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Abstract

Motivation: Isoforms are mRNAs produced from the same gene locus by alternative splicing and

may have different functions. Although gene functions have been studied extensively, little is

known about the specific functions of isoforms. Recently, some computational approaches based

on multiple instance learning have been proposed to predict isoform functions from annotated

gene functions and expression data, but their performance is far from being desirable primarily

due to the lack of labeled training data. To improve the performance on this problem, we propose a

novel deep learning method, DeepIsoFun, that combines multiple instance learning with domain

adaptation. The latter technique helps to transfer the knowledge of gene functions to the prediction

of isoform functions and provides additional labeled training data. Our model is trained on a deep

neural network architecture so that it can adapt to different expression distributions associated

with different gene ontology terms.

Results: We evaluated the performance of DeepIsoFun on three expression datasets of human and

mouse collected from SRA studies at different times. On each dataset, DeepIsoFun performed sig-

nificantly better than the existing methods. In terms of area under the receiver operating character-

istics curve, our method acquired at least 26% improvement and in terms of area under the

precision-recall curve, it acquired at least 10% improvement over the state-of-the-art methods. In

addition, we also study the divergence of the functions predicted by our method for isoforms from

the same gene and the overall correlation between expression similarity and the similarity of pre-

dicted functions.

Availability and implementation: https://github.com/dls03/DeepIsoFun/

Contact: dshaw003@ucr.edu or jiang@cs.ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In eukaryotes, the mechanism of alternative splicing produces mul-

tiple isoforms from the same gene. Studies in Pan et al. (2008) and

Wang et al. (2008) reveal that more than 95% of human multi-exon

genes undergo alternative splicing. Though the changes in the

sequences of the isoforms of the same gene are very small, they may

have a systematic impact on cell functions and regulation (Gallego-

Paez et al., 2017). It has been widely reported that isoforms from

the same gene sometimes have distinct or even opposite functions

(Himeji et al., 2002; Melamud and Moult, 2009; Mittendorf et al.,

2012). For example, among the two isoforms, l-KlCpo and s-KlCpo,

of gene KlHEM13 that use different transcription start sites, only

s-KlCpo is involved in the growth of Kluyveromyces lactis Dhem13

mutants (Vázquez et al., 2011). There is also evidence that alterna-

tive splicing plays an important role in the evolutionary process

(Gueroussov et al., 2015). For example, the absence of exon 9 in

one of the isoforms of gene PTBP1 expressed in the brains of
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mammals amplifies the evolutionary difference between mammals

and the other vertebrates (Gueroussov et al., 2015). Many studies

have found that alternative splicing is critical in human health and

diseases. For example, to escape from cell death in tumorigenesis,

gene BCL2L1 produces two isoforms with opposite functions,

where BCL-XS is pro-apoptosis but BCL-XL is anti-apoptosis

(Revil et al., 2007). Similarly, gene CASP3 has two isoforms, with

CASP3-L being pro-apoptosis and CASP3-S anti-apoptosis (Végran

et al., 2006). An isoform of gene TNR6 that skips exon 6 may initi-

ate cell death (Bouillet and O’Reilly, 2009). Among the two iso-

forms of gene PKM, PKM1 and PKM2 that skip exons 9 and 10,

respectively, only PKM2 is widely expressed in cancer cells

(Mazurek et al., 2005). Besides these examples, the results in Himeji

et al. (2002), Melamud and Moult (2009), Oberwinkler et al.

(2005) and Pickrell et al. (2010) offer more interesting stories of iso-

forms with dissimilar functions and hence motivate the study of spe-

cific functions of isoforms.

There is rich literature concerning the prediction of gene func-

tions (Barutcuoglu et al., 2006; Mi et al., 2012; Schietgat et al.,

2010; Vinayagam et al., 2004; Yang et al., 2015). In particular, the

UniProt Gene Ontology (GO) database has been widely used as a

standard reference for gene function annotation (Ashburner et al.,

2000; Barrell et al., 2009). It is organized as a directed acyclic graph

where the nodes represent functional terms (referred to as GO

terms) and edges indicate how a term is subdivided into more

detailed functional concepts. The directed acyclic graph is comprised

of three main branches, i.e. Biological Process (BP), Molecular

Function (MF) and Cellular Component (CC) (Ashburner et al.,

2000), representing three distinct classes of functional concepts. The

functions of a gene are then represented by mapping the gene to all

relevant terms in GO. In contrast, very little systematic study has

been done about the specific functions of isoforms and there is no

central database that provides annotated isoform functions.

