Table 2.
Comparison of regression performance of node features and edge features by different methods
Method | RMSE (mean ± SD) |
P-value | CC (mean ± SD) |
P-value | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | ||||
SM | Node | 0.6837 ± 0.0101 | 0.6917 ± 0.0201 | < 1e-3 | 0.2028 ± 0.0261 | 0.1787 ± 0.1050 | <1e-3 |
Edge | 0.6950 ± 0.0061 | 0.7142 ± 0.0554 | <1e-3 | 0.0785 ± 0.0201 | 0.0068 ± 0.1120 | <1e-3 | |
MM | Node | 0.4528 ± 0.0098 | 0.5602 ± 0.0285 | <1e-3 | 0.7410 ± 0.0239 | 0.5696 ± 0.1016 | <1e-3 |
Edge | 0.5856 ± 0.0066 | 0.6635 ± 0.0254 | <1e-3 | 0.5057 ± 0.0191 | 0.2380 ± 0.1170 | <1e-3 | |
DGMM | Node | 0.4572 ± 0.0032 | 0.5526 ± 0.0032 | 0.0426 | 0.7439 ± 0.0012 | 0.5799 ± 0.0043 | 0.0396 |
Edge | 0.5891 ± 0.0024 | 0.6621 ± 0.0015 | <1e-3 | 0.5131 ± 0.0026 | 0.2333 ± 0.0044 | <1e-3 | |
DAMM | Node | 0.4648 ± 0.0132 | 0.5498 ± 0.0033 | – | 0.7571 ± 0.0077 | 0.5854 ± 0.0087 | – |
Edge | 0.5869 ± 0.0029 | 0.6577 ± 0.0019 | – | 0.5227 ± 0.0070 | 0.2446 ± 0.0013 | – |
Note: The best results are highlighted in bold.