recall

p�g ¼ log pg

1�pg. The larger magnitude of differential expression

implies more deviation of pg from 1
2 and hence larger absolute value

of p�g. If we define a DEG to be biologically significant with jp�gj >
cutoff, we can estimate the posterior probability of a DEG being

biologically significant, i.e. Pðjp�gj > cutoffjYÞ, through the MCMC

algorithm. The decision rule for identifying statistically significant

DEGs in the previous two paragraphs can easily be adjusted for

identifying biologically significant DEGs. All we need to do is to

rank all the genes by P̂ðjp�gj > cutoffjYÞ from the largest values to

the smallest and then estimate the peFDR of the top l genes by

replacing P̂ðci ¼ 1jYÞ with P̂ðjp�ij > cutoffjYÞ in Equation (13). For

a given nominal FDR level a, we claim the top l genes as biologically

significant DEGs if l is the largest integer such that ^peFDR
ðlÞ � a.

3 Simulation study

3.1 Simulation setting
We set up our simulation scheme based on those described by

Hardcastle and Kelly (2013), simulating 1000 genes with n pairs,

which gives 2n libraries in total. One hundred simulations are con-

ducted and we report the results based on the average over 100 sim-

ulations. To imitate real data as much as possible, we sample

parameters from the empirical distributions of the methods of mo-

ment estimators based on human tumor dataset of Tuch et al.

(2010), which studies the head and neck oral squamous cell carcin-

oma (OSCC). See Supplementary Discussion Section 1.5 for detailed

description of the simulation setting.

3.2 Methods compared
For all simulation settings, we compare the following procedures:

the full hierarchical Bayesian model controlling FDR using the

peFDR procedure (PairedFB) and the full Bayesian model using the

maximum posterior probability as decision rule (maxpost), the

paired baySeq using baySeq package (version 2.4.1) in R, edgeR

package (version 3.12.0) in R, DESeq2 package (version 1.6.3) in R,

the full Bayesian model proposed by Chung et al. (2013) (referred to

as Chung method in our comparison), and the limma voom method-

ology (Law et al., 2014) using limma package (version 3.26.9). We

run 10 000 iterations including 2000 burn-in samples for the

MCMC algorithm of the PairedFB. The effective sample sizes using

R CODA package (Plummer et al., 2006) and the trace plots for

MCMC of hyper parameters are randomly checked once under each

setting to ensure convergence and adequate iterations. For the paired

baySeq, we treat all the pairs as replicates under the same condition

as we only aim to detect treatment effect within pairs in the simula-

tion study. For both edgeR and DESeq2, we build additive GLM

model treating the pair effect and the treatment effect as fixed

effects. For Chung’s full Bayesian model, we set the same number of

iterations and burn-in samples in the MCMC algorithm as our pro-

posed Bayesian model. As to the limma voom method, we build the

same design matrix as edgeR to fit the linear model for the trans-

formed observations and use the ‘variance modeling at the observa-

tional level’ method to incorporate the mean-variance trend. We

also try to compare with the ShrinkBayes package proposed by Van

De Wiel et al. (2013). However, due to numerous computational

problems (see details in Supplementary Discussion Section 1.8), we

decided not to include ShrinkBayes in our comparison for the simu-

lation study and real data analysis.

3.3 Simulation results
We have done two sets of simulation studies to compare our method

with others. The first set is to do the comparison with the goal of

identifying DEGs and the second set is for identifying biological sig-

nificant DEGs. For both sets of simulation studies, we generate data

in the same way but we evaluate the performance of different proce-

dures according to different goals of statistical inference.

3.3.1 Identifying DEGs

We evaluate the performance of all the procedures according to two

criteria: (i) their ability to rank the true DEGs on the top; (ii) their

actual FDR performance when the FDR level is controlled at nomin-

al level. The simulation results of Setting SE1 are presented in

Figures 1 and 2 with n ¼ 3, 5, 10 and p ¼ 10%;20%. Please see

Supplementary Figures S4–S5, S8–S9, S12–S13 and S16–S17 for

results of Settings SE2, E, P1 and P2, respectively. In all of these
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figures, we present three columns of plots from left to right: the false

discovery (FD) plots (Robinson and Smyth, 2007), which draw the

numbers of false positives versus the total numbers of top selected

genes, the receiver operating characteristic (ROC) curves and the ac-

tual FDR curves. Although ROC curves and FD plots are both tools

to evaluate the ranking abilities, the former evaluate all genes while

the latter highlight top ranked genes. Since the decision rule is fixed

for the maxpost procedure, it corresponds to one point in the FD

plot and ROC curve of the PairedFB procedure, denoted by a big

dot. Similarly, its actual FDR is fixed and will not change with the

nominal FDR level. Hence it appears as one horizontal solid line in

the FDR plot.

