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Abstract

Motivation: We set out to develop an algorithm that can mine differential gene expression data to

identify candidate cell type-specific DNA regulatory sequences. Differential expression is usually

quantified as a continuous score—fold-change, test-statistic, P-value—comparing biological

classes. Unlike existing approaches, our de novo strategy, termed SArKS, applies non-parametric

kernel smoothing to uncover promoter motif sites that correlate with elevated differential expres-

sion scores. SArKS detects motif k-mers by smoothing sequence scores over sequence similarity.

A second round of smoothing over spatial proximity reveals multi-motif domains (MMDs).

Discovered motif sites can then be merged or extended based on adjacency within MMDs. False

positive rates are estimated and controlled by permutation testing.

Results: We applied SArKS to published gene expression data representing distinct neocortical

neuron classes in Mus musculus and interneuron developmental states in Homo sapiens. When

benchmarked against several existing algorithms using a cross-validation procedure, SArKS identi-

fied larger motif sets that formed the basis for regression models with higher correlative power.

Availability and implementation: https://github.com/denniscwylie/sarks.

Contact: denniswylie@austin.utexas.edu or zemelmanb@mail.clm.utexas.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Discrete sequences—of tones, of symbols or of molecular building

blocks—can provide clues to other characteristics of the entities

from which they are derived: a phrase in a bird’s song can reveal

which species it belongs to, the use of an idiomatic expression can

pinpoint a speaker’s geographic origin and a specific short string of

nucleotide residues can illuminate the function of a DNA domain. In

these examples, insights are gleaned from the occurrence of inform-

ative motifs—short subsequences that match some frequently recur-

ring discernible pattern.

Of particular interest are DNA regions modulating differential

gene expression. The regions contain motifs that produce defined

patterns of gene expression, however, the details of how and which

motifs are needed for expression specificity remain poorly

understood.

We present a broadly applicable algorithm for identifying DNA

regulatory regions that support differential gene expression. Our

strategy is predicated on the following suppositions: (i) gene expres-

sion regulatory regimes involve the binding of transcription factors

(TFs) to sites on non-coding DNA in the vicinity of a transcription

start site (TSS) (Maston et al., 2006; Nguyen and D’haeseleer,

2006); (ii) TFs act combinatorially to attract and repel transcription

machinery (Walhout, 2006); (iii) the same TF-binding site may ap-

pear multiple times within a stretch of DNA, interspersed with other
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binding sites (Gotea et al., 2010); and (iv) there is more than one so-

lution: different genes, even those co-expressed within a single cell,

may rely on different regulatory mechanisms (Badis et al., 2009). In

accord with these suppositions, we aim to identify TF-binding sites

associated with enriched transcripts and scrutinize their arrange-

ment for significant patterns that can then be evaluated

experimentally.

Many motif identification methods have been described.

Consensus-based methods such as Weeder (Pavesi et al., 2001,

2004) focus on fixed-length motifs that repeatedly occur (with few

mismatches) in sequences of interest, and can be efficiently imple-

mented using suffix trees (Marsan and Sagot, 2000; Pavesi et al.,

2001; Sagot, 1998). Alternately, profile-based methods such as

MEME (Bailey and Elkan, 1995; Bailey et al., 2006, 2009) build a

probabilistic motif profile to be compared with a background model

in order to classify subsequences as either matching the motif or not.

In contrast, discriminative methods (Sinha, 2003) identify motifs

that differentiate one set of sequences (e.g. promoter regions for

genes with a given expression pattern) from another (e.g. reference

promoter regions). Many approaches have been applied to this dif-

ferentiation problem (e.g. Fauteux et al., 2008; Huggins et al., 2011;

Redhead and Bailey, 2007; Segal and Sharan, 2005; Segal et al.,

2002; Valen et al., 2009; Yao et al., 2014). One popular example,

DREME (Bailey, 2011), employs Fisher’s exact test to compare

counts of motif matches in the target/positive sequences with counts

in the background/negative sequences. HOMER (Heinz et al., 2010)

uses similar hypergeometric enrichment calculations, but couples

them to a zero-or-one-occurrence-per-sequence (ZOOPS) scoring

approach. The recent motif finder STEME (Reid and Wernisch,

2014) extends a suffix tree-based approximate expectation-

maximization approach (Reid and Wernisch, 2011) into a practical

tool capable of discriminative motif discovery.

When discriminative methods are applied to differential gene ex-

pression, they impose a binary representation (such as elevated or

not elevated expression). However, differential gene expression is

generally described using a continuous measure (t-statistics, f-statis-

tics, etc.), with some genes more affected than others by a difference

in state. It is more useful, therefore, to use ‘correlative motif discov-

ery,’ which seeks motifs whose presence signals a trend toward

higher or lower values of the continuous measure. A few such cor-

relative algorithms have been described, including MOTIF

REGRESSOR (Conlon et al., 2003), which first applies the (non-

correlative) MDScan (Liu et al., 2002) algorithm to identify motifs

in a subset of high-scoring sequences, then filters the motif set based

on the predictive value of regression models based on the selected

motifs. Another correlative algorithm, FIRE (Elemento et al., 2007),

iteratively optimizes the mutual information between sequence

scores and occurrences of candidate motifs, starting from a set of

most informative ‘seed’ motifs. Both of these algorithms may be

seen as applying correlational information (regression or mutual in-

formation, respectively) as a filter to select and refine a set of candi-

date motifs generated in a non-correlative manner.