Recently, several machine learning approaches were proposed to

predict isoform functions from GO and RNA-Seq expression data

(Eksi et al., 2013; Li et al., 2014, 2015; Luo et al., 2017; Panwar

et al., 2016). In other words, these methods attempt to distribute the

annotated functions of a gene to its isoforms based on their expres-

sion profiles. Since labeled training data were generally unavailable,

Eksi et al. (2013) (see also Panwar et al., 2016), Li et al. (2014) and

Luo et al. (2017) solved the problem by using a semi-supervised

learning technique called multiple instance learning (MIL).

However, the experimental performance of their methods was quite

poor. For example, on their respective datasets, the best areas under

the receiver operating characteristics curve (or AUCs) achieved by

the methods were only 0.681, 0.671 and 0.677, respectively. We be-

lieve that a primary cause of the poor performance was due to the

lack of labeled training data.

In this paper, we propose a novel method, DeepIsoFun, for pre-

dicting isoform functions from GO and RNA-Seq expression data. It

directly addresses the challenge from the lack of labeled training

data by combining MIL with the domain adaptation (DA) tech-

nique. The two techniques are somewhat complementary to each

other since while MIL takes advantage of the gene-isoform relation-

ship, DA helps to transfer the existing knowledge of gene functions

to the prediction of isoform functions. More precisely, we consider

each gene as a bag and each isoform as an instance in the context of

MIL where the labels (i.e. functions) of the instances in each bag are

given as a set (Dietterich et al., 1997). The goal of MIL is to assign

the labels (i.e. functions) of each bag (i.e. gene) to its instances (i.e.

isoforms) with the constraint that each label is assigned to at least

one instance in the bag and no instance is assigned a label that does

not belong to its bag (Andrews et al., 2003; Wang et al., 2017). To

apply the DA technique, we take advantage of the fact that genes ac-

tually have expression data and thus can be considered as instances

in another domain (i.e. the gene domain). In other words, a gene can

be regarded as both an instance in the gene domain as well as a bag

in the isoform domain. Since gene functions are known in GO, the

DA technique can be used to transfer knowledge (i.e. the relation-

ship between expression and function) from the gene domain (called

the source domain) into the isoform domain (called the target do-

main) (Ganin and Lempitsky, 2015; Long et al., 2015; Pan et al.,

2011; Tzeng et al., 2014). Hence, the gene domain helps provide the

much needed labeled training data.

The model of DeepIsoFun consists of three classifiers. The first

attempts to correctly label the functions of each gene. The second

attempts to correctly label the functions of each isoform (via bags).

The third tries to make sure that instances from the source and tar-

get domains are indistinguishable so knowledge can be transferred.

To implement the model, we use a neural network (NN) auto-

encoder to extract features from expression data that are both

domain-invariant and discriminative for functional prediction,

inspired by the work in Ajakan et al. (2014) and Ganin and

Lempitsky (2015). The three classifiers are also implemented as par-

allel NNs and connected to the auto-encoder NN to form a deep

feed-forward network. The NNs involve mostly standard hidden

layers and loss functions and can be trained for each GO term se-

quentially using a standard back-propagation algorithm based on

stochastic gradient descent, but we also incorporated the gradient

reversal layer to facilitate the DA method as introduced in Ganin

and Lempitsky (2015) and take advantage of the hierarchical struc-

ture of GO in training. In particular, we traverse GO starting at the

leaf nodes and make sure that the model is trained for all child nodes

before it is trained for a parent node so the training for the parent

node can benefit from earlier trainings. This also helps maintain the

prediction consistency throughout GO.

To evaluate the performance of DeepIsoFun, we use three RNA-

Seq expression datasets of human and mouse collected from the

NCBI Reference Sequence Archive (SRA) at different times. The first

is a new (also the largest) dataset that we extracted from the SRA re-

cently. The other two were studied in Eksi et al. (2013) and Li et al.

(2014). To measure the prediction accuracy, we use both AUC and

area under the precision-recall curve (AUPRC) against specific base-

lines [measured at the gene level, as done in Eksi et al. (2013), Li

et al. (2014) and Luo et al. (2017)]. Our experimental results consist

of two parts. In the first part, we analyze various properties of

DeepIsoFun such as the effect of DA on its performance, impact of

the frequency of a GO term in genes on its performance, difference

in performance across the three main branches of GO, divergence of

the functions predicted for the isoforms of a gene, and correlation

between the similarity of expression profiles and the similarity of

predicted functions. In the second part, we compare the perform-

ance of DeepIsoFun with the methods introduced in Eksi et al.