As the actual FDR curves only show average FD proportions at

various nominal levels, to check the variation of the results over

100 simulations as well as to compare the powers of different pro-

cedures when FDRs are controlled at nominal levels, we provide

the box plots of the FD proportions and true detection proportions

for each method based on 100 simulations when the nominal levels

of FDR are set at 0.05 and 0.1 for various simulation settings

(see Fig. 3 and Supplementary Figs S3, S6–S7, S10–S11, S14–S15,

S18–S19).

Based on all the above-mentioned graphs, we come to our con-

clusion 1: PairedFB has the best overall performance in terms of

ranking the true DEGs on top and is the only procedure that con-

trols the actual FDR at nominal levels for almost all the cases we

study. In fact PairedFB has lowest FD plots and highest ROC curves

with largest average area under the curve (AUC) with smallest AUC

standard error for all cases we consider. Recall the FD plots high-

light the performance of top ranked genes while the ROC curves re-

flect the ranking of true DEGs among all the genes. Therefore, our

simulation studies show that the PairedFB has the best ranking abil-

ity in terms of both top selected genes and all the genes. In addition

to its best ranking ability, the PairedFB has its major advantage of

FDR control. The PairedFB almost always controls the actual FDR

close to the nominal levels for all cases we consider while other pro-

cedures suffer greatly from highly inflated FDR, especially for small

sample sizes. Under Setting E with n ¼ 3, the actual FDR of

DESeq2, edgeR and paired baySeq can be as high as 0.49, 0.43 and

0.48, respectively, when the nominal level is 0.05 (see top left panel

of Supplementary Fig. S10) while the FDR of the PairedFB is con-

trolled at 0.04. In addition, the robustness studies conducted in

Supplementary Discussion Section 1.7 also show that PairedFB is ro-

bust with respect to model misspecification in terms of its relative

performance with existing methods.

The poor FDR control of the competing methods does improve

with the sample size n, the proportion of DEGs p and the signal

strength reflected by the scalar
ffiffiffi
a
p

. When n ¼ 10 and p ¼ 20%

under Setting E, the actual FDRs of DESeq2, edgeR and paired

baySeq can drop to 0.13, 0.08 and 0.1, respectively, at nominal level

0.05 (see bottom right panel of Supplementary Fig. S10). Therefore,

it is important for researchers to consider large sample sizes for

RNA-seq analysis, especially when it comes to noisy human data-

sets. Here we state our conclusion 2: for many popular packages, a

small sample size of 3 can often lead to highly inflated FDR levels.

Larger sample sizes are needed if one wants to control FDR at

desired nominal levels.

Our simulation studies show that the limma voom procedure

tends to have conservative actual FDR and lower power than

PairedFB for small sample sizes. However its actual FDR increases

with sample size in a very undesirable way: not only it becomes lib-

eral at moderate sample sizes but also the actual FDR deviates even

more from the nominal level when sample size increases for all the

settings we considered. In addition, when the heterogeneity level of

treatment effects increases as in Setting P2, the performance of the

limma voom deteriorates significantly and it becomes the second

worst procedure in terms of FD plots and ROC curves (see left two

columns of Supplementary Figs S16–S17).

We surprisedly find that the hierarchical Bayesian model of

Chung et al. (2013) is the worst procedure among all the methods in

terms of its ranking ability and FDR control in our study. It has low-

est ROC curves, highest FD plots and largest actual FDR curves in

all settings considered. Even with 100 000 MCMC iterations and

10 000 burn-in for one simulation setting, their performance is not

improved much and remains the worst among all methods consid-

ered (see the trace plot and corresponding FD, ROC plots in

Supplementary Figs S33 and S34). Therefore, we believe the inferior

performance of Chung’s procedure in our simulation studies is due

to its failed assumption of constant treatment effects across the pairs

while all other methods accommodate the heterogeneous treatment

effects either explicitly or implicitly.

