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Abstract

Motivation: Neuroimaging genetics is an emerging field to identify the associations between gen-

etic variants [e.g. single-nucleotide polymorphisms (SNPs)] and quantitative traits (QTs) such as

brain imaging phenotypes. However, most of the current studies focus only on the associations be-

tween brain structure imaging and genetic variants, while neglecting the connectivity information

between brain regions. In addition, the brain itself is a complex network, and the higher-order inter-

action may contain useful information for the mechanistic understanding of diseases [i.e.

Alzheimer’s disease (AD)].

Results: A general framework is proposed to exploit network voxel information and network con-

nectivity information as intermediate traits that bridge genetic risk factors and disease status.

Specifically, we first use the sparse representation (SR) model to build hyper-network to express

the connectivity features of the brain. The network voxel node features and network connectivity

edge features are extracted from the structural magnetic resonance imaging (sMRI) and resting-

state functional magnetic resonance imaging (fMRI), respectively. Second, a diagnosis-aligned

multi-modality regression method is adopted to fully explore the relationships among modalities

of different subjects, which can help further mine the relation between the risk genetics and brain

network features. In experiments, all methods are tested on the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database. The experimental results not only verify the effectiveness of our pro-

posed framework but also discover some brain regions and connectivity features that are highly

related to diseases.

Availability and implementation: The Matlab code is available at http://ibrain.nuaa.edu.cn/2018/

list.htm.
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1 Introduction

Alzheimer’s disease (AD), the most common form of dementia, is

characterized by an insidious decline in memory, later affecting lan-

guage, visuospatial perception, arithmetic abilities and executive

functioning. Effective prevention and early diagnosis are the import-

ant research topic for AD (Brookmeyer et al., 2007; Winkler et al.,

2010). At present, brain imaging genetics is an emerging field to

study the influence of genetic variation on the brain structure and

function (Ge et al., 2013; Glahn et al., 2007). Its major task is to

examine the association between genetic markers such as single-

nucleotide polymorphisms (SNPs) (The Genomes Project

Consortium, 2015) and quantitative traits (QTs) extracted from

multi-modal neuroimaging data (e.g. anatomical, functional and

molecular imaging scans).

In the association analysis of imaging genetics, pairwise univariate

analysis (Shen et al., 2010) is of extensive research. Meanwhile, regres-

sion analysis and bi-multivariate analyzes have also achieved very ideal

results for exploring the joint effect of multiple SNPs on single or few

QTs and revealing complex multi-SNPs-multi-QTs associations (Shao

et al., 2018; Zhu et al., 2018; Zille et al., 2017). Most of these meth-

ods focus on the association analysis of neuroimaging and genetic vari-

ation based on brain structures. For example, Yan et al. (2014) have

applied prior knowledge sparse canonical correlation analysis to the

association between the APOE gene and structure information of 78

regions of interests (ROIs). Hao et al. (2016) have discovered common

ROIs that are associated with both risk genetic factors and disease sta-

tus by the multi-modal fusion technology. Du et al. (2016) have uti-

lized a structured sparse canonical correlation method to analyze

imaging genetic association. Based on this, they use a graph-guided

fused lasso to conduct feature selection and feature grouping simultan-

eously. Song et al. (2016) have constructed functional networks be-

tween genes by the support vector machine classifier. Furthermore, the

association between genes and diseases is rearranged.

At present, most of the methods regard each brain region as a

single node, which ignores the interconnected signals between the

nodes. Recent studies have shown that resting networks (RSNs) con-

sist of internal functional connections by fluctuating coupling sig-

nals. The networks can be extracted from resting fMRIs to quantify

brain region connections. They are also used to assess the associ-

ation between a single region and other regions in a networked

cluster. Meanwhile, the brain network connections of different indi-

viduals reflect the comprehensive characteristics of different brain

systems (Sporns, 2014). In addition, the brain network model is a

simple functional structural representation of the entire brain.

However, the function interconnections between nodes are import-

ant data to constitute the entire network model and show the con-

nection strength between the brain regions, for carrying different

difference information between the patients and normal control

(NC). For example, Fu et al. (2015) have obtained the conclusion

that the functional connectivity of the human brain is genetically

restricted by heritability analysis. At the same time, this gene level

regulation is heterogeneous in different resting state functional net-

works. Jie et al. (2014) proposed a classification method based on

the connection network to classify patients with mild cognitive im-

pairment (MCI) and normal people, which can significantly improve

the classification accuracy. Hence, the brain function connection

network is closely related to genes and diseases.