(2013), Li et al. (2014), Luo et al. (2017) and Panwar et al. (2016),

Multiple Instance SVM (mi-SVM), Multiple Instance Label

Propagation (iMILP) and Weighted Logistic Regression Method

(WLRM), based on support vector machines (SVMs), label propaga-

tion and weighted logistic regression, respectively. On our new data-

set, DeepIsoFun outperformed these mi-SVM, iMILP and WLRM

methods by 31, 64 and 23% (against baseline 0.5) in AUC, respect-

ively. In terms of AUPRC, DeepIsoFun outperformed them by 59,

11 and 63%, respectively, against baseline 0.1. Similar improve-

ments on the other two datasets were also observed. We believe that
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besides the deep learning framework, the DA technique also played

an important role in these significant improvements.

The rest of the paper is organized as follows. In Section 2, we de-

scribe the proposed method and its NN implementation in more de-

tail. Section 3 shows how to determine the key parameters in the

NN, the construction of experimental datasets and all computation-

al results on these datasets. Some possible future work is briefly out-

lined in the Discussion section.

2 Materials and methods

In this section, we detail our proposed method, DeepIsoFun, for pre-

dicting isoform functions from GO and RNA-Seq data. As outlined

above, our learning framework consists of two domains, the gene

domain (denoted as yd ¼ 0) and the isoform domain (denoted as

yd ¼ 1), where yd represents a domain class label. In the isoform do-

main, the isoforms of each gene form a bag in the context of MIL.

The gene domain will be considered as the source domain and the

isoform domain as the target domain in the context of DA. Suppose

that there are n genes and m isoforms. Hence, the isoforms are div-

ided into n bags in the isoform domain. Suppose that the expression

profiles consist of r experiments.

Given a GO term, the data in the gene (or source) domain are

denoted as a pair (xs, ys), where xs is an n � r feature matrix repre-

senting the expression profiles of all n genes over the r experiments

and ys is an n-dimensional binary vector (called gene class labels)

indicating whether each gene has the functional term or not.

Similarly, the data in the isoform (or target) domain is denoted as a

pair (xt, yt), where xt is an m � r feature matrix representing the ex-

pression profile of all isoforms and yt is an m-dimensional binary

vector (called isoform class labels) indicating whether each isoform

has the functional term or not. The data for each bag of the isoform

domain are also denoted as a pair (XT, YT), where XT is a binary

matrix representing the membership of isoforms in each bag (or

gene) and YT is an n-dimensional binary vector (called bag class

labels) indicating whether the isoforms in each bag collectively have

the functional term or not. Observe that YT ¼ ys.

As mentioned above, our method combines the MIL and DA

techniques and uses three classifiers to classify isoforms with respect

to each GO term. It is implemented on a deep NN architecture with

four modules: an auto-encoder, a gene function predictor in the gene

domain, an isoform function predictor in the isoform domain and a

domain label predictor, as illustrated in Figure 1. The input gene

and isoform expression features (xs and xt) are mapped by the auto-

encoder to obtain an encoded feature matrix xf. We denote the train-

ing weights used in this mapping as wf.

Our goal for the auto-encoder is to generate new feature vectors

that will reduce the loss of predicted gene class label, reduce the loss

of predicted bag class label and at the same time, increase the loss of

predicted domain class label. This will hopefully force the auto-

encoder to generate domain-invariant features and hence realize the

transfer of knowledge from the gene domain into the isoform do-

main. The new (encoded) feature vectors in the matrix xf are then

partitioned into encoded gene feature vectors x0s and encoded iso-

form feature vectors x0t. Each former vector is mapped by the gene

class label predictor to predict a label y0s in the gene domain and we

denote the weights in this mapping as ws. Each latter vector is

mapped by the isoform class label predictor to predict a label y0t in

the target domain and we denote the weights in this mapping as wt.

See Figure 1 for the detailed NN architecture.

We train the NN by following a 5-fold cross-validation proced-

ure in the isoform domain and use the annotated GO terms of genes

to evaluate its performance, similar to Eksi et al. (2013), Li et al.

(2014) and Panwar et al. (2016). The data is partitioned by genes in-

stead of isoforms to avoid potential data leak, as done in Panwar

et al. (2016). Note that since isoforms from homologous genes of

the human genome (i.e. paralogs) do not generally share similar ex-

pression profiles (Li et al., 2014), it is unlikely for them to cause

Fig. 1. The proposed NN architecture. It includes an auto-encoder, a gene class label predictor, an isoform class label predictor and a domain label predictor.