As we discussed in the introduction section, the paired baySeq

and PairedFB model the heterogeneous treatment effects directly,

while DESeq2 and edgeR can accommodate the heterogeneous treat-

ment effects implicitly through the negative-binomial model (see

Supplementary Discussion Section 1.9 for details). The limma voom

procedure did not address the heterogeneous treatment effects direct-

ly. However, based on our simulation studies, it appears that the

non-parametric modeling of the relationship between the variance

and mean of the read count data in limma voom may accommodate

the heterogeneous treatment effects to some extent, but the accom-

modation is inadequate when the heterogeneity level of treatment ef-

fect increases. The surprising result of the inferior performance of

Chung’s method and the deteriorating performance of limma voom

with sample size and heterogeneity level lead to our conclusion 3: we

believe that it is very important to model or accommodate the hetero-

geneous treatment effects when they exist. Failure to do so may lead

to poor ranking ability and highly inflated FDR.

The actual FDR of the maxpost procedure can be over 20%

when the sample size n is small under Setting E (see Supplementary

Figs S3, S8 and S9). Therefore, we come to our conclusion 4: al-

though the full hierarchical Bayesian model automatically adjusts

for multiplicity to some degree, it cannot guarantee the control of

FDR at a desired level unless the decision rule targets on the FDR

control as done by the PairedFB procedure.

3.3.2 Identifying biologically significant DEGs

As discussed in the introduction and Section 2.3, our Bayesian

approach can be easily applied to identify biologically significant

DEGs. If we define a DEG to be biologically significant with

jp�gj >cutoff, where cutoff is a pre-specified threshold for the param-

eter of interest, we can use the decision rule proposed in the last para-

graph of Section 2.3, which we still refer to as PairedFB. As a

comparison, we consider the common practice of identifying bio-

logical significant genes by first identifying statistically significant

DEGs and then choosing biologically significant DEGs among them

based on their fold-change estimates. We expect such ad-hoc proce-

dures can produce many falsely identified biologically significant

DEGs because the variation of the fold-change estimates is not

accounted for. In this section, we only compare with edgeR because

of its good performance among all the other methods based on the

simulation studies. We refer to the two-stage ad-hoc method of iden-

tifying biologically significant DEGs using edgeR as the two-stage

edgeR method.
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Due to the two-stage feature of the ad-hoc method, we cannot

compare the ranking ability of the two-stage edgeR method with

PairedFB. Therefore we focus on comparing their actual FDR and

power when the FDR is controlled at nominal levels. We consider

two empirical settings SE1 and SE2 for generating /g and p�gDE, three

sample sizes (n ¼ 3, 5, 10), and two DE proportions

(p ¼ 10%; 20%). We also consider three different fold-change

thresholds to define a biologically significant DEGs: FC¼1:5; 2 and

4, which correspond to cutoff¼0:41; 0:69 and 1.39 in the definition

of the biologically significant DEGs. The simulation results based on

100 simulation runs are presented in Figure 4 and Supplementary

Figures S20–S24. All the simulation results show that the actual

FDR of the PairedFB is under control for all the cases with some

fluctuation due to simulation error, while the actual FDR of the

two-stage edgeR method is highly inflated in most cases.

When n¼3, the actual FDR of the two-stage edgeR procedure

can be as high as 0.24 and 0.38 at nominal level of 0.05 when

FC¼ 2 or 4 under Setting SE1 with p ¼ 10% (see top panel 1 and 3

from the left in Fig. 4). Although the actual FDR of the two-stage

edgeR decreases with n, p and
ffiffiffi
a
p

, it increases with FC. Therefore,

even when n ¼ 10, the FDR of the two-stage edgeR method can still

be as high as 0.19 or 0.21 when FC¼ 4 under Setting SE1 (see bot-

tom right two panels of Fig. 4). Such highly inflated FDR level at a

large sample size is likely due to the ad-hoc nature of the two-stage

method by using the fold-change estimates to determine the bio-

logical significance of a gene. Supplementary Figures S20–S23 also

show an undesirable property of the two-stage edgeR procedure: the

actual FDR curve is very flat as a function of the nominal level for

the cases when the fold-change threshold is large (see right panels of

Supplementary Figs S20–S23). This means that the actual FDR level

of the two-stage edgeR procedure doesn’t depend on the nominal

level. When FC¼ 4, we see the actual FDR is almost always at least

20% under Setting SE1 no matter what the nominal level is. In other

words, we cannot control the FDR level at desired levels as long as

the nominal level is smaller than 0.2.