In this article, a novel diagnosis-aligned multi-modality method is

proposed to mine network phenotype between genetic risk factors

and disease status. The novel imaging genetic association framework

considers both network voxel node information and network edge

connectivity information as intermediate traits that bridge genetic risk

factors and disease status. In detail, the proposed method consists of

two steps: (i) Extract the brain network features. The sparse represen-

tation (SR) model is used to build hyper-network to express the con-

nectivity features of the brain. The network voxel node features and

network connectivity edge features are respectively extracted from

the structural magnetic resonance imaging (sMRI) and resting-state

functional magnetic resonance imaging (fMRI). (ii) Mine network

phenotype between genetic risk factors and disease status via the

diagnosis-aligned multi-modality method. Most of existing multi-

modality methods can select more discriminative features by embed-

ding complementary information between multi-modality data.

However, the traditional multi-modality regression methods only

consider the relationship between the modalities of the same subjects.

They neglect the potential internal relations among different modal-

ities of different subjects. Therefore, a diagnosis-aligned multi-modal-

ity method is adopted to fully explore the relationships among

different modalities of different subjects, which can help further mine

the relation between the well-known AD risk SNP APOE rs429358

and two brain network features (i.e. network voxel node features and

network connectivity edge features). As demonstrated in the experi-

mental results, the proposed algorithm achieves much improved

cross-validation performances as well as biologically meaningful

results compared with the current state-of-the-art methods.

The contributions of this article are listed in the following two

aspects:

• A brain imaging genetics study can be performed to explore the

relationship between brain network features and the well-known

AD risk SNP APOE rs429358. This study is an initial attempt to

explore the relationship between the connectivity features and

genetic variants.
• Adding the diagnosis-aligned regularization term can fully ex-

plore the relationships among different modalities of different

subjects.

The rest of this article is organized in the following fashion.

Section 2 presents our novel framework to mine network phenotype

between genetic risk factors and disease status. Related simulation

and experimental results are included in Section 3. Limitations and

conclusions are given in Sections 4 and 5.

2 Materials and methods

Recently, most of the current studies focus only on the associations

between brain structure imaging and genetic variants, while neglect-

ing the connectivity information between brain regions. In addition,

the brain itself is a complex network and the higher-order inter-

action may contain useful information for the mechanistic under-

standing of diseases (i.e. AD). As the input, the brain fMRI and

sMRI for each subject are then parcellated into 90 ROIs (remove the

cerebellum) based on the Automated Anatomical Labeling (AAL)

atlas. Figure 1 shows an overview of the proposed method. First, a

SR model is adopted to build hyper-network to express the connect-

ivity features of the brain, and the network voxel node features and

network connectivity edge features are extracted from sMRI and

fMRI. Second, a diagnosis-aligned multi-modality method is pro-

posed to explore the relationship between the well-known AD risk

SNP APOE rs429358 and two brain network features.

In the next subsection, we describe the hyper-graph, connectivity

edge features and node features of the brain, multi-modality
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network phenotype associations, diagnosis-aligned multi-modality

network phenotype associations and optimization algorithm.

2.1 Hyper-graph
It is known that a graph is a powerful tool for representing the pair-

wise relationships between paired nodes. Actually, besides pairwise

relationships, in many applications (e.g. functional connectivity

among brain regions), there may exist higher-order relationships,

which cannot be represented by the conventional graphs. To over-

come this problem, a hyper-graph has been proposed to characterize

the higher-order relationship among nodes. In general, the hyper-

graph is an extended graph where an edge (called hyper-edge in

hyper-graph) can connect more than two nodes.

Denote a hyper-graph (Zhou and Huang, 2006) G ¼ ðV;EÞ with

a node set V and a hyper-edge set E, we can represent G using a

jVj � jEj incidence matrix H with elements 0 and 1 as follows:

Hðv; eÞ ¼ 1; if v 2 e
0; if v 62 e;

�
(1)

where v 2 V is a node and e 2 E is a hyper-edge of G. Then, the node

degree d(v) represents the number of hyper-edges passing through this

node. The hyper-edge degree dðvÞ represents the number of nodes

contained in this hyper-edge. They are defined as following:

dðvÞ ¼
X
e2E

Hðv; eÞ: (2)

dðvÞ ¼
X
v2V

Hðv; eÞ: (3)

It is worth noting that the conventional graph is a special kind of

hyper-graph with each hyper-edge containing only two nodes.

Figure 2 illustrates an example of a hyper-graph.

2.2 The connectivity edge features and node features of

the brain
Inspired by the definition of the hyper-graph (in Section 2.1), in Jie

et al. (2014, 2016), the authors use fMRI time series and the SR

model to build the super-network as:

min
at

kzt � Atatk2 þ lkatk1; (4)

where zt represents the regional mean time series of the tth ROI.