The generation of a seed motif set paves the way for sequence

ranking by counting occurrences of the uncovered motifs within

each sequence wb. However, as the number of possible motifs of

length k grows exponentially with k, given a fixed set of sequences

fwbg and a suitably large k, only a fraction of possible length-k

motifs will be observed in any sequence wb. For example, in 1000

sequences w1; . . . ;w1000 each of length jwbj ¼ 1000, at most one

million k-mers of any length k can be found.

In contrast, we aimed to develop SArKS as an algorithm for dis-

covery and localization of correlative motifs that does not require

seed motifs to minimize the possibility of missing informative motifs

due to suboptimal seeding. Our solution was to focus on observed

substrings of the sequences wb, not all possible k-mer patterns that

could be present in the wb.

Specifically, SArKS relies on suffixes of wb—substrings formed

by deleting the beginning of a string. As there are only jwbj non-

empty suffixes of wb, SArKS is able to process all suffixes of its input

sequences even when when they are long and/or numerous. SArKS

then assesses suffix similarity by lexicographic sorting: just as words

sharing a common prefix are found close together in a dictionary,

suffixes starting with a shared k-mer are assigned similar numeric

positions in the sorted list of all suffixes (Fig. 1). By correlating

sorted suffix position with suffix sequence score using kernel

smoothing, SArKS develops this idea into an algorithm for de novo

discovery of motif sites, with a natural extension for identification

of longer multi-motif domains (MMDs) spanning tens to hundreds

of bases (Section 2).

We applied SArKS to two RNA-seq datasets using non-paramet-

ric permutation testing to compute significance thresholds and to es-

timate false positive rates. We demonstrate that SArKS outperforms

existing algorithms at identifying correlative motifs in cross-

validation testing scenarios. The top motif patterns and MMDs

identified by SArKS include known regulatory elements (Elbarbary

et al., 2016; Mathelier et al., 2015). Thus, the correlational ap-

proach used by SArKS takes full advantage of differential expression

RNA-seq data to illuminate prospective sequence-dependent mecha-

nisms of gene expression regulation.

2 Materials and Methods

Symbolic notation is described both when introduced and systemat-

ically in Section S2.1.

Fig. 1. Overview of SArKS method. (A) Concatenation of sequences wb (end-

of-sequence character indicated by white space instead of $ for visual clarity)

to form string x ¼ D$NA$AN$DRNAY$AY$. (B) Table of all suffixes of x (part

of each suffix following first end-of-sequence character shown in light gray),

along with index b of input sequence wb each suffix derived from and score

yb associated with wb. (C) Sorted suffix table indicating suffix array index i,

suffix array value si, suffix (sequence following first end-of-sequence charac-

ter has been removed), sequence of origin bi, associated score ybi
, and

smoothed score ŷ i generated using smoothing window of size 3 (kernel half--

width j ¼ 1). (D) Smoothed scores ŷ i plotted against suffix array index i, indi-

cating peak at i¼8 corresponding to suffix NAY of input sequence DRNAY.

Note that prefix NA of this suffix is longest substring common to the two in-

put sequences w1 and w3 with scores yb > 0
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Given n sequences wb (also referred to as words) with associated

scores yb, the essential steps of the algorithm (illustrated in Fig. 1

and described in Section 2.1) consist of:

1. concatenating all the sequences wb into one supersequence x;

2. constructing the suffix array ½si� of this supersequence

(Equation 2), where i indexes all suffixes of x sorted into lexico-

graphic order;

3. mapping suffix positions i back to the sequences wbi
from which

the beginnings of the associated suffixes are derived

(Equation 3); and

4. for each i, applying kernel smoothing to locally regress the se-

quence scores ybj
on suffix positions j lexically near i

(Equation 4).

We thus encode the motif pattern corresponding to the first few

characters of the suffix of x beginning at character si with the nu-

merical suffix array index value i. Because i gives the position of a

suffix in the lexicographically sorted list of suffixes of the concaten-

ated supersequence x, multiple occurrences of a highly conserved

motif—even if they derive from different sequences wb—will be con-

solidated into a run i, iþ1, . . ., j of consecutive index values.

Averaging together runs of j � i consecutive scores by kernel

smoothing using a kernel of width j � i thus offers a way to compare

the scores ybi
; ybiþ1

, . . ., ybj
to the overall score distribution (1).

2.1 Motif selection
Concatenate all words wb (each assumed to end in the line-

terminator character $ lexically prior to all other characters) to form

word

x ¼ w0 �w1 � . . . �wn�1 (1)

of length ln ¼ jxj ¼
P

b jwbj. Define also lb ¼
P

b0 <b jwb0 j. Then

x½lb; lbþ1Þ ¼ wb; that is, the substring of the concatenated string

starting at position lb (inclusive) and ending immediately before pos-

ition lbþ1 (exclusive) is the sequence wb (we denote the first charac-

ter of a string w by w½0�, the second w½1�, etc.).

Lexically sort suffixes xs ¼ x½s; jxjÞ into ordered set

S ¼ fxs0
; xs1

; . . . ;xsln�1
g (2)

thereby defining suffix array ½si�mapping index i of suffix in S to suf-

fix position s in x [in our software, we rely on the Skew algorithm

(Kärkkäinen and Sanders, 2003) modified to use a difference cover

of 7 and implemented in SeqAn (Döring et al., 2008) to efficiently

compute the suffix array].