On the contrary, the PairedFB procedure always produces the

desired FDR levels no matter what the nominal levels and the sam-

ple sizes are and what fold-change thresholds one choose to define

the biological significance. Although the power of the PairedFB can

be low for small sample sizes, it increases quickly with the sample

sizes. For instance, when n ¼ 3, its power ranges from 20 to 65%

depending on the settings. But it becomes 63–82% when n ¼ 5 and

ranges from 84 to 94% when n ¼ 10 (see Fig. 4 and Supplementary

Fig. S24). Therefore, we conclude that the PairedFB procedure is the

preferred method for identifying biologically significant DEGs.

4 Real data analysis

4.1 Pre-processing data
In this section, we analyze the paired RNA-seq data from the study

of OSCC in Tuch et al. (2010), which was examined by both paired

baySeq (Hardcastle and Kelly, 2013) and edgeR (McCarthy et al.,

Fig. 1. False discovery plots (first column), ROC curves (second column) and the actual FDR curves (third column) comparing all methods with different sample

sizes (n ¼ 3, 5, 10) under Setting SE1: p�gDE is drawn from empirical distribution scaled by
ffiffiffi
5
p

and /g is drawn from empirical distribution. Here the DE proportion

is p ¼ 10%. In the third column, the black dotted line indicates the true nominal FDR level and two vertical dotted lines indicates 1 and 5% nominal level
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2012). OSCC is one type of head and neck squamous cell carcinoma

(HNSCC), which is the sixth most commonly observed cancers

worldwide (Tuch et al., 2010). In this study, samples of tumor and

matched normal tissue were taken from three patients, constructing

the biological replicates here. We follow the same data pre-process-

ing steps as was conducted by the paired baySeq: first mapping the

RefSeq identifiers included in the dataset to gene symbols through

Entrez Gene IDs using the human genome wide annotation package

org.Hs.eg.db (version 3.0.0) in R, then discarding data associated

with RefSeq identifiers that are no longer in current NCBI annota-

tion, and finally keeping observations with the greatest number of

exons for those duplicated gene symbols. We end up with 10 522

genes after data pre-processing. Before the data analysis, we apply

the trimmed mean of M-value normalization method (Robinson and

Oshlack, 2010) to adjust for the library sizes and RNA composition

effect. It takes about one and half hours to run 25 000 iterations of

the MCMC algorithm for PairedFB, and 15 000 posterior samples

are used after 10 000 burn-in samples. We limit our comparison of

the real data analysis to the paired baySeq, edgeR and voom, which

have shown overall better performances in their actual FDRs and

ranking abilities when n ¼ 3 based on our simulation studies.

4.2 Results
4.2.1 Posterior summaries for the data analysis

The trace plots are checked for all the hyper parameters to ensure the

convergence of the chain (Supplementary Fig. S35), and the effective

sample sizes of these chains are checked to be adequate using R

CODA package. The posterior mean of the proportion of DEGs (i.e.

EðpjYÞ) is estimated to be 33.42%. Our simulation studies show that

this number tends to be smaller than the true parameter p (see

Table 1.) We also provide the 95% credible intervals of pg for the top

20 genes ranked by our proposed method (Supplementary Fig. S37),

and the histogram of posterior mean of pg for the 1190 DEGs identi-

fied by our method at 5% FDR level (Supplementary Fig. S38).