At ¼ ½z1; z2; � � � ; zt�1; 0; ztþ1; � � � ; zT � denotes a data matrix including

all-time series except the tth ROI (where we put a vector of all zeros

in its location). at is the weight vector that quantifies the degree of

influence of other ROIs to the tth ROI. l > 0 is a regularization par-

ameter controlling the sparsity of the model.

In Gallagher and Goldberg (2013), the concept of the clustering

coefficient has been extended from the conventional network to

hyper-network, which reflects local clustering properties of the

hyper-network. Therefore, after constructing the connectivity hyper-

network by (4), the clustering coefficient of the hyper-network is

completed by:

HCCðvÞ ¼

2
X

e2SðvÞ
ðjej � 1Þ � jNðvÞj

jNðvÞjðjSðvÞj � 1Þ ; (5)

where HCC represents the amount of overlaps among adjacent

hyper-edges of the node v. SðvÞ ¼ fek 2 E : v 2 ekg represents a set

of hyper-edges adjacent to the node v. NðvÞ ¼ fu 2 V : 9e 2
E;u; v 2 eg are the nodes that are neighbors of the node v. The nu-

merator of (5), the difference between
X

e2SðvÞðjej � 1Þ and jNðvÞj,

Fig. 1. Overview of our proposed method

Fig. 2. An example of the hyper-graph. Left: a hyper-graph in which each

hyper-edge can connect more than two nodes. Right: the incidence matrix for

the hyper-graph in the left
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represents the number of vertices in multiple hyper-edges incident

to v. The denominator represents the possible number of such

overlaps.

Finally, for the definition of the clustering coefficients in (5), we

extract a set of clustering coefficients from the connectivity hyper-

networks as the connectivity edge features of the brain, hence, pro-

ducing one set of connectivity edge features for each subject.

Otherwise, the voxel-based morphometry (VBM) is obtained by

preprocessing sMRI data, which is the normalized gray matter dens-

ity maps in the standard Montreal Neurological Institute (MNI)

space as 2� 2� 2 mm3 voxels. Then, we align the VBM to each

subject’s same visit scan, and 90 ROIs (remove the cerebellum) level

measurements of mean gray matter densities are further extracted

based on the AAL atlas. In this article, we regard each ROI as a sin-

gle node, thus, producing one set of node features for each subject.

2.3 Multi-modality network phenotype associations
Intuitively, pathological changes are closely related to the associated

ROI and important network edges. The structural voxel features (i.e.

VBM) from sMRI and the clustering coefficients in (5) from the fMRI

can be considered as the network node and edge features. Then, we as-

sume that there are N training subjects or samples, with each one rep-

resented by network node feature and network connectivity edge

feature modalities of phenotypes. Given the network phenotypes Xm ¼
½xm

1 ; � � � ; xm
n ; � � � ;xm

N �
T 2 RN�d as the input and the corresponding re-

sponse value (i.e. APOE SNP rs429358) y ¼ ½y1; � � � ; yn; � � � ; yN �T 2
RN as the output, where d is the number of network QT (node and

edge features dimensionality). Thus, the multi-modality network

phenotype association model can be formulated as:

min
w

1

2

XM
m¼1

ky�Xmwmk2
2 þ kkWk2;1; (6)

where wm 2 Rd is the linear discriminant function corresponding to

the mth modality. W ¼ ½w1;w2; � � � ;wM� 2 Rd�M is the weight ma-

trix whose row wj is the vector of coefficients assigned to the jth

feature across different modalities, and kWjk2;1 ¼
Xd

j¼1
kwjk2 is a

‘group-sparsity’ regularizer, which penalizes all coefficients in the

same row of the matrix W for joint feature selection. The parameter

k is a regularization parameter that is used to balance the relative

contributions of those two terms in (6).

2.4 Diagnosis-aligned multi-modality network

phenotype associations
One limitation of the traditional multi-modality models is that only

the relationship between modalities of the same subjects is consid-

ered, while ignoring the important relationship among the different

subjects with diagnostic information, i.e. NC, SMC, EMCI, LMCI

or AD. To address this issue, we introduce a new diagnosis-aligned

regularization term X, which minimizes the distance between

within-class subjects in the projected space as follows:

X ¼
XN

i;j

XM
p;qðp�qÞ

kðwpÞTxp
i � ðwqÞTxq

j k
2
2Sij; (7)

where Sij is defined as:

Sij ¼
1; if xp

i and xq
j are from the same class

0; otherwise;

(
(8)

where kðwpÞTxp
i � ðwqÞTxq

j k
2
2Sij measures the distance between xp

i

and xq
j in the projected space. It implies that if xp

i and xq
j are from

the same class, the distance between them should be as small as

possible in the projected space. Otherwise, when p¼q, the local

geometric structure of the same modality data is preserved in the

projected space; when p<q, the complementary information

provided from different modalities is used to guide the estimation of

the projected space. Therefore, (7) preserves the intrinsic diagnostic

information relatedness among multi-modality data and also

explores the complementary information conveyed by different

modalities. In general, the goal of (7) is to reserve diagnostic infor-

mation relatedness by aligning paired within-class subjects from

multiple modalities.

