Skip to main content
. 2018 Nov 5;35(11):1948–1957. doi: 10.1093/bioinformatics/bty911

Table 2.

Comparison of regression performance of node features and edge features by different methods

Method RMSE (mean ± SD)
P-value CC (mean ± SD)
P-value
Train Test Train Test
SM Node 0.6837 ± 0.0101 0.6917 ± 0.0201 < 1e-3 0.2028 ± 0.0261 0.1787 ± 0.1050 <1e-3
Edge 0.6950 ± 0.0061 0.7142 ± 0.0554 <1e-3 0.0785 ± 0.0201 0.0068 ± 0.1120 <1e-3
MM Node 0.4528 ± 0.0098 0.5602 ± 0.0285 <1e-3 0.7410 ± 0.0239 0.5696 ± 0.1016 <1e-3
Edge 0.5856 ± 0.0066 0.6635 ± 0.0254 <1e-3 0.5057 ± 0.0191 0.2380 ± 0.1170 <1e-3
DGMM Node 0.4572 ± 0.0032 0.5526 ± 0.0032 0.0426 0.7439 ± 0.0012 0.5799 ± 0.0043 0.0396
Edge 0.5891 ± 0.0024 0.6621 ± 0.0015 <1e-3 0.5131 ± 0.0026 0.2333 ± 0.0044 <1e-3
DAMM Node 0.4648 ± 0.0132 0.5498 ± 0.0033 0.7571 ± 0.0077 0.5854 ± 0.0087
Edge 0.5869 ± 0.0029 0.6577 ± 0.0019 0.5227 ± 0.0070 0.2446 ± 0.0013

Note: The best results are highlighted in bold.