4.2.2 Comparing with competing methods at various nominal

FDR levels

The numbers of DEGs identified by different methods at various

nominal FDR levels are shown in Table 2. As expected from the

simulation studies for n ¼ 3, voom is the most conservative method

and gives the shortest DEG list at the same nominal FDR levels. The

paired baySeq and edgeR detects more DEGs than the PairedFB, but

likely at the cost of inflated FDR levels according to the simulation

results. At the nominal level 5%, PairedFB, edgeR, baySeq and

voom detect 1190, 1269, 1528 and 638 DEGs, respectively (see

Venn diagram of the DEGs at nominal level 5% for all the methods

in Supplementary Fig. S39). Please find the top 20 DEGs detected by

our method in Supplementary Table S1. Note that there are minor

differences between our analyses using edgeR and baySeq and those

obtained by the original papers of McCarthy et al. (2012) and

Hardcastle and Kelly (2013). Please see Supplementary Discussion

Section 1.10 for detailed explanations.
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Fig. 2. False discovery plots (first column), ROC curves (second column) and the actual FDR curves (third column) comparing all methods with different sample

sizes (n ¼ 3, 5, 10) under Setting SE1: p�gDE is drawn from empirical distribution scaled by
ffiffiffi
5
p

and /g is drawn from empirical distribution. Here the DE proportion

is p ¼ 20%. In the third column, the black dotted line indicates the true nominal FDR level and two vertical dotted lines indicates 1 and 5% nominal level
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Since the posterior mean of the proportion of DEGs is esti-

mated to be 33.43% and it tends to underestimate the true pro-

portion, there are likely more than 10522 � 0:33 ¼ 3472 DEGs

for this data. However, Table 2 shows the maximum number of

DEGs declared by different methods with FDR control is 1528

and 1971 by baySeq at a nominal FDR level of 0.05 and 0.1, re-

spectively. Based on our simulation studies, the baySeq tends to

have highly inflated FDR for n ¼ 3 and therefore, the percentage

of true DEGs that are detected by various methods is pretty low

for this data. Larger sample size is needed to detect a larger per-

centage of true signals.

From Table 2, we can see that the result of voom is too

conservative with the length of DEG list over 50% less than

those detected by other methods at the nominal level 5%.

Also based on the Venn Diagram of the DEG lists of all the

methods at 5% nominal level in Supplementary Figure S39,

we find that over 98% of DEGs detected by voom are also

identified by PairedFB. Since voom detects considerably fewer

DEGS than other methods and the majority of its detected

DEGs are also identified by PairedFB, we end up focusing on

comparing the results of PairedFB with edgeR and baySeq

only.

We provide the performance comparison of edgeR, baySeq and

PairedFB at a comparable FDR level. Comparable FDR level means

that the resulting actual FDR levels are comparable. Since our simu-

lation studies show that the ranking abilities of the three methods are

similar when n ¼ 3, the actual FDR of the three methods would be

comparable when their powers are comparable. We thus compare

the performance of PairedFB at 5% nominal level with paired baySeq

at 3% and edgeR at 4% such that they detect similar amount of

DEGs (as highlighted in bold in Table 2). One purpose of doing such

a comparison is to remind readers that one can trust the nominal

FDR level of PairedFB, while they need to be cautious about inter-

preting the nominal FDR level of the edgeR or paired baySeq

method. The detailed results are reported in Supplementary

Discussion Section 1.11. The gene sets enrichment analysis there indi-

cates that genes uniquely identified by PairedFB are more related to

HNSCC.

4.2.3 Comparing our list of candidate genes at 5% FDR level with

existing biological discoveries

We follow the practice of McCarthy et al. (2012) and Hardcastle

and Kelly (2013) by comparing the DEG list by our method at 5%

Fig. 3. The box plots of the actual false discovery proportions (in white boxes) and true detection proportions (in gray boxes) over 100 simulations at nominal

level 5% comparing all methods. Subplots in different rows represent different sample sizes (n ¼ 3, 5, 10) and different columns for different DE proportions

(p ¼ 10%; 20%). /g and p�g of DEGs (p�gDE ) are sampled under Setting SE1. The numbers besides each box indicate the mean value over 100 simulations. The hori-

zontal black dashed line in each plot outlines the 5% nominal level
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nominal level with some existing biological discoveries. Among the

1190 DEGs detected by PairedFB at nominal level 5%, 15 genes are

in the list of 25 important HNSCC genes reported by Yu et al.