By incorporating the regularizer (7) into (6), we can obtain the

objective function of our diagnosis-aligned multi-modality network

phenotype association model as below:

min
w

1

2

XM
m¼1

ky�Xmwmk2
2 þ k1kWk2;1

þ k2

XN
i;j

XM
p;qðp�qÞ

kðwpÞTxp
i � ðwqÞTxq

j k
2
2Sij; (9)

where k1 and k2 denote control parameters of the regularization

terms, respectively. Their values can be determined via inner cross-

validation on training data. From (9), we can not only jointly select

a subset of common features from multimodality data, but also

retain diagnostic information relatedness by aligning paired within-

class subjects. Figure 3 illustrates the used relationships among

different modalities and subjects in our proposed method as com-

pared with the traditional multi-modality methods. In Figure 3a,

traditional multimodal methods only concern the single line rela-

tionships connecting node features and edge features of different

Fig. 3. Illustrations on the relationships among modalities and subjects. (a)

Traditional multi-modality method in identifying subjects for class 1 and class 2.

(b) Proposed method in identifying subjects for class 1 and class 2. Circles and

rectangles represent node features data from sMRI and edge features data from

fMRI, respectively. Orange and green denote different classes
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modalities from the same subject. However, as shown in Figure 3b,

our proposed model can preserve both the multi-modality relation-

ship from the same subject and the correlation across modalities

among different subjects. Moreover, when p¼q, (9) will degenerate

into the diagnosis-guided multi-modality model (Hao et al., 2016),

which shows that (9) has a more general application scene.

2.5 Optimization algorithm
A similar model has been used in Jie et al. (2015) and Zu et al.

(2016) for multi-modality disease classification. Here, we also

choose the widely applied accelerated proximal gradient (APG)

method (Chen et al., 2009) to get the solution of our proposed

method. First, we separate the objective function into the smooth

part f(W) and non-smooth part g(W) as following:

f ðWÞ ¼ 1

2

XM
m¼1

ky�Xmwmk2
2

þ k2

XN
i;j

XM
p;qðp�qÞ

kðwpÞTxp
i � ðwqÞTxq

j k
2
2Sij: (10)

gðWÞ ¼ k1kWk2;1: (11)

Then, we define the approximation function XlðW;WiÞ as:

XlðW;WiÞ ¼ f ðWiÞ þ hW �Wi;rf ðWiÞi þ
l

2
kW �WikF þ gðWÞ;

(12)

where rf ðWiÞ denotes the gradient of f(W) on point Wi at the ith it-

eration, jj:jjF is Frobenius norm, l is the step size. Finally, the APG

update step is as follows:

Wiþ1 ¼ arg min
W

1

2
kW � Vk2

F þ
1

l
gðWÞ

þ arg min
w1 ;���;wd

1

2

Xd

j¼1

kwj � vjk2
2 þ

k1

l
kwjk2

� �
; (13)

where wj and vj respectively denote the jth row of the matrix W and

V, with

V ¼Wi �
1

l
rf ðWiÞ: (14)

Therefore, through (13), this optimization problem can be

decomposed into d sub-problems. The key of the APG algorithm is

how to solve the update step efficiently. The analytical solutions of

those sub-problems can be easily obtained by:

w�j ¼
1� k1

lkvjk2

� �
vj; if kvjk2 >

k1

l
0; otherwise:

8<
: (15)

Instead of the gradient descent based on Wi via:

Qi ¼Wi þ aiðWi �Wi�1Þ (16)

with

ai ¼
qi�1 � 1

qi

;

qi ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

i�1

q
2

:

The optimization procedure of the proposed algorithm is shown

as Algorithm 1.

3 Experiments

In this section, we evaluate the performances of our method on

ADNI dataset.

3.1 ADNI dataset
The imaging data (sMRI, fMRI) and genotyping data used in the

preparation of this article were obtained from the Alzheimer’s dis-

ease Neuroimaging Initiative (ADNI) database (adni.loni.us-

c.edu). The ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), other biological markers, clinical and neuropsycho-

logical assessment can be combined to measure the progression of

MCI and early AD. For up-to-date information, see www.adni-

info.org.

ADNI is the result of efforts of many coinvestigators from a

broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the United

States and Canada. The initial goal of ADNI was to recruit 800

adults, aged 55–90, to participate in the research approximately

200 cognitively normal older individuals to be followed for

3 years, 400 people with MCI to be followed for 3 years and 200

people with early AD to be followed for 2 years. In current studies,

the subjects data used in this article includes two parts, one is

fMRI and sMRI image data, and the other is SNP data. The mini-

mental state examination (MMSE), which is neuropsychological

assessment measures from different aspects, is often used as quan-

titative descriptions of symptom severity instead of binary diagno-

sis. After aligning the gene and imaging subjects and rejecting

subjects with missing values, we used a total of 157 valid subjects,

which include 38 NC, 19 significant memory concern (SMC), 40

early mild cognitive impairment (EMCI), 34 late mild cognitive im-

pairment (LMCI) and 26 AD. Demographic information of the

subjects is listed in Table 1.

Algorithm 1

Input:

Risk genetics (i.e. APOE SNP rs429358);

y ¼ ½y1; � � � ; yn; � � � ; yN �T 2 RN;

fMRI, sMRI data;

Subjects with diagnosis information (i.e. NC, SMC, EMCI,

LMCI or AD).

Output:

Wk;

1. Extract voxel node features and network connectivity

edge features from sMRI and fMRI data;

2. Get multi-modality network phenotype Xm ¼ ½xm
1 ; � � � ;

xm
n ; � � � ; xm

N �
T 2 RðN�dÞ;

3. Initialization: k1�0; k1�0; l0 > 0; r > 1; W0 ¼W1 ¼
0; q0 ¼ 1;

4. For i¼1 to max iteration I

Compute Qi by (16)

l ¼ li�1

While f ðWiþ1Þ þ gðWiþ1Þ > XlðWiþ1;QiÞ; l ¼ rl

Compute Wiþ1 using (13)

li  l

End.

1952 M.Wang et al.
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3.2 Experimental setup
We use the root-mean-squared error (RMSE) and correlation coeffi-

cient (CC) between actual and predicted response values to measure

the performance of regression and association analysis.

In the experiments, we have conducted the centering preprocess-

ing for the node, edge features and response valuable y in the train-

ing set. The 5-fold cross-validation strategy is implemented in the

training dataset to tune the free parameters and evaluate the effect-

iveness of our proposed method. The regularization parameter l in

the SR model is tuned from f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g.
As for regularization parameters of the regression and association

analysis, we tune the parameters k1, k2 in the proposed

DAMM model [i.e. shown in (9)] both from f10�7; 3� 10�7;

10�6; 3� 10�6; 10�5g. Besides, in the optimization algorithm, the

larger values of r and l0 usually come with the faster convergence

speed, and we set l0 and r as 1 and 2, respectively.

We compare SM [denoted as single modality-based method with

Lasso (Tibshirani, 2011) to detect a sparse significant subset from

node features or edge features], MM (denoted as multi-modality

method to detect a sparse subset of common ROIs from node fea-

tures and edge features), DGMM [denoted as multi-modality-based

method with diagnosis-guided (Hao et al., 2016) to detect a sparse

subset of common ROIs from node features and edge features] and

DAMM (denoted as multi-modality-based method with diagnosis-

aligned to detect a sparse subset of common ROIs from node fea-

tures and edge features).

3.3 Improved association between risk SNP and

network phenotype
We compare our proposed DAMM method with conventional meth-

ods (including SM, MM and DGMM). In order to avoid any bias

caused by random data division, 10 times independent non-

repetitive 5-fold cross-validation is implemented to further evaluate

the average regression performance. The average results of RMSE

and CC among the 5-fold training and testing data on node and

edge modalities are calculated respectively as shown in Table 2. SM

yields the RMSE values of 0.6917 (0.6837), 0.7142 (0.6950) and

CC values of 0.1787 (0.2028), 0.0068 (0.0785) on node and edge

test (training) set, respectively. These results indicate that the func-

tional connectivity edge information between brain regions contains

useful information for mechanistic understanding of AD. In add-

ition, MM produces the RMSE values of 0.5602 (0.4528), 0.6635

(0.5856) and CC values of 0.5696 (0.7410), 0.2380 (0.5057) on

node features and edge features test (training) set, respectively,

which are better than those of SM. These results indicate that the

MM method can jointly select the node and edge features.

Moreover, DAMM exports the best RMSE values of 0.5498

(0.4648), 0.6577 (0.5869) and the best CC values of 0.5854

(0.7571), 0.2446 (0.5227) on node and edge features test (training)

set, respectively, which indicate the advantages of using the

diagnosis-aligned regularization term. Meanwhile, we have made

pairwise t-test based on the results of 5-fold cross-validation and

added the P-values in Table 2. The resulting P-value (P<0.05)

shows that the improvement for our method is statistically

significant.

In our method, there are two regularization items, i.e. the spars-

ity regularizer k1 and diagnosis-aligned regularization term k2. The

two parameters control the relative contribution of those regulariza-

tion terms. Here, the values of k1 and k2 are respectively set in the

range of f10�7; 3� 10�7; 10�6; 3� 10�6;10�5g to observe the effect

of the diagnosis-aligned regularization term on the regression per-

formance of our proposed method. Figure 4 shows the results when

k1 (k1 ¼ 0:00001 in this article) is fixed, the results are with respect

to different values of k2. When k2 ¼ 0, no diagnosis-aligned regular-

ization item is introduced, and thus our proposed method will de-

generate into the MM method. As shown in Figure 4, with all values

of k2, our proposed algorithm consistently outperforms the MM

method, which further indicates the advantages of the diagnosis-

aligned regularization term.

Table 2. Comparison of regression performance of node features and edge features by different methods

Method RMSE (mean 6 SD) P-value CC (mean 6 SD) P-value

Train Test Train Test

SM Node 0.6837 6 0.0101 0.6917 6 0.0201 < 1e-3 0.2028 6 0.0261 0.1787 6 0.1050 <1e-3

Edge 0.6950 6 0.0061 0.7142 6 0.0554 <1e-3 0.0785 6 0.0201 0.0068 6 0.1120 <1e-3

MM Node 0.4528 6 0.0098 0.5602 6 0.0285 <1e-3 0.7410 6 0.0239 0.5696 6 0.1016 <1e-3

Edge 0.5856 6 0.0066 0.6635 6 0.0254 <1e-3 0.5057 6 0.0191 0.2380 6 0.1170 <1e-3

DGMM Node 0.4572 6 0.0032 0.5526 6 0.0032 0.0426 0.7439 6 0.0012 0.5799 6 0.0043 0.0396

Edge 0.5891 6 0.0024 0.6621 6 0.0015 <1e-3 0.5131 6 0.0026 0.2333 6 0.0044 <1e-3

DAMM Node 0.4648 6 0.0132 0.5498 6 0.0033 – 0.7571 6 0.0077 0.5854 6 0.0087 –

Edge 0.5869 6 0.0029 0.6577 6 0.0019 – 0.5227 6 0.0070 0.2446 6 0.0013 –

Note: The best results are highlighted in bold.

Table 1. Characteristics of the subjects

Subjects NC SMC EMCI LMCI AD

Number 38 19 40 34 26

Gender (male/female) 15/23 7/12 17/23 22/12 11/15

Age (mean 6 SD) 75.16 6 7.64 72.41 6 7.64 71.2 6 7.58 71.85 6 7.58 72.54 6 7.64

Education (mean 6 SD) 16.37 6 2.68 16.63 6 2.70 15.83 6 2.68 16.85 6 2.68 15.50 6 2.69

MMSE 28.76 6 1.27 29.05 6 0.89 28.03 6 1.74 27.85 6 1.56 22.42 6 2.44

Note: NC, normal control; SMC, significant memory concern; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD,

Alzheimer’s disease; MMSE, mini-mental state examination.
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3.4 Identification of the most related node ROI marker
Besides the improved performances, one major goal of this study is

to identify some significant and related phenotypes that are highly

correlated to both risk SNP markers and disease status to capture

imaging genetics associations in AD research.

For the node features, we average the obtained sparse coeffi-

cients by 5-fold cross-validation. Then, the top 10 maximum weight

ROIs are selected as the important ROI marker. The top 10 selected

MRI-VBM imaging features as shown in Table 3, as well as their

average regression coefficients across five cross-validation trials, are

visualized in Figure 5 by mapping them onto the human brain. The

colors of the selected brain regions indicate the regression coeffi-

cients of the corresponding MRI-VBM markers. It should be noted

that these selected ROIs most are in accordance with the previous

studies. Structural imaging studies have already identified several

diagnostic markers of AD: hippocampus, amygdala and parahippo-

campal gyrus (de Leon et al., 1995; Echávarri et al., 2011; Horı́nek

et al., 2007). The literature (de Jong et al., 2008) shows that the vol-

ume of the pallidum and putamen is significantly correlating to the

volume of the neocortical gray matter in subjects. However, there

are different degrees of brain gray matter atrophy in AD subjects

(Karas et al., 2004). The structural characteristics of right sup-

motor-area and right precentral gyrus are closely related to the onset

of AD (Iwai et al., 1995; Jenkins et al., 1992), and a large number of

clinical examples have proved that there are certain obstacles in the

movement and perception of advanced Alzheimer’s patients in this

areas. For example, patients often have the abnormal symptoms of

stiff hands and feet, curl and incontinence. In Foundas et al. (1997),

the paper shows that the insula may be involved early in AD and

that atrophy of the insular cortex may contribute to the cognitive

deficits typical of early AD. And the left inferior frontal gyrus (oper-

cular) has potentially associated with MCI (Shen et al., 2010).

3.5 Identification of the most related edge ROI marker
The brain network model is a simple representation of the brain sys-

tem. The nodes are defined as brain regions. And the edges corres-

pond to connections between brain regions. In our article, we

construct the brain connectivity hyper-networks, and the clustering

coefficients are defined as edge features. After extracting a set of

clustering coefficients from the brain connectivity hyper-networks,

the clustering coefficients are absorbed into each brain region, i.e.

the obtained feature dimension is the same as the brain region di-

mension, and each dimension corresponds to a brain region. We can

get the ROI imaging features by the proposed method.

For the edge features, we also average the obtained sparse coeffi-

cients by 5-fold cross-validation and select the top 10 maximum

weight ROIs as the important ROI marker. Table 4 presents the top

10 ROI imaging features, which illustrates that the selected ROIs

such as left precuneus and right superior occipital gyrus are related

to the structure atrophy, pathological amyloid depositions and

metabolic alteration in the brain (Camus et al., 2012; Karas et al.,

2007; Liu et al., 2015; Reiman et al., 1996; Wishart et al., 2006),

(a) (b)

Fig. 4. The regression performance with the regularization parameter k2. (a)

RMSE, (b) CC. X-axis represents different values for k2

Table 3. The top 10 ROIs selected by the node features

ID Name

39 R. Parahippocampal gyrus

37 L. Hippocampus

2 R. Precentral gyrus

73 L. Putamen

20 R. Supplementary motor area

75 L. Pallidum

30 R. Insula

40 L. Parahippocampal gyrus

11 L. Inferior frontal gyrus (opercular)

42 R. Amygdala

Note: L, left; R, right

Fig. 5. Visualization of the mapping top 10 ROIs selected by the node features.

The color represents the regression coefficients of the corresponding VBM

markers (Color version of this figure is available at Bioinformatics online.)

Table 4. The top 10 ROIs selected by the edge features

ID Name

50 R. Superior occipital gyrus

67 L. Precuneus

57 L. Postcentral gyrus

56 R. Fusiform gyrus

12 R. Inferior frontal gyrus (opercular)

24 R. Superior frontal gyrus (media)

60 R. Superior parietal gyrus

74 R. Putamen

46 R. Cuneus

9 L. Orbitofrontal cortex (middle)

Note: L, left; R, right
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showing effectiveness of the proposed method. The reduction of the

putamen gray matter has been correlated with APOE SNP rs429358

(de Jong et al., 2008; Karas et al., 2004). In Jacobs et al. (2012) and

Shen et al. (2010), the papers show that the right superior parietal

gyrus and right inferior frontal gyrus (opercular) areas are most

commonly associated with MCI. Besides confirming the prior find-

ings, our method also yields the associations between APOE

rs429538 and other eminent AD markers such as left orbitofrontal

cortex (middle) and right superior frontal gyrus (media), left cuneus,

right fusiform gyrus and left postcentral gyrus. There also appear to

be specific relationships among genotypes, phenotypes and neuro-

psychiatric symptoms that deserve further investigation.

Otherwise, to analyze the connectivity of selected brain regions

and to graphically show differences on connectivity hyper-network

between AD patients and NC, we compute the average hyper-edges

based on the selected maximum weight ROI (right superior occipital

gyrus) and the smaller weight ROI (right cuneus) in Table 4 for each

group (i.e. AD and NC). Specifically, for the maximum weight ROI

and the smaller weight ROI listed in Table 4, the following steps are

repeated to construct hyper-edges of NC and AD groups. First, for

each subject in each group, we first construct a hyper-edge using (4),

and calculate the edges of the highest occurrence frequency. Finally,

for each group, the top 8 ROIs with the highest occurrence number

are selected to construct the corresponding average hyper-edges.

Figure 6 graphically shows the average hyper-edges constructed on

the maximum weight ROI and the smaller weight ROI [BrainNet is

used to plot the hyper-edges (http://www.nitrc.org/projects/bnv/)

(Xia et al., 2013)]. As seen in Figure 6, the hyper-edges of the

selected maximum weight ROI in the AD group are obviously differ-

ent from those in the NC group. However, the hyper-edges of the

selected smaller weight ROI in the AD group are the same as those

in the NC group. These results confirm that the identified significant

brain ROI (the selected maximum weight ROI) is indeed related to

AD.

By the above analysis, it is further demonstrated that the func-

tional connectivity information between brain regions could help

mine the significant brain ROIs associated with the top risk

genotype.

3.6 Identification of the most stable ROI marker
We average the obtained sparse coefficients by our proposed

DAMM method. The overall average regression coefficients which

are combinations of brain network features phenotype for the ROIs

are plotted in Figure 7. The association weight map shows that the

selected imaging markers by our proposed method have clear pat-

terns that span across all the average five cross-validation trials. The

different metric features, node features and edge features, have iden-

tified some related ROI markers. And these identified phenotypic

markers are from extremely stable ROIs such as left hippocampus,

right parahippocampal gyrus and putamen. The identified stable

markers strongly agree with the existing findings, which further

demonstrated that connectivity features can be used as the comple-

mentary information to identify phenotypic markers.

Fig. 7. Weight maps on the associations between network phenotype and

APOE rs429358 across average five cross-validation trials by proposed

methods

Fig. 6. The average hyper-edges for NC (left) and AD (right) groups based on

the maximum weight ROI and the smaller weight ROI listed in Table 4. Here,

each sub-figure denotes a hyper-edge constructed based on the correspond-

ing ROI, where all nodes in each sub-figure form a hyper-edge, the red node

(i.e. centroid node linked by other nodes) in each sub-figure represents the

ROI used for constructing the hyper-edge, and the blue nodes represent the

corresponding ROIs. (a) R. Superior occipital gyrus (SOG.R) [L. Inferior occipi-

tal gyrus (IOG.L), L. Middle occipital gyrus (MOG.L), L.Supperior occipital

gyrus (SOG.L), L.Cuneus (CUN.L), R. Lingual gyrus (LING.R), R. Cuneus

(CUN.R), R. Middle occipital gyrus (MOG.R), L. Superior parietal gyrus

(SPG.L), R. Inferior occipital gyrus (IOG.R)]; (b) R. Cuneus (CUN.R) [L. Middle

occipitial gyrus (MOG.L), L. Superior occipitial gyrus (SOG.L), L.Cuneus

(CUN.L), L. Calcarine cortex (CAL.L), R. Calcarine cortex (CAL.R), R. Superior

occipital gyrus (SOG.R), R. Middle occipital gyrus (MOG.R)] (Color version of

this figure is available at Bioinformatics online.)
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4 Limitation

There are several limitations that should be further discussed in the

current study. First, we associate only the small samples, while our

proposed method considers the relationship between subjects to fur-

ther improve the performance for the association analysis, and the

small samples limit the heritability relationship. Therefore, much

more samples should be used in our experiments in future. Second,

the correlation coefficients (i.e. the correlation coefficients from the

edge features) are low in the experimental results, which only dem-

onstrate that the functional connectivity information between brain

regions could help mine the significant brain ROIs associated with

the top risk genotype. However, there also appear to be specific rela-

tionships among genotypes and connectivity phenotypes that de-

serve further investigation. Finally, we only investigate the top risk

SNP (i.e. APOE rs429358) association with the AD problem, and do

not test the risk SNP association with MCI problem, which is im-

portant to diagnose different stages of dementia.

5 Conclusion

In this article, a brain imaging genetics study has been performed to

explore the relationship between two brain network features and the

well-known AD risk SNP APOE rs429358. Because most of the cur-

rent studies only focus on the associations between brain structure

imaging and genetic variants, while neglecting the functional con-

nectivity information between brain regions. A novel framework has

been proposed to use structural voxel information and network con-

nectivity information as intermediate traits that bridge genetic risk

factors and disease status. In addition, most of existing multi-

modality methods are designed to select more discriminative fea-

tures by embedding complementary information between multi-

modal data, which only consider relationship between modalities of

the same subjects, and neglect the possible internal relations among

modalities of the different subjects. A diagnosis-aligned multi-mo-

dality method has been adopted to fully explore the relationships

among modalities of the different subjects. The promising empirical

results demonstrated that our method significantly outperforms the

traditional methods. Furthermore, the diagnosis-aligned multi-mo-

dality method could effectively mine the possible internal relations

among modalities of the different subjects, as well as yield improved

performances and biologically meaningful findings from real data.

This study is an initial attempt to explore the relation between the

connectivity features and genetic variants.

The future research topics are to further investigate how to con-

struct the brain network model and mine more brain network fea-

tures for exploring some biologically meaningful results.
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