Define block array ½bi� by

bi ¼ max fbjlb � sig (3)

mapping index i of suffix in S to block b containing suffix position

si. The block array then tells us that the character x½si� at position si

in the concatenated string x is derived from wbi
½si � lbi

� in the se-

quence wbi
.

Calculate smoothed scores as locally weighted averages

ŷi ¼

X
j

Kij ybjX
j

Kij

(4)

where the kernel Kij acts as a weighting factor for the contribution

of the score ybj
to the smoothing window centered at sorted suffix

index i. Kij is used to measure how similar (the beginning of) the suf-

fix x½sj; jxjÞ is to be considered to (the beginning of) the suffix

x½si; jxjÞ in the calculation of a representative score ŷi averaged over

suffixes similar to x½si; jxjÞ. As the suffixes have been sorted into lex-

icographic order, the magnitude of the difference i � j reflects this

similarity: the key idea of the kernel smoothing approach described

here is that Equation (4) with Kij defined to be a function of ji� jj
may therefore offer a computationally tractable approach for identi-

fying similar substrings which tend to occur preferentially in high-

scoring words wb.

In this work, we use a uniform kernel

K
ðjÞ
ij ¼

1 if ji� jj � j
0 otherwise

�
(5)

which allows Equation (4) to be computed in terms of cumulative

sums:

P
j K
ðjÞ
ij ybjP

j K
ðjÞ
ij

¼ 1

2jþ 1

Xiþj

j¼i�j

ybj
¼ 1

2jþ 1

Xiþj

j¼1

ybj
�
Xi�j�1

j¼1

ybj

0
@

1
A (6)

The kernel half-width j appearing in Equation (5) is an important

adjustable parameter controlling the degree of smoothing.

Increasing j smooths over more diverse suffixes, potentially increas-

ing statistical power at the expense of the resolution of the detected

motifs (i.e. length of k-mer prefix common to suffixes in the smooth-

ing window). We recommend investigating a range of values of this

parameter as is illustrated in Section 3.

Set length k̂i for k-mer associated with suffix array index i by

averaging locally the length of suffix sequence identity:

k̂i ¼

X
j6¼i

Kij max fk � kmaxjx½sj; sjþkÞ¼ x½si; siþkÞg
X
j 6¼i

Kij

(7)

where kmax functions both to increase computational efficiency

and to make k̂i more robust in the presence of a small number of

long identical substrings. All results presented here based on

kmax ¼ 12: This value was selected as kmax � log 4jxj where x is

the longest concatenated sequence string considered in Section

3.2.1, so that for k > kmax there are more distinct k-mers than

there are positions for such k-mers to occur in all of the sequences

wb composing x.

Equation (7) is similar to Equation (4) except that: (i) Equation

(7) smooths the length of the longest prefix on which the suffixes

x½si; jxjÞ and x½sj; jxjÞ agree instead of smoothing the score ybj
as in

Equation (4); and (ii) Equation (7) omits the central term i¼ j as it

trivially compares the suffix beginning at si to itself and is thus

uninformative.

A straightforward approach to identifying correlative motifs

using SArKS would then be to set a score threshold h and take motifs

to be k-mers prefixing the suffixes starting at the positions si in the

concatenated string x. This is the essence of our method, though

below we add two filters designed to pinpoint the optimal locations

si at which to initiate motifs and, in Section S2.2, to remove likely

false positive positions.

Defining the negative spatial shift operator gðiÞ which yields the

unique suffix array index corresponding to the spatial position im-

mediately prior to si, so that sgðiÞ ¼ si � 1, as well as the positive shift

operator qðiÞ similarly defined by the condition sqðiÞ ¼ si þ 1, we

start with a preliminary filtered suffix array index set I consisting of

those i for which (i) the smoothed score ŷi � h and (ii) ŷi is not less
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than the smoothed scores of the spatial positions in x immediately

adjacent to si (i.e. si must be the loci of a peak in plot of ŷi versus

spatial position si):

I ¼ i j ðŷi � hÞ ^
�

ŷgðiÞ � ŷi � ŷqðiÞ

�� �
(8)

from which we obtain the associated set M of k-mers beginning at

the positions si in x by

M ¼ fx½si; si þ bk̂ieÞji 2 Ig (9)

where bk̂ie is the nearest integer to k̂i. Strategies for setting the filter-

ing threshold h based on the permutation testing method are

described in Section S2.5. In the next section, we recommend one

additional filter—designed to limit the impact of intra-sequence tan-

dem repeats on reported motifs—to be incorporated into the defin-

ition of the index set I, replacing Equation (8) by Equation (10), for

use in Equation (9).

The k-mers composing the set M (Equation 9) constitute the

SArKS motif set when spatial smoothing is not employed. When spa-

tial smoothing is employed to detect MMDs (Sections 2.3 and S2.4),

a modified procedure for merging spatially contiguous motif sites

within such domains leads to Equation (S9) for the final k-mer motif

set Mspatial.

