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Abstract

Motivation: An important challenge in gene expression analysis is to improve hub gene selection

to enrich for biological relevance or improve classification accuracy for a given phenotype. In order

to incorporate phenotypic context into co-expression, we recently developed an epistasis-

expression network centrality method that blends the importance of gene–gene interactions (epis-

tasis) and main effects of genes. Further blending of prior knowledge from functional interactions

has the potential to enrich for relevant genes and stabilize classification.

Results: We develop two new expression-epistasis centrality methods that incorporate interaction

prior knowledge. The first extends our SNPrank (EpistasisRank) method by incorporating a gene-

wise prior knowledge vector. This prior knowledge vector informs the centrality algorithm of the in-

clination of a gene to be involved in interactions by incorporating functional interaction information

from the Integrative Multi-species Prediction database. The second method extends Katz centrality

to expression-epistasis networks (EpistasisKatz), extends the Katz bias to be a gene-wise vector of

main effects and extends the Katz attenuation constant prefactor to be a prior-knowledge vector for

interactions. Using independent microarray studies of major depressive disorder, we find that

including prior knowledge in network centrality feature selection stabilizes the training classifica-

tion and reduces over-fitting.

Availability and implementation: Methods and examples provided at https://github.com/insilico/

Rinbix and https://github.com/insilico/PriorKnowledgeEpistasisRank.

Contact: brett-mckinney@utulsa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hubs in gene co-expression networks likely play an important role

in understanding the regulation of biological processes and pheno-

types. Recent studies have investigated the potential for co-

expression network hubs to be used to prioritize genes for statistical

inference. GeneRank (Morrison et al., 2005) used the PageRank

(PR) algorithm (Page et al., 1999) to prioritize genes by combining

gene co-expression with external information, such as Gene

Ontology and protein–protein interactions. The constant damping

constant in PR was extended to a damping vector in Fu et al., 2006,

and the usage of this damping vector to incorporate prior knowledge

in GeneRank was discussed in Demidenko, 2015.

Co-expression network hubs do not explicitly use outcome or

phenotype information. This controls the risk of over-fitting in classi-

fication but also loses important contextual information about con-

nectivity influenced by the phenotype. We developed a gene

expression centrality [EpistasisRank (ER)] that includes phenotype

context by computing statistical interactions (e.g. epistasis) between

transcripts (Lareau et al., 2015) in an epistasis-expression or
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differential co-expression network (McKinney et al., 2013). Prior

to this generalization to expression data, we had developed a

SNPrank centrality for epistasis networks in GWAS (Hu et al.,

2013; McKinney et al., 2009). In the current study, we extend the

generalized ER method to use a gene-wise interaction prior prob-

ability vector, and we develop a new epistasis network centrality

based on Katz centrality (Katz, 1953) that combines main and

interaction effects as well as prior knowledge when ranking the im-

portance of predictors.

2 Materials and methods

2.1 ER and EpistasisKatz centrality with gene-wise prior

probability
ER centrality operates on a regression-based Genetic Association

Interaction (reGAIN) network (Pandey et al., 2012), which is a

weighted NxN matrix, B, where N is the number of genes. The diag-

onal, Bii, represents the main effect regression coefficient of the gene

on the phenotype and the off-diagonal Bij, is the interaction effect

coefficient between genes on the phenotype. The formula for ER is a

system of equations that can be solved through least squares:

ERi ¼
Bii

N � TrðBÞ þ di

X

j 6¼i

Bij�ERj

kj
þ 1� di

N
: (1)

In the first term, each gene i gets a contribution to network im-

portance from the gene’s main effect (Bii), where the trace of B,

Tr(B), is a normalization. In the second term, each gene i gets a con-

tribution from its interaction partners (Bij) proportional to the im-

portance of the partners, ERj, normalized by the degree of gene j, kj

(non-zero), from the B matrix. This total interaction contribution is

weighted by the prior probability di for gene i to be involved in inter-

actions. The prior probability vector di is the normalized degree of

the Integrative Multi-species Prediction (IMP) network. The last

term gives all genes a uniform importance proportional to the com-

plement of its inclination for interaction, (1–di).

Katz centrality is a two-parameter extension of eigenvector cen-

trality (Supplementary Material). We extend Katz to EpistasisKatz

(EK) with prior knowledge as follows

EKi ¼ di

X

j 6¼i

BijEKj þ Bii: (2)

In the first term, each gene i is given network importance based on

the EK weights, EKj, of its interaction partners and their Bij

reGAIN regression weights. The interaction term is weighted by

IMP prior knowledge vector di. In standard Katz, this prefactor is a

constant that attenuates the centrality contribution of more distant

connections. Thus, we extend the attenuation constant in Katz to

allow for gene-specific attenuation (di), which is the IMP-based

prior probability for interactions. In the second term, sometimes

referred to as the bias vector, each gene is assigned importance

based on its main effect, Bii. In standard Katz, this second term is a

vector of repeated constants. This extends Katz to allow a vector

of gene-wise constants.