These four modules jointly form a feed-forward NN, where the auto-encoder consists of two hidden layers and other three components consist of one hidden

layer each. The NN is trained using a standard cross-validation so that the auto-encoder extracts features from the input expression profiles to minimize the loss

in gene class label prediction loss, minimize the loss in bag class label prediction and maximize the loss in domain classification so that knowledge can be trans-

ferred from the gene domain to the isoform domain. In the figure, the rectangle boxes represent the input data and extracted features. Particularly, xs is the input

gene expression data, xt is the input isoform expression data, x
0

s the encoded gene feature data and x
0

t the encoded isoform feature data. Each variable y
0

s ; y
0

t and

y
0

d represents a predicted gene class label vector, a predicted isoform class label vector and a predicted domain class label vector, respectively. The notation ys

represents the true gene class label vector that is used to calculate Ls, i.e. gene class label loss. The notation XT represents the membership of isoforms in the

bags and Y T¼ys is the true bag class label vector that is used to calculate Lt, i.e. bag class label loss via a multiple instance loss procedure. The notation yd is the

true domain class label vector that is used for calculating Ld, i.e. domain class label loss. Forward arrows represent forward propagation and backward arrows

show how losses are backpropagated to allow for the adjustment of the weights wf, ws, wt and wd used in the auto-encoder, gene class label predictor, isoform

class label predictor and domain label predictor, respectively
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data leak in expression-based prediction of isoforms as demon-

strated in Eksi et al. (2013). All data from the gene domain is always

applied to enable DA, but the single-isoform genes (SIGs) in the iso-

form domain are left out of training to avoid overfitting. Before the

training is started, the variable yt i½ � for isoform i is initialized as

follows:

y0
t i½ � ¼ 1; if xt 2 XT ½i; j� ¼ 1 ^ YT ½j� ¼ 1Þ

0; if xt 2 XT ½i; j� ¼ 1 ^ YT ½j� ¼ 0Þ :
�

(1)

The model is then trained for each GO term separately. To take

advantage of the hierarchical structure of GO, we traverse GO start-

ing from the leaf nodes and train the model on a parent node only

after all its children have been considered. This allows the training

for a parent node to benefit from the knowledge learned from its

children, as sketched schematically in Supplementary Figure S1 as

well as help make the predicted labels more consistent between

parents and children.

The weights wf, wd, ws, wt are determined during training to

minimize the following objective function:

L wf ;ws;wt;wdð Þ ¼
X

i¼1;...;n;yd i½ �¼0

Li
s wf ;wsð Þ

þ k1

X
i¼1;...;m;yd i½ �¼1

Li
t wf ;wtð Þ � k2

X
i¼1;...;nþm

Li
d wf ;wdð Þ

(2)

where Li
s denotes the loss in gene class label prediction at the ith

gene, Li
t the loss in bag class label prediction at the ith bag and Li

d

the loss in domain class label prediction at the ith gene or isoform

(see Fig. 1). More precisely, for a fixed gene (or bag or isoform/gene)

i, these loss functions are:

Li
s wf ;wsð Þ ¼ � ys i½ �log ys

0 i½ � þ 1� ys i½ �
� �

log 1� ys
0 i½ �

� �� �
Li

t wf ;wtð Þ ¼ � YT i½ �log YT
0 i½ � þ 1� YT i½ �ð Þlog 1� YT

0 i½ �ð Þ
� �

Li
d wf ;wdð Þ ¼ � yd i½ �log yd

0 i½ � þ 1� yd i½ �
� �

log 1� yd
0 i½ �

� �� � : (3)

We now show how the loss function Lt[i] is derived. Given the pre-

dicted class labels of the isoforms in bag i, we can estimate the class

label of the bag using the method proposed in Wang et al. (2015) for

dealing with multiple instance loss as shown in Equation (4). Clearly,

if at least one instance of the bag is positive, the bag will be predicted

as positive; otherwise, it will be considered as negative.

Y 0T i½ � ¼ 1�
Y

j2bag i

1� y0t j½ �
� �

(4)

y0t j½ � ¼ 1

1þ e�wt �x0t j½ � (5)

x0t j½ � ¼ 1

1þ e�wf tð Þ�xt j½ � : (6)

Here, i denotes a bag and j an isoform. The predicted isoform

class label y0t j½ � for isoform j is calculated by the sigmoid function in

Equation (5). The encoded feature vector of isoform j, x0t j½ �, is calcu-

lated by another sigmoid function given in Equation (6). The

weights wf(t) represent the part of wf derived from the isoform data.

The other part of wf, denoted as wf(s), represents the weights

derived from the gene data. Similar sigmoid functions are used to de-

rive the values of y0s and y0d used in Equation (3).