2.2 Limiting the impact of intra-sequence repeats
The frequent occurrence of short tandem repeats in the genome

(Ellegren, 2004) can cause smoothing windows to be skewed toward

a relatively small number of distinct sequences (discussed in Section

S2.2). As a result, the smoothed scores ŷi may reflect fewer input

sequences, reducing precision and increasing false positive rates

among the high-scoring k-mers. To filter out such false positives,

Section S2.2 introduces the Gini impurity score gi measuring the ‘ef-

fective sequence count’ contributing to the smoothing window cen-

tered at i, while Section S2.5 demonstrates that gi predicts the

variance of the smoothed score for suffix array index i under the

null hypothesis of independence between sequence and score. We

can thus modify Equation (8) to remove potential false positive i val-

ues characterized by low Gini impurities gi:

I ¼ fi j ðŷi � hÞ ^
�

ŷgðiÞ � ŷi � ŷqðiÞ

�
^ ðgi � gminÞg (10)

screening out positions i for which the repeated occurrence of a few

high-scoring words in the window centered at i leads to ŷi � h.

2.3 Spatial smoothing to identify MMDs
Existing motif discovery approaches recognize the tendency of regu-

latory motifs to cluster into domains (Wasserman and Sandelin,

2004). Our algorithm exploits this feature, identifying candidate

regulatory regions through the application of a second round of ker-

nel smoothing over suffix positions si within words:

^̂ysi
¼

X
j

Lsitj
ŷjX

t

Lsit

(11)

where we use uniform kernels of the form

L
ðkÞ
sitj
¼ 1 if

�
0 � ðtj � siÞ < k

�
^ ðbi ¼ bjÞ

0 otherwise

(
(12)

(generally with width k 6¼ j) to search for regions of length k with

elevated densities of high-scoring motif sites. Note that ^̂ysi
defined

by Equation (11) is indexed not by suffix array index i but by suffix

array value si giving the spatial position si in the concatenated

word x.

Spatial smoothing requires a threshold hspatial 6¼ h, as the doubly

smoothed scores ^̂ysi
tend to be less dispersed compared with the sin-

gly smoothed ŷi. The threshold hspatial can be used to define an index

set Ispatial in a manner similar to how I is defined by Equation (10).

This procedure is detailed in Section S2.4, which additionally defines

the set Jspatial of suffix array indices i corresponding to the starting

positions of MMDs. It then details the procedure adopted by SArKS

to merge spatially contiguous motif sites within the same MMD,

yielding the set Ispatial of suffix array indices i and merged motif

lengths
^̂
ksi

required to obtain the merged motif set Mspatial analogous

to Equation (9).

2.4 Permutation testing to establish significance of

motif set
The significance of the correlation between the occurrences of motifs

uncovered by SArKS and the sequence scores yb can be evaluated by

examining results obtained when the sequences wb and the scores yb

are independent of each other. To this end, the word scores yb are

subjected to permutation p to define y
ðpÞ
b ¼ ypðbÞ. If the permutation

p is randomly selected independently of both the sequences wb and

the scores yb, any true relationships between sequences and scores

will be disrupted. Sections S2.5–S2.6 develop the strategy used by

SArKS to set thresholds h (and/or hspatial) for each combination of

parameters j; k; gmin to control the overall false positive rate.

3 Results and discussion

3.1 Illustration of SArKS using simulated data
To illustrate SArKS, we first applied it to a simple simulated toy

dataset in which 30 random sequences wb were generated with each

letter wb½s� drawn independently from a UniffA;C;G;Tg distribu-

tion. We then embedded the k-mer motif CATACTGAGA (k¼10)

in the last 10 sequences (i.e. those wb with b � 20) by choosing

a position sb independently for each sequence wb from

Uniff0; . . . ; jwbj � kg and replacing wb½sb; sb þ kÞ with the motif.

Scores were assigned to the sequences according to whether the

motif had been embedded: yb ¼ 0 if b 2 ½0; 20Þ, yb ¼ 1 if b � 20.

The kernel half-width j¼4 was used to obtain smoothing win-

dows of size similar to the number of motif-positive sequences,

2jþ 1 � jfbjyb ¼ 1gj. As this number cannot be known in advance

when applying SArKS to real data, in practice we recommend testing

a range of j-values as done in Section 3.2.1 below.

Figure 2 plots ŷi as obtained from Equation (4) applying the

method of Section 2.1 to search for motifs. The highest peaks in the

plot correspond to the positions of various substrings of the

embedded motif, and correspond to the set M of k-mers defined

by the x½si; si þ bk̂ieÞ column of Table 1.

Removing nested k-mers from Table 1 as described in Section

S2.3, Equation (S7) leaves only the rows for

i 2 f2257; 2258; 2256; 1462; 1458; 1463g. Applying Equation

(S8) then extends the 8-mer ATACTGAG of the rows i 2
f1462; 1458; 1463g to the full 10-mer, so that, following

Equation (S9), the final k-mer set M0 ¼ fCATACTGAGAg is recov-

ered (Table 1).

Section S2.5 illustrates the utility of setting a minimum Gini im-

purity gmin during motif selection to reduce the false positive rate:

190 out of 1000 random permutations generated at least one
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position iðpÞ for which ŷ
ðpÞ
iðpÞ
¼ 1 � h (for this toy model h was taken

to have the maximum possible value of 1), but only 20 of these per-

mutations yield any results if gmin ¼ 0:8506 [following Equation

(S5) with c ¼ 0:1] is applied. Based on these results, we can derive a

95% confidence interval of (1.2%, 3.1%) for the family-wise error

rate (FWER, a type of false positive rate; see Section S2.6).