2.2 Data processing
We identified two gene expression datasets from GEO for major de-

pressive disorder that we refer to as Cambridge (Leday et al., 2017)

and Japan (Miyata et al., 2016). We Z-transformed each dataset

based on their respective controls to make the datasets more com-

parable to each other (Wang et al., 2016). We were also concerned

about the imbalanced case/control ratio in the Cambridge (training)

data with its 128 cases and 64 controls. Thus, we under-sampled

(Lina, 2015) the case samples in the Cambridge dataset to obtain a

balance of 64 cases and 64 controls. In the Japan (testing) dataset,

there are 20 cases and 12 controls. In addition, we filtered the top

5000 genes using coefficient of variation across the 2 datasets. For

prior knowledge, we used the 5000 genes to query IMP to construct

a network based on predicted functional interactions, and then we

computed the normalized degree of each gene i of the IMP network

as the prior knowledge vector di.

3 Results

We compared training accuracy and validation accuracy using each

centrality method (PR, Katz, EK and ER) for feature selection with

and without prior knowledge (Fig. 1). To avoid over-fitting, we used

nested cross-validation (CV) to prevent feature selection from caus-

ing over-fitting (Le et al., 2017; Varma and Simon, 2006). We used

xgboost binary classification on boosted decision trees (Chen and

Guestrin, 2016) for the outer CV loop and centrality feature selec-

tion methods in the inner CV loop.

All centrality feature selection methods improve validation ac-

curacy over xgboost classification without feature selection (Fig. 1).

Katz-based centralities have the highest accuracies. Without prior

knowledge (left panels of Fig. 1), all feature selection methods show

a large drop in validation accuracy relative to the training accuracy

(over-fitting) despite use of nested CV. Use of prior knowledge to

inform centrality (right panels of Fig. 1) yields more stable accuracy

across training and validation sets. The training accuracies are lower

than without prior knowledge; however, they are more consistent

with and a more realistic estimate of the independent validation

accuracy.

Fig. 1. Training accuracy (Cambridge data) and independent validation accur-

acy (Japan data) with centrality feature selection without prior knowledge

(left panels) and with prior knowledge (right panels). Top: Co-expression net-

work centrality feature selection methods, PR and Katz. Bottom row:

Expression-epistasis network centrality methods, ER and EK. Accuracies com-

puted by xgboosted trees with nested CV. Xgboost accuracies without feature

selection also shown (squares)

2330 S.Parvandeh and B.A.McKinney

Deleted Text: EpistasisRank 
Deleted Text: EpistasisRank 
Deleted Text: EpistasisRank 
Deleted Text: (ER) 
Deleted Text: <italic>-</italic>
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty965#supplementary-data
Deleted Text: P
Deleted Text:  
Deleted Text:  
Deleted Text: , 
Deleted Text: two 
Deleted Text:  
Deleted Text: , 
Deleted Text: PageRank
Deleted Text: ,


4 Discussion

In a previous study, we used the Integrative Multi-species Prediction

(IMP) database (Wong et al., 2012) to predict functional networks

from epistasis network seed genes from SNPrank in GWAS data

(McKinney et al., 2016). In the current study, we compute the de-

gree centrality (di) of each gene i from an IMP network and use this

as a prior probability vector for the interaction term in the new ER

and EK epistasis-expression centralities for a network from an

independent dataset. We hypothesize that incorporating functional-

connectivity prior knowledge into epistasis-expression network cen-

trality will improve the generalization of classification accuracy.

We extended the ER centrality to include a gene-wise vector to

integrate prior knowledge. We generalized Katz centrality in EK to

include a gene-specific vector, which we use to incorporate the prior

probability for interaction effects. We extended the constant bias

vector term in Katz to incorporate main effect contributions from

the reGAIN matrix. We found prior knowledge led to more stable

training accuracy and improved testing validation accuracy in gene

expression analysis of major depressive disorder.

Prior knowledge also led to an increase in the number of signifi-

cantly enriched relevant pathways (Supplementary Material). For

example, including prior knowledge led to statistically significant

enrichment of Serotonin Receptor and G coupled protein receptor

pathways, which are related to mood disorders (Imbrici et al.,

2013). The ER and EK methods apply to epistasis networks in

GWAS as well as gene expression, and the prior probability vector

can blend information between heterogeneous data-driven networks

as well as prior knowledge from IMP or other prior networks.

The network construction and centrality methods, including

EpistasisRank and EpistasisKatz, are included in our Rinbix

R package at https://github.com/insilico/Rinbix. The specific feature se-

lection and classification analysis in the current study is reproduced in

https://github.com/insilico/PriorKnowledgeEpistasisRank.
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