As mentioned above, we would like to seek the values of wf, ws,

wt, wd to achieve a saddle point of Equation (2) such that

ŵf ; ŵs; ŵt ¼ arg minwf ;ws ;wt
L wf ;ws;wt; ŵd

� �
ŵd ¼ arg maxwd

L ŵf ; ŵs; ŵt;wd

� � : (7)

At the saddle point, the weights wd of the domain label predictor

maximize the loss in domain classification while the weights ws and

wt of the class label predictors minimize the loss in functional pre-

diction in both domains. The feature mapping weights wf help min-

imize the class label prediction loss while maximizing the domain

classification loss. A saddle point of Equation (7) can be found as a

stationary point by using the following stochastic updates as sug-

gested in Ganin and Lempitsky (2015):

wf  wf � a
@Ls

@wf sð Þ þ k1
@Lt

@wf tð Þ � k2
@Ld

@wf

 !

ws  ws � a
@Ls

@ws

� �

wt  wt � a
@Lt

@wt

� �

wd  wd � a
@Ld

@wd

� �

where the parameters k1 and k2 control the relative contributions of

the predictors during learning and a denotes the learning rate in this

process.

3 Experimental evaluation

In this section, we describe in detail how to choose the key parame-

ters in the NN model, how the test data is collected, and how the

computational experiments are performed as well as what are their

results.

3.1 The deep NN parameters
DeepIsoFun has been implemented in Caffe (Jia et al., 2014). In our

NN architecture, the auto-encoder consists of two fully connected

layers to extract common features of the gene and isoform domains.

The first fully connected layer consists of 600 neurons and the se-

cond fully connected layer consists of 200 neurons. The number of

hidden layers and size of each layer (i.e. number of neurons in the

layer) were optimized by a standard grid search method (Bergstra

et al., 2011; Bergstra and Bengio, 2012). The gene class label pre-

dictor and isoform class label predictor modules are both output

layers, and hence have only a single output neuron each. The do-

main label predictor module uses a fully connected layer with 300

neurons and an output layer with a domain output neuron. We used

a standard stochastic gradient descent optimization method to min-

imize the training error as represented by the loss function given in

Equation (2) that involves two parameters k1 and k2. Both parame-

ters were tuned experimentally by following suggestions in the lit-

erature (Bergstra and Bengio, 2012; Snoek et al., 2012). In

particular, the parameter k2 weighting the contribution from do-

main label prediction was set by using the following formula:

k2 ¼
2

1þ e�10p
� 1:

By adjusting p 2 0;1½ �, we gradually tuned k2 so that noise from

the domain label predictor is minimized at early training stages. The

isoform domain data were partitioned in the 5-fold cross-validation

procedure to produce the training and test data. The batch size used

in stochastic training of the NN model was 200. In other words,

200 source samples (genes) and 200 target samples (isoforms) are

merged to create a batch. At the initial training stage, the leaning

rate was set as a ¼ 0.001. As training progresses, we update the

learning rate by using the standard step decay procedure (Sutskever

et al., 2013) implemented in Caffe. We also checked if the learning
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was diverging (e.g. very large loss values were observed), and

dropped the initial learning rate by a factor 10 until convergence has

been achieved.

3.2 Collection of datasets
Manually reviewed mRNA isoform sequences and gene sequences of

human were collected from the NCBI RefSeq (Pruitt et al., 2005).