3.2 Uncovering promoter motifs associated with

differential gene expression
We set out to analyze two published RNA-seq datasets (Close et al.,

2017; Mo et al., 2015) using SArKS. The first study presented tran-

scriptome data for adult mouse neurons sorted according to cell

class (Mo et al., 2015). In particular, this study was among the first

to profile parvalbumin (PV)-expressing interneurons, a major inhibi-

tory subclass in the mammalian neocortex. PV basket and chande-

lier neurons are intimately involved in the microcircuitry of sensory

processing, memory formation and critical period plasticity (Cobb

et al., 1995; Klausberger and Somogyi, 2008). Dysfunction of PV

interneurons has been linked to autism and schizophrenia (Lewis

et al., 2005), and the ability to access these neurons using a cell

type-specific promoter has been a priority for brain scientists. The

second study examined transcriptomes of differentiating interneur-

ons at several developmental time points (Close et al., 2017). In the

sections below, we describe the parameters and results of SArKS

analyses for both datasets. In Section S3.2.2, we inspect the SArKS-

elicited motifs associated with PV neurons and demonstrate how to

extend the application of SArKS to identify promoter MMDs.

3.2.1 Dataset 1: cell class-specific transcriptome analysis

We analyzed RNA-seq gene expression data from mouse neocortical

neurons pooled based on genetically defined cell classes (Mo et al.,

2015) to identify regulatory motifs associated with PV neuron-

specific gene expression.

After accounting for differential expression and chromatin acces-

sibility (Section S2.7.1), we examined two sets of sequences for

6326 unique transcripts. The first set covered upstream regions

�3000 base pairs (bp) to the TSS, the second set extended from the

TSS to þ1000 bp.

We tested a range of half-window sizes j 2 f250; 500; 1000;

2500g with the maximum value of 2500 selected to produce a

smoothed window of size 2jþ 1 ¼ 5001 similar to the number of

input sequences (6326). Note that smaller windows are less likely to

contain sample multiple suffixes from the same promoter sequence:

in particular, windows of width greater than the number of distinct

sequences must contain multiple suffixes from at least one promoter

sequence.

For each half-window size j, we applied two minimum Gini im-

purity values gmin set according to Equation (S5) with first c ¼ 0:1

and then c ¼ 0:2. Also for each value of j, we examined three separ-

ate spatial window sizes k 2 f0; 10; 100g. These values were

selected to investigate the performance of SArKS using no spatial

smoothing (k¼0), using a window k¼10 of the typical length scale

of eukaryotic TF-binding sites (Stewart et al., 2012), and using a

window k¼100 to target the low end of the enhancer length distri-

bution (Loots, 2008). Thresholds h (for analyses with no spatial

smoothing) or hspatial (for analyses with k 2 f10; 100g) were set

according to the permutation testing strategy detailed in Section

S2.5 using R¼100 permutations.

3.2.2 Dataset 2: differentiating interneuron transcriptome analysis

We examined RNA-seq data for differentiating human interneurons

(Close et al., 2017), applying SArKS to identify promoter motifs

associated with elevated gene expression in doublecortin-positive

(DCXþ) GABAergic neurons compared with DCX� cells.

Differential expression was assessed for 6939 genes as detailed in

Section S2.7.2 and we analyzed upstream sequences (from

Table 1. Suffix array peak positions with ŷ i � h

Note: Illustration of motif selection process (Section 2.1) applied to simu-

lated data (using kernel half-width j¼ 4). All positions for which sequence

smoothed score ŷ i � h ¼ 1 are shown; table is sorted in descending order of

the estimated motif length k̂ i. Columns indicate values of key variables for

the suffix associated with the corresponding peak: (i) suffix array index i giv-

ing position of suffix in lexicographically sorted list of all suffixes; (si) suffix

array value si giving spatial position of suffix in concatenated sequence x; (ŷ i)

kernel-smoothed score ŷ i (Equation 4); (k̂ i) estimated length k̂ i (Equation 7)

of conserved bk̂ ie-mer prefix of suffixes within smoothing window centered

on suffix array index i; (x½si; si þ bk̂ ieÞ) the corresponding conserved bk̂ ie-mer

x½si; si þ bk̂ ieÞ (Equation 9); (bi) the input sequence bi (Equation 3) from

which the suffix is derived; (xi) the spatial position xi at which the suffix is

found within sequence bi; and (gi) the Gini impurity gi (Equation S4) for the

smoothing window centered at i. Note that each of these peaks corresponds

to a suffix derived from a position within the first three characters of an in-

stance of the embedded motif CATACTGAGA. Gold highlighting indicates

peaks starting from the first character of the embedded motif, silver the se-

cond and bronze the third.

Fig. 2. Locating peaks in kernel-smoothed scores ŷ i . Kernel-smoothed scores

ŷ i [Equation (4), using kernel half-width j¼4] are plotted against suffix array

index i for simulated dataset. Gold, silver and bronze bars indicate positions

in lexicographically sorted table of suffixes beginning with prefixes CAT, ATA

and TAC, which correspond to the first five characters of embedded motif

CATACTGAGA. Detailed information on the peak locations at which the

smoothed score ŷ i ¼ 1 is presented in Table 1 below
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�3000 bp to the TSS) and downstream sequences (from the TSS to

þ1000 bp) as described in Section 3.2.1.

SArKS analysis was conducted using all combinations of half-

window size j 2 f250; 500; 1000; 2500g and spatial smoothing

window k 2 f0; 10; 100g for the reasons described in Section

3.2.1. However, for this dataset, the minimum Gini impurity thresh-

olds were computed using only c ¼ 0:1—we had seen little benefit

from including the higher value c ¼ 0:2 in our experience with the

Mo (2015) dataset (see Section 3.2.4). Thresholds h or hspatial were

set according to the permutation testing strategy detailed in Section

S2.5 using R¼100 permutations.

3.2.3 Benchmark comparisons for correlative motif discovery

We conducted a cross-validation benchmarking study to compare

SArKS correlative motif discovery performance to that of five motif

search algorithms. Two of these methods, FIRE (Elemento et al.,

2007) and MOTIF REGRESSOR (Conlon et al., 2003), were chosen

because they rely on alternative approaches to correlative motif dis-

covery. The remaining algorithms, DREME (Bailey, 2011),

HOMER (Heinz et al., 2010) and STEME (Reid and Wernisch,

2014) are popular discriminative methods, which we have run by

discretizing our score data with promoter sequences b considered

‘positive’ sequences if the score yb � 2, ‘negative’ otherwise. While

there is a definite loss of information in this discretization—the

avoidance of which is one of the primary motivations for the intro-

duction of SArKS, as well as other correlative motif algorithms—we

were interested in direct comparison of correlative and discrimina-

tive algorithms to assess the degree to which correlative algorithms

actually benefit from avoiding discretization.

We note also that most of the algorithms compared here

(DREME, HOMER, MOTIF REGRESSOR and STEME) use a

position-weight matrix representation of sequence motifs, while

FIRE opts for a simpler regular expression representation. In con-

trast, SArKS takes the more granular approach of directly returning

a list of k-mers, with degenerate motif patterns represented as mul-

tiple similar-yet-distinct k-mers. These k-mers can be clustered into

higher-order motif structures—one method for doing so is offered in

our software implementation of SArKS (https://github.com/dennisc

wylie/sarks)—but, as this step is essentially independent of the

SArKS algorithm itself, we do not consider such k-mer clustering

further in this article.

We split the 6326 transcripts selected from the Mo (2015) data-

set into five disjoint subsets V1;V2; . . . ;V5 (the name Vf intended to

suggest the f th validation set) of approximately equal size

(jV1j ¼ 1266, while jVf j ¼ 1265 for f>1). The set of 6939 genes

selected from the Close (2017) dataset was similarly partitioned into

disjoint cross-validation folds.

For both datasets, for both promoter sequence ranges investi-

gated, and for each of the algorithms evaluated, five separate motif

identification analyses were conducted corresponding to the five

cross-validation folds Vf. For each analysis f 2 f1; . . . ; 5g, motif dis-

covery was performed using the sequences and scores from all folds

except Vf: the genes assigned to Vf were instead held out for valid-

ation of the discovered motif (so that the set of genes used to learn

the motif sets was in each case disjoint from the set of genes used for

validation). Existing algorithms were run at their default parameter

settings where possible; exact specifications are given in Section

S2.8, while SArKS parameters were set as described in Sections 3.2.1

to 3.2.2.

We used tomtom (Gupta et al., 2007) to compare the pooled

motif sets identified by each algorithm. Supplementary Figure S3

shows the resulting overlap between motifs sets by algorithm: for

each of the benchmarked algorithms, the majority of identified

motifs had a SArKS-identified counterpart. SArKS also identified

many additional motifs.

The Pearson correlation between the count of occurrences of a

given motif in sequence wb with the score yb across the sequence-

score pairs (wb, yb) provides a natural metric for assessing correla-

tive motif discovery performance. Figure 3 plots the estimated

Pearson correlation values for each motif identified (by each

Fig. 3. Benchmark comparisons of correlations between motif counts and

gene specificity scores in held-out validation subsamples. (A) Each vertical

line represents a motif identified by the indicated algorithm in one of the five

cross-validation folds for the Mo (2015) dataset (Mo et al. 2015). The horizon-

tal position of the line encodes the Pearson correlation coefficient of the motif

count with the associated sequence score (calculated using only the genes in

the held-out validation set for the cross-validation fold in which the motif was

identified). The count for a given motif in sequence wb was assessed using

fimo (Grant et al. 2011) for DREME, HOMER, MOTIF REGRESSOR and

STEME—all of which represent motifs as position-weight matrices—and

using a simple regular expression search for FIRE (which returns regular ex-

pression representations of motifs) and for SArKS k-mers. In all cases, motif

counts were based on motif occurrences on either the forward or reverse

strand. Row: sequence region for motif counts, either 3 kb upstream or 1 kb

downstream of TSS; column: interval containing average number of occur-

rences of motif within sequence region across all analyzed genes. Widths of

violins represent motif density and are scaled consistently across all panels.

(B) Same as (A), except applied to Close (2017) dataset (Close et al. 2017). (C)

Motif regression model predictions correlate with gene specificity scores in

held-out cross-validation subsamples. Each of five cross-validation folds is

plotted as separate point for each algorithm. Each regression model was built

using feature vector constructed by concatenating counts of upstream motifs

in upstream regions with counts of downstream motifs in downstream

regions. Left panel: results of modeling applied to Mo (2015) dataset; right

panel: same for Close (2017) dataset. Vertical lines indicate mean Pearson

correlation across all folds
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algorithm) evaluated using the held-out validation set fðwb; ybÞjb 2
Vf g appropriate for the fold f in which the motif was discovered

(with Figure 3A and B presenting results for the Mo (2015) and

Close (2017) datasets, respectively).

As Figure 3A and B and Supplementary Figure S3 demonstrate,

the number of motifs identified by different algorithms can be highly

variable: DREME, FIRE �HOMER, MOTIF REGRESSOR <

SArKS (the motif count for STEME is a fixed input parameter). The

interpretation of the number of motifs is, however, complicated by

two factors: (i) the occurrence rate of individual motifs in the rele-

vant biological sequences (promoters, etc.) may differ substantially

(e.g. longer motifs may occur less frequently, while motifs allowing

for substantial variation at some positions may occur more frequent-

ly) and (ii) some motifs may be very similar in sequence.

The first of these complications is illustrated in Figure 3A and B

by faceting horizontally on motif occurrence rate (count per se-

quence): one visible trend here is that the DREME-, FIRE- and

HOMER-identified motifs tend to occur less frequently than do the

MOTIF REGRESSOR and STEME motifs, indicating that DREME,

FIRE and HOMER tend to define motifs more granularly than do

MOTIF REGRESSOR or STEME. SArKS-identified motifs are

spread across a wide range of per-sequence occurrence rates in this

plot, as SArKS identifies both more and less granular motifs as the

size of the smoothing window j is varied through the ranges speci-

fied in Sections 3.2.1 to 3.2.2.

The second complication—the similarities among identified

motifs—may be addressed by noting that correlative motif discovery

can also be viewed as a form of feature extraction. In this vein, we

can assess the performance of such algorithms by using the selected

motifs as predictors to build regression models for associated se-

quence score yb based on the motif counts in the sequence wb.

Figure 3C plots validation set-estimated Pearson correlations of the

predictions made by building a linear ridge regression model [using

generalized cross-validation (Golub et al., 1979) to select the L2

regularization parameter] with the sequence scores for each cross-

validation fold by algorithm. Motifs were counted only within the

sequence range in which they were identified, with these counts then

merged into a single feature vector per gene to allow the regression

models to consider both upstream and downstream motifs simultan-

eously. This approach collapses the variation in quantity and quality

of individual motifs down to variation of a single quantity—the re-

gression model predictions—thereby facilitating a head-to-head

comparison of motif discovery algorithms bypassing both of the

complications discussed above. As the similarity of some identified

motifs manifests as collinearity of regression predictors, regulariza-

tion is a key component of this modeling approach.

SArKS yields better results than the other algorithms for both

validation datasets (Fig. 3C); aside from SArKS, the other two cor-

relational motif discovery algorithms (FIRE and MOTIF

REGRESSOR) do not appear to show a consistent advantage in per-

formance relative to the discriminative algorithms.

If, instead of using the merged motif feature set, the regression

models are built using only upstream or downstream motif counts,

the results shown in Supplementary Figure S2 are obtained, making

clear that all six algorithms generally perform better when searching

the downstream regions (for which SArKS shows a particularly

strong advantage in both datasets).

Considering the downstream motif results, we noted that for

every algorithm applied to the Mo (2015) dataset, the motif with

the highest Pearson correlation coefficient between occurrence count

and PV specificity score in the held-out cross-validation fold

exhibited significant tomtom similarity (q � 0:1) to the ESRRA/

ESRRB/ESRRG trio of TF-binding motifs documented in the

JASPAR database (Mathelier et al., 2015). Looking at the Close

(2017) downstream motif results, we observed that the most highly

cross-validation-correlated motifs for three of the algorithms—

FIRE, HOMER and SArKS—were significantly similar to all of the

JASPAR motifs TGIF1/TGIF2/MEIS2/MEIS3/PKNOX1/PKNOX2.

In contrast, the top upstream motif results showed no such con-

vergence on common JASPAR profiles: applied to the Mo (2015)

dataset, only one pairwise combination of two algorithms—FIRE

and STEME—produced top upstream motifs (ranked by cross-

validated Pearson correlation) that showed significant tomtom simi-

larity (q � 0:1) to a common JASPAR profile (NR5A2, whose bind-

ing motif closely resembles the ESRRA/ESRRB/ESRRG pattern

mentioned above). Applied to the Close (2017) dataset, no two algo-

rithms produce motifs similar to the same JASPAR profile.

We see that in those cases where all of the algorithms performed

better in the cross-validation testing (downstream), the top motifs

were more likely to converge on known TF-binding motifs.

Interestingly, SArKS outperformed the other algorithms to a greater

degree in the analyses of downstream regions than of upstream

regions.

Comparison of all of the motifs discovered by the various algo-

rithms with known TF-binding motifs is further explored in Section

S3.2.

Finally, we compared the average run times for each of the

benchmarked algorithms applied to the upstream and downstream

cross-validation analyses. As is shown in Figure 4, SArKS took lon-

ger than most of the other algorithms with the exception of STEME;

FIRE and HOMER are quite fast relative to the others. Further dis-

cussion of the computational complexity of SArKS is provided in

Section S3.3.

3.2.4 Permutational analysis of SArKS results

The permutation testing procedure used to set SArKS score thresh-

olds can be used for directly assessing the statistical significance of

the motif set SArKS reports as well. This is done by (i) following the

procedure laid out in Sections S2.5 and S2.6 using a set of R ran-

domly drawn permutations of the input sequence scores to deter-

mine threshold values for motif selection and (ii) independently

drawing a second set of R2 permutations from which the false posi-

tive rate corresponding to these thresholds can be estimated accord-

ing to Equation (S26).

To demonstrate this procedure, we re-applied SArKS to both the

Mo (2015) and Close (2017) datasets here including all 6326 or

6939 selected genes (respectively) without cross-validation subset-

ting. We again investigated all combinations ðj; kÞ 2
f250; 500; 1000; 2500g 	 f0; 10; 100g for the smoothing

Fig. 4. Benchmarked algorithm run times. Average run times per cross-valid-

ation fold for each motif discovery algorithm applied to either upstream (solid

circles) or downstream (open circles) regions for selected genes from Close

(2017) dataset (for which all analyses were run on the same computer

system)
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half-width j and spatial length k, computing gmin for each value of j
following Equation (S5) using the c values indicated in Sections

3.2.1 to 3.2.2, and determining significance thresholds using

R¼100 randomly generated permutations.

For the Mo (2015) dataset, the analyses performed using the

stricter gmin values obtained using c ¼ 0:1 yielded larger k-mer motif

sets: 3393 total distinct k-mers versus only 1232 using c ¼ 0:2 for

the upstream sequence set; 380 distinct k-mers using c ¼ 0:1 versus

just 180 using c ¼ 0:2 for the downstream sequence set. More than

98% of the k-mers discovered using c ¼ 0:2 were also identified

using c ¼ 0:1 (for both sequence ranges: 1208 of the 1232 upstream;

179 of the 180 downstream). Based on these results for the Mo

(2015) analysis, we focused exclusively on c ¼ 0:1 for the Close

(2017) analysis, as described in Section 3.2.2.

The results above demonstrate that restrictive values of c can

yield larger motif sets that include almost all of the motifs obtained

using more permissive c values. This highlights the importance of

the Gini impurity filter in focusing SArKS on potential motifs that

appear within sufficiently many distinct sequences wb to achieve rea-

sonable statistical confidence.

We assessed the statistical significance of these SArKS results fol-

lowing the method of Section S2.6 with thresholds h and hspatial set

by Equation (S24) and Equation (S25) using z¼4. Upstream se-

quence analysis of the Mo (2015) set considering R2 ¼ 250 inde-

pendent random permutations resulted in 12 (4.8%) for which any

of the parameter sets ðj; gmin; kÞ yielded a non-empty set of identified

motifs; for the Close (2017) set, the same procedure resulted in 8

(3.2%) non-empty motif sets. These upstream sequence results cor-

respond to a 95% family-wise error rate confidence interval (FWER

CI) of (2.5%, 8.2%) in the Mo (2015) analysis and (1.4%, 6.2%) in

the Close (2017) analysis.

For the downstream sequence analysis, R2 ¼ 250 independent

permutations yielded 8 (3.2%) instances of non-empty motif sets for

Mo (2015) and 1 (0.4%) non-empty motif set for Close (2017),

from which we estimate 95% FWER CIs of (1.4%, 6.2%) for Mo

(2015) and (0.01%, 2.2%) for Close (2017).

The role of the parameter z in Equations (S24 and S25) in bal-

ancing FWER against sensitivity can be seen in the analyses pre-

sented here by considering the consequence of increasing z: at z¼5

for the same 250 permutations, the permutation analysis using up-

stream regions resulted in non-empty motif sets in only two permu-

tations for Mo (2015) or one permutation for Close (2017).

Similarly, for the downstream regions, permutation analysis with

z¼5 resulted in 4 or 1 permutation(s), respectively. The cost of

these decreased false positive rates to sensitivity is apparent in that

at most half of the motif k-mers identified using z¼4 were still dis-

covered using z¼5 in each of the analyses; for the Close (2017) up-

stream analysis conducted with z¼5, SArKS returned no significant

motif results at all. Here we were willing to accept the FWER values

associated with z¼4 (point estimates ranging from 0.4% to 4.8%

in these analyses) in order to maintain a higher sensitivity.

Selection of the parameter z to appropriately balance sensitivity

against false positive rate will generally depend on the range of j, k,

and gmin values investigated. When SArKS analyses are conducted

for many combinations of these parameters there will be corres-

pondingly more possible opportunities for false positives, requiring

a higher value of z to maintain confidence in the results. In cases

where the size of the returned motif set may be large, there is an add-

itional factor to consider: the smaller motif sets associated larger

values of z benefit not only from greater statistical confidence but

also from a reduction in the computational effort required to refine

and process the motif set (Section S3.3).

4 Conclusions

We introduce SArKS as a method for de novo discovery of the sites

and domains of correlative motifs. SArKS avoids the dichotomiza-

tion—and consequent loss of information (Fedorov et al., 2009)—of

sequence scores into discrete groups as required by discriminative

motif discovery algorithms. SArKS does not require specification of

parametric background sequence models, instead using non-para-

metric permutation methods (Ernst, 2004) to set thresholds for

motif identification and to estimate false positive rates. SArKS

smooths over spatial motif location to identify MMDs, which can in

turn help refine the identified motifs. We have benchmarked SArKS

against several existing discriminative and correlative algorithms

using previously published RNA-seq data: SArKS uncovered par-

ticularly rich motif sets and SArKS motif sets functioned as more

predictive feature sets in a cross-validated regression modeling ap-

proach than did motif sets generated by existing algorithms. SArKS

thus offers an approach to the discovery and localization of motifs

capable of fulling exploit differential gene expression data.
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