(2008) (see Table S2). The genes IL8 and MMP3 in their list are

detected as DEGs at nominal level 10% by our method. One advan-

tage of the full Bayesian model is that we can evaluate the biological

significance of the identified DEGs through their posterior probabil-

ities of the mean fold-change exceeding 2 or 4 (we denote them as

‘pp_2FC’ or ‘pp_4FC’ in our results). Among the 15 genes declared

as significant by PairedFB in Table S2, the top 10 genes are very like-

ly to have fold-change larger than 2 (pp_2FC >0.96) and six of

them are very likely to have fold-change larger than 4 (pp_4FC

>0.90). Note that by checking the posterior probability of fold-

change exceeding a certain threshold, we can have an idea of differ-

ential expression level of the DEGs. For example, genes PLAU and

POSTN among important genes reported by Yu et al. (2008) (top 12

and 14 in Table S2) have large pp_2FC while very small pp_4FC,

which would indicate that these genes may have moderate level of

differential expression <4-fold-change, although they both show

strong statistical significance at 5% FDR level. The PairedFB does

not declare 10 bottom genes as statistical significant at nominal

FDR level 0.05 because these genes either have large variation or

only show differential pattern for one of the three pairs. For in-

stance, the raw count data for the gene ‘KRT5’ is 10 445 versus

7358 and 9335 versus 5948 for the first two patients and 4091 ver-

sus 10 548 for the third patient. Therefore, the three patients show

inconsistent pattern in the differential expression for this gene. For

sample sizes as small as three, the PairedFB cannot declare these

genes as DEGs. More sample size is needed.

In addition, our method detects six of the nine genes of biologic-

al interest that were discussed by Tuch et al. (2010) at FDR level

<1% (See Supplementary Table S3). Based on the posterior prob-

ability of biological significance, these top six genes are very likely

to have fold-change larger than 2 (pp_2FC >0.886) and the top one

Fig. 4. The box plots of the actual false discovery proportions (in white boxes) and the true detection proportions (in gray boxes) over 100 simulations at nominal

level 5% comparing PairedFB and the two-stage edgeR procedure. Subplots in different rows represent different sample sizes (n ¼ 3, 5, 10) and different columns for

different DE proportions (p ¼ 10%; 20%) and fold-change thresholds for biological significance (FC¼ 2 and 4). /g and p�g of DEGs (p�gDE ) are sampled under Setting

SE1. The numbers besides each box indicate the mean value over 100 simulations. The horizontal black dashed line in each plot outlines the 5% nominal level

Table 1. The average of the posterior mean estimators of the pro-

portion of DE, p, over 100 simulations for various simulation

settings

Setting True p (%) p ¼ 3 p ¼ 5 p ¼ 10

E 10 4.92 (0.415) 6.29 (0.288) 7.42 (0.163)

20 13.89 (0.603) 14.64 (0.352) 16.12 (0.213)

SE1 10 8.45 (0.236) 8.88 (0.145) 9.25 (0.106)

20 17.04 (0.261) 18.01 (0.192) 18.81 (0.134)

SE2 10 8.99 (0.169) 9.32 (0.115) 9.51 (0.085)

20 18.02 (0.202) 18.6 (0.166) 19.27 (0.111)

Note: The numbers in the parenthesis are the standard errors of the

estimator.
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gene CASQ1 is very likely to have fold-change larger than 4

(pp_4FC¼ 0:996).

These results are comparable to what was reported by edgeR in

McCarthy et al. (2012), where they found 17 of the 25 genes of Yu

et al. (2008), and 6 of the 9 genes in Tuch et al. (2010). Since the

data analysis conducted in Hardcastle and Kelly (2013) addressed

different testing hypotheses (see Supplementary Discussion Section

1.10 for details), we cannot compare their bioinformatics analysis to

ours here.

Gene ontology analysis reveals GO terms for the 1190 DEGs

identified by PairedFB method tend to be associated with biological

processes like cell structure, differentiation that relate to tumor

development (see top 50 GO terms for the significant DEGs identi-

fied by PairedFB method at nominal level 5% in Supplementary

Table S4).

4.2.4 Comparing with competing methods without FDR control

Sometimes, biologists may choose to look at a fixed number of top

genes instead of controlling FDR. Here we compare the PairedFB

with the two competing methods by focusing on their top DEGs

without controlling FDR. Supplementary Table S6 displays the num-

ber of overlapping genes among the three methods when focusing on

the top 100, 200 and 500 genes. We see the percentage of overlap-

ping between any two methods is increasing with the number of

selected genes. When top 100 genes are considered, PairedFB has 57

and 50% overlapping DEGs with paired baySeq and edgeR, respect-

ively. The overlapping rates increase to 70.5 and 75% when top 200

genes are considered. For the top 500 gene list, the rates become

86.8% when comparing both methods. We focus on the top 500

genes since the overlapping rate is high and we can use the overlap-

ping genes as benchmark to evaluate the uniquely identified genes.

To understand how the three methods differ in their uniquely

identified genes, we conduct gene sets enrichment analysis as in

McCarthy et al. (2012) and Hardcastle and Kelly (2013) by using the

Fisher’s exact test to check the association between the detected gene

list of each method and the curated gene sets (C2 category) from the

MSigDB database (Subramanian et al., 2005). We emphasize the

comparison of the uniquely identified DEGs by either method with

those detected by both methods through their biological relevance.

We show the Venn diagrams of the top 20 enriched gene sets based

on DEGs detected by both PairedFB and edgeR (or baySeq), by

PairedFB only, and by edgeR (or baySeq) in Supplementary Figure

S42. We also report the detailed top 20 enriched gene sets based on

the overlapping DEG list between PairedFB and edgeR (or baySeq),

the list of uniquely identified genes by the PairedFB, and edgeR only

(or baySeq only) in Table S7a and b, respectively. Note that the first

columns of the two tables show that the top 20 enriched gene sets

based on overlapping DEGs list of PairedFB and edgeR (or baySeq)

are mostly cancer-related (highlighted in bold). The ‘RICKMAN

HEAD AND NECK CANCER F’ gene set is ranked on top 1, which

implies strong relationship to the biological target. This enhances the

role of the overlapping genes as the benchmark for comparing the

‘PairedFB only’ and the ‘edgeR only’ (or ‘baySeq only’). When com-

pared with edgeR, genes identified by ‘PairedFB only’ have seven top

enriched gene sets in common with those from overlapping list, most

of which are top ranked enriched gene sets based on the common

DEG list, while genes identified by ‘edgeR only’ have three top

enriched genes sets in common with the overlapping list

(Supplementary Fig. S42). Furthermore, the PairedFB contains a

unique gene set related to the HNSCC, called ‘RICKMAN TUMOR

DIFFERENTIATED WELL VS MODERATELY UP’, at top 6.

Similar conclusion can be made when compared with baySeq. In

summary, although the simulation studies do not indicate much ad-

vantage of our method in terms of FD among a fixed number of top

selected genes when the sample size is three, the gene sets enrichment

analysis demonstrates our top-ranking list is biologically more rele-

vant than the other competing methods.

4.2.5 Results of biologically significant genes at FDR level 5%

We apply the PairedFB to identify biologically significant genes with

mean fold-change above 4 at nominal FDR level of 0.05 and com-

pared with the results from the two-stage edgeR procedure. As

expected based on the simulation studies, the two-stage edgeR pro-

cedure detects more genes with fold-change above 4 than the Paired

FB with 634 genes (by two-stage edgeR) versus 180 genes (by

PairedFB). However, it is very likely that the two-stage edgeR

detected a larger number of large fold-change DEGs at the cost of

much higher FDR according to our simulation studies (see Fig. 4

and Supplementary Figs S16–S20).

We conduct gene sets enrichment analysis for the biologically

significant genes identified by PairedFB and the two-stage edgeR

procedure, respectively. Supplementary Tables S8 and S9 present the

top 20 enriched gene sets of the gene list with mean fold-change

above 4 for PairedFB and edgeR, respectively. In Supplementary

Table S8, we can see that among the top 20 gene sets enriched by

180 genes detected by PairedFB, three gene sets are directly related

to OSCC or HNSCC (top 1 ‘RICKMAN HEAD AND NECK

CANCER F’, top 11 ‘RICKMAN HEAD AND NECK CANCER E’,

top 15 ‘CROMER TUMORIGENESIS DN’), and other enriched

gene sets are related to lung cancer, skin and muscle fiber develop-

ment. Based on 634 genes detected by edgeR using fold-change cut-

off 4, we find less gene sets that are directly related HNSCC in

Supplementary Table S9 with only top 1 ‘RICKMAN HEAD AND

NECK CANCER F’ and many other gene sets are related to breast,

uterous or prostate cancer.

5 Conclusion and discussion

We have presented a hierarchical full Bayesian model to analyze the

paired RNA-seq gene expression data allowing the treatment effect

to vary among pairs. To incorporate the heterogeneity of treatment

effect among pairs, we impose beta distribution on the expected pro-

portion of treatment mean out of the overall pair mean. Through

comprehensive simulation studies and real data analysis, we demon-

strate at least three major advantages of our model: (i) compared

with existing popular methods for analyzing the paired RNA-seq

data, the proposed PairedFB procedure has overall better

Table 2. Number of DEGs identified by different methods at various

nominal FDR levels for the carcinoma data by Tuch et al. (2010)

Nomimnal

level (%)

PairedFB edgeR baySeq voom maxpost

1 641 840 786 79 2310

2 833 971 1062 266 2310

3 976 1090 1260 389 2310

4 1090 1161 1408 522 2310

5 1190 1269 1528 638 2310

10 1604 1546 1971 1134 2310

Note: Here ‘maxpost’ represents our Bayesian model using maximum pos-

terior probability as the decision rule.
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performance in ranking the true DEGs on the top, especially for

large sample sizes and large level of heterogeneity in treatment

effects across the pairs. (ii) The PairedFB controls the FDR at desired

levels for all the cases considered, while competing methods have

highly inflated FDR levels for small to moderate sample sizes. (iii)

Our method can be applied to identify biologically significant DEGs

with controlled FDR, while the common two-step procedure can

have highly inflated FDR even for large sample sizes. In addition,

our procedure is robust to model misspecification in terms of its

relative performance compared to competing methods with better

ranking ability and lowest actual FDR.

Our comprehensive simulation studies also lead us to make the

following conclusions: (i) we believe it is very important to model or

accommodate the heterogeneous treatment effects when they exist.

Failure to do so may lead to poor ranking ability and highly inflated

FDR; (ii) when the sample size is small, all the procedures considered

in the paper suffer either in terms of highly inflated FDR or low

power based on our simulation studies. We thus highly recommend

that one should consider designing a paired RNA-seq experiment

with sample sizes larger than 3 (preferably larger than 5).

As is the case for most full Bayesian analysis using MCMC algo-

rithm, the computation time for our model is more intense than fre-

quentist method or empirical Bayesian method. By optimizing the

program through Rcpp package (Eddelbuettel and François, 2011),

we are able to run 25 000 iterations of MCMC algorithm in about

one and half hours for over 10 000 genes. Besides, in order to have

clear interpretation of parameter of interest, we include special func-

tion in the likelihood, which brings instability of our computation

especially when the gene expression data is large, we overcome the

problem by using the equivalent transformation of Gauss’s hyper-

geometric function and successfully implement it through the GNU

Scientific Library for Cþþ (Gough, 2009). However, the complexity

and intense computation of our model are not sacrificed without

any benefits. Our method is able to directly interpret the biological

significance of each gene by providing the posterior probabilities of

the fold-change exceeding certain range, which is beyond merely

claiming statistical significance for each gene. In addition, these pos-

terior probabilities can be easily applied to the ‘posterior expected

FDR’ decision rule in order to claim statistical significance for differ-

ent magnitude of biological significance.

In this paper, we have considered a single normal prior distribu-

tion for p�g of DEGs. In some cases, with both up- and down-

regulated genes, a two-component mixture of normal might work

better for the DEGs. This can be investigated in our future work.

Note that our full hierarchical Bayesian model can also be extended

to the paired design for comparison under multiple K conditions. The

choices should be made among 2K possible models for each gene in-

stead of 2, where each model represents a combination of indicators

to indicate whether the gene is DE under certain condition. We could

include condition-specific mean proportion of treatment mean out of

the overall pair mean in the likelihood and find the maximum poster-

ior under certain condition by using model averaging or to develop

condition- or model-specific FDR decision rule. Another future direc-

tion can be generalizing the PairedFB to randomized complete block

design by imposing a Dirichilet-Multinomial model when one consid-

ers the conditional distribution of the several counts given the total

sum of the counts in each block.
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