To collect the expression profiles of these isoforms, we took an ini-

tial set of 4643 RNA-Seq experiments from the NCBI SRA database

(Leinonen et al., 2011), and selected datasets with 50–100 million

reads. These experiments represented different physiological and

cell conditions but were not involved in population studies. Such a

diverse set of expression data may reflect many complex characteris-

tics of the isoforms. The tool Kallisto (Bray et al., 2016) with Sleuth

(Pimentel et al., 2016) was used to generate isoform expression data

measured in Transcripts Per Million. The expression level of a gene

in a dataset was estimated by summing up the expression levels of

all its isoforms. Experiments with the pseudo-alignment ratio <0.7

were discarded to ensure data quality. We also filtered out poorly

covered genes and their corresponding isoforms in these experi-

ments. Finally, the expression data of 19 532 genes and 47 393 iso-

forms from 1735 RNA-Seq experiments formed our first dataset

(simply called Dataset#1). Out of these genes, 9039 have only one

isoform and are called SIGs and 10 313 have more than one isoform

and are called multiple-isoform genes (MIGs). The distribution of

isoforms over genes is shown in Supplementary Figure S2. UniProt

genes were mapped to RefSeq genes by using the UniProt ID map-

ping file. The UniProt GO database was used to annotate the func-

tions of each RefSeq gene, where GO functions inferred from

electronic annotation evidence code were discarded as done in Li

et al. (2014). In other words, only manually curated functions were

used for the final annotation. The number of genes associated with a

GO term is referred to as the GO term size. Intuitively, GO terms

with small sizes are computationally difficult to learn since its data

are highly skewed (i.e. mostly negative). In particular, it was

assumed in Eksi et al. (2013) that a GO term with size <5 might be

very specific to certain genes and thus not very useful in the cross-

validation training procedure. We hence did not consider such infre-

quent GO terms in our experiments. The basic version of GO was

used to generate the parent–child relationship between GO terms

(Ashburner et al., 2000). Out of all 44 612 GO terms, 14 563 appear

in human annotations. After the above filtration, 4272 GO terms

were kept for our experimental evaluation work. In addition to

Dataset#1, we also used the datasets with their respective GO anno-

tations introduced in Eksi et al. (2013) and Li et al. (2014) (called

Dataset#2 and Dataset#3, respectively) to ensure our comparison

results are unbiased, where Dataset#2 was generated from 116 SRA

mouse studies consisting of 365 experiments and Dataset#3 was

generated from 29 SRA human studies consisting of 455 experi-

ments with the requirement that each study had more than 6

experiments.

3.3 Experimental results
Since isoform functions are generally unavailable, we evaluated the

performance of DeepIsoFun using gene level functional annotations

by considering SIGs and MIGs either together or separately, as done

similarly in Eksi et al. (2013) and Li et al. (2014). Because each SIG

contains only one isoform, its functional annotation can be used to

directly validate the predicted functions of the involved isoform. For

a MIG, we can only check if the set of the predicted functions of its

isoforms is consistent with its annotated GO terms (Eksi et al.,

2013). We also estimated the functional divergence achieved by the

isoforms of the same gene by calculating the semantic dissimilarity

for each of the three main branches of GO (i.e. CC, BP and MF).

The tool GOssTo (Caniza et al., 2014) was used to perform this esti-

mation because it was able to take into account the hierarchical

structure of GO. Moreover, we analyzed how the DA technique

really helped the performance of our method, how the size of a GO

term impacted the performance and the correlation between expres-

sion similarity and predicted function similarity for isoforms.

Finally, we compared our method with the methods in Eksi et al.

(2013), Li et al. (2014), Luo et al. (2017) and Panwar et al. (2016)

in terms of AUC and AUPRC against specific baselines by focusing

on a small set of GO terms (i.e. GO Slim with 117 terms) that have

been widely used in the literature (Ashburner et al., 2000). Here, a

baseline represents the performance of a random (untrained) classi-

fier (Saito and Rehmsmeier, 2015). While the baseline in an AUC es-

timation is always 0.5 (Fawcett, 2006; Metz, 1978), the baseline in

an AUPRC estimation depends on data imbalance and equals the

proportion of positive instances (Saito and Rehmsmeier, 2015). The

latter measure is known to be more suitable for imbalanced data.

Note that for highly imbalanced data (like ours), AUPRC values are

often quite low (Davis and Goadrich, 2006; Saito and Rehmsmeier,

2015). However, we may still use them to compare the relative per-

formance of different methods on various datasets, taking into ac-

count actual baselines.

3.3.1 Performance on the three main branches of GO

Since the three main branches carry very different meanings in gene

functions and are often treated separately in the literature, we com-

pared the performance of DeepIsoFun on them. Out of the 4272 GO

terms, 699 belong to CC, 2178 BP and 1395 MF. The distributions

of GO term sizes on the three branches are similar. The average

AUC values on BP, CC and MF are 0.735, 0.728 and 0.722,

respectively (see Fig. 2a), and the average AUPRC values are 0.301,

0.279 and 0.294, respectively (see Fig. 2b). This robust performance

of DeepIsoFun on the three main branches of GO shows that the

terms on the branches probably follow similar distributions (as al-

ready observed on the distributions of their sizes).

3.3.2 Impact of the size of a GO term on performance

Some GO terms are very specific to certain genes while the others

are more general. To test how the size (or popularity) of a GO term

would impact the performance of DeepIsoFun, we divided the GO

terms into four groups based on size. The four groups consist of GO

terms of sizes in ranges [5–10], [11–20], [21–50] and [51–1000], re-

spectively. The performance of DeepIsoFun on these groups is given

in Figure 3a. DeepIsoFun performed better on GO terms with

(a) (b)

Fig. 2. Comparison of performance on the three main branches of GO. (a) The

average AUC values on the three branches. (b) The average AUPRC values on

the three branches

DeepIsoFun 2539

Deleted Text: ,
Deleted Text:  million to 
Deleted Text: TPMs (
Deleted Text: )
Deleted Text: less than 
Deleted Text: single-isoform genes (
Deleted Text: )
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1017#supplementary-data
Deleted Text: (IEA) 
Deleted Text: (
Deleted Text: is
Deleted Text: ,
Deleted Text: (
Deleted Text: less than 
Deleted Text: -
Deleted Text: (
Deleted Text: (
Deleted Text: .
Deleted Text: (
Deleted Text: ;
Deleted Text: ,
Deleted Text: (
Deleted Text: ;
Deleted Text: ;
Deleted Text: ;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -


smaller sizes in general. This pattern seems to contradict intuition,

but it is consistent with the findings in Li et al. (2014) and can per-

haps be explained by the large the amount of (annotation) noise in

large size GO terms. To confirm this, we further analyzed the correl-

ation between expression similarity and functional similarity with

respect to GO terms in each of the four groups. The results in

Supplementary Figure S3 suggest that the correlation decreases as

the GO term size increases. The weak correlations shown in the fig-

ure also partially explain why the AUC and AUPRC values obtained

in Figure 2 are not very high.

3.3.3 Performance on MIGs versus SIGs

In the previous section, we considered the performance of

DeepIsoFun on all genes, including both SIGs and MIGs. Since our

ultimate goal is to dissect functions of different functions of the

same gene, we would like to compare the performance on MIGs

with that on SIGs in this subsection. As shown in Figure 3b, the per-

formance increases as term size decreases. Moreover, the perform-

ance on MIGs achieved in these groups is consistently better than

the performance on SIGs. More precisely, the performance on MIGs

was 14, 23, 27 and 19 better (against the baseline 0.5) than that on

SIGs in the four groups, respectively. Hence, DeepIsoFun was more

effective in predicting functions for genes with multiple isoforms

than genes with a single isoform, probably because of the functional

diversity usually acquired by the former. Another plausible cause is

that, since most (95%) human genes are expected to be MIGs, many

SIGs could represent poorly annotated genes that have large num-

bers of undiscovered isoforms. Therefore, we also analyzed the per-

formance of DeepIsoFun on MIGs with a certain number of

isoforms. As shown in Supplementary Figure S4, the AUC perform-

ance of DeepIsoFun increases (slightly) as more isoforms are found

in a MIG.

3.3.4 Dissimilarity among the predicted functions of isoforms

Since our ultimate goal is to dissect the functions of isoforms, we es-

timate the functional divergence of the isoforms of the same gene.

For each GO term, the gene-wise method simGIC of GOssTo

(Caniza et al., 2014; Pesquita et al., 2007) was used to calculate the

semantic similarity score in the range of [0, 1] for each gene based

on the predicted functions of its isoforms. The dissimilarity score

was simply defined as one minus the similarity score (Li et al.,

2014). Again, the three main branches of GO (i.e. CC, BP and MF)

were considered separately. Out of the 10 313 MIGs, 4310 genes ap-

pear in CC, 5224 appear in BP and 3217 appear in MF (a gene may

contain functions from multiple branches). For each branch, the

functional divergence of a gene is calculated as the average dissimi-

larity scores over all terms on the branch. Figure 4 shows the distri-

bution of functional dissimilarity scores among the isoforms of each

gene. As observed in the literature (Li et al., 2014; Schlicker et al.,

2006), many genes exhibited low average dissimilarity scores. More

precisely, about 24% (1033) of the genes that appear in CC showed

average dissimilarity scores<0.1. For BP and MF, this percentage

rose to 46% (2405 genes) and 39% (1280 genes). On the other

hand, about 7, 3 and 4% of the genes have average dissimilarity

scores >0.3 on the three branches, respectively. These results are

consistent with the fact that the isoforms of the same genes have

very similar sequences, which lead them to perform mostly similar

functions, but some isoforms may still have very different functions

due to large changes in promoters and/or composition of coding

exons.

3.3.5 Effectiveness of DA

A main novelty in DeepIsoFun is the use of DA to create labeled

training data and transfer knowledge from the gene domain to the

isoform domain. To test the effectiveness of DA in the experiments,

we compared DeepIsoFun with a version without DA where the

third part of the objective function in Equation (2) is disabled.

Compared with the average AUC of 0.695 achieved by the restricted

DeepIsoFun without DA, DeepIsoFun with DA performed 18% bet-

ter against the baseline 0.5 as shown in Figure 5. We then further

compared the two versions on the four GO term groups based on

term sizes and found that the DA technique always made a signifi-

cant difference. More specifically, it helped DeepIsoFun to achieve

19, 19, 17, and 20% better AUC (against the baseline 0.5) in the

four groups, respectively.

We also tested if the DA technique was actually able to mix the

two domains (so knowledge can be transferred). The plots in

Supplementary Figure S5 made by using t-SNE (Maaten and

Hinton, 2008) show clearly that the extracted features from the two

domains became indistinguishable with the help of DA. This makes

it possible to transfer knowledge (i.e. the relationship between ex-

pression profiles and functions) from the gene domain to the isoform

domain and is a key to the improved performance of DeepIsoFun.

(a)

(b)

Fig. 3. Comparison of AUCs achieved in four groups of GO terms from CC

with different sizes. The four groups contain terms with sizes in ranges [5–10],

[11–20], [21–75] and [76–1000], respectively. (a) The average AUC values

achieved by the terms in the four groups are 0.767, 0.734, 0.718 and 0.705, re-

spectively. The plot shows that generally as the size of a GO term increases,

its achieved AUC actually decreases. (b) DeepIsoFun consistently performed

better on MIGs over SIGs. The average AUC values on MIGs achieved in the

four groups are 0.79, 0.748, 0.745 and 0.709, respectively. The average AUC

values on SIGs achieved by in four groups are 0.755, 0.702, 0.693 and 0.675,

respectively
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3.3.6 Correlation between expression similarity and the similarity of

predicted functions

Given the difficulty in testing the performance of DeepIsoFun direct-

ly due to the lack of isoform function benchmark, we tested how the

predicted isoform functions are correlated with their expression pro-

files. After all, this was the original hypothesis behind the design of

DeepIsoFun. We performed a hierarchical clustering of the isoforms

based on the expression data and Euclidean distance by using a

standard tool (hclust) in the R Stats package. Eight clusters were

defined from the clustering tree using the same tool. Then, the aver-

age distance between the expression profiles of the isoforms within

each cluster was calculated and normalized to the range of [0, 1].

The same thing was done to estimate the average distance between

the predicted GO terms of the isoforms within each cluster. The dis-

tributions of the average distances over the clusters are shown in

Figure 6. Clearly, isoforms with similar expression profiles resulted

in similar predicted functions.

3.3.7 Comparison with the existing methods

We compared the performance of DeepIsoFun with three existing

methods, iterative iMILP (Li et al., 2014), mi-SVM (Eksi et al.,

2013; Panwar et al., 2016) and the WLRM (Luo et al., 2017). Here,

iMILP is the iterative version of MILP where a feature selection

wrapper method is run over MILP to achieve better performance (Li

et al., 2014). For completeness, we will also include MILP in the

comparison. Note that WLRM was compared in Luo et al. (2017)

with two recent methods for solving MIL, namely miFV (Wei et al.,

2014) and miVLAD (Wei et al., 2017), and found to perform better

in the prediction of isoform functions. In addition to Dataset#1 ana-

lyzed above, we also considered the two expression datasets intro-

duced in Eksi et al. (2013) and Li et al. (2014), Dataset#2 and

Dataset#3, respectively. Since mi-SVM and WLRM follow a 2-class

classification framework but MILP/iMILP adapt a 3-class classifica-

tion framework, different benchmarks were used to create function-

al labels for training and testing in Eksi et al. (2013), Li et al.

(2014), Luo et al. (2017) and Panwar et al. (2016). In a 2-class clas-

sification framework, an isoform is classified as either positive or

negative with respect to each GO term, while in a 3-class classifica-

tion framework, an isoform is classified as positive, negative or un-

known. Hence, we present the comparison between DeepIsoFun and

MILP/iMILP in Table 1 and the comparison among DeepIsoFun,

mi-SVM and WLRM in Table 2. Note that the values in the two

tables are not directly comparable. On all three datasets,

DeepIsoFun performed significantly better than the other methods.

The average AUC values achieved by DeepIsoFun on all three data-

sets are 0.742, 0.734 and 0.720 with respect to the first benchmark

(Table 1), and 0.735, 0.729 and 0.704 with respect to the second

benchmark (Table 1). The corresponding values of AUPRC are

0.368 (baseline 0.1), 0.270 (baseline 0.08) and 0.331 (baseline 0.11)

with respect to the first benchmark, and 0.292 (baseline 0.1), 0.246

(baseline 0.08) and 0.234 (baseline 0.11) with respect to the second

benchmark. Note that although the AUPRC values are lower, they

still represent quite decent performance when compared to the base-

line values. The best performance achieved on Dataset#1 is perhaps

due to the quality of data (since it was collected most recently and

processed with updated tools) and its diversity across different tissue

conditions. On this dataset, compared to iMILP, MILP, mi-SVM

and WLRM, the AUC of DeepIsoFun increased 64, 102, 31 and

23% against the baseline 0.5, respectively. Similarly, on Dataset#2

(or Dataset#3), the improvements are 73, 216, 37 and 45% (or 26,

450, 43 and 24%) against the baseline, respectively. Since our

(a) (b) (c)

Fig. 4. Functional dissimilarity distributions on the three main branches of GO

Fig. 5. Comparison of AUCs achieved in the four groups of GO terms by

DeepIsoFun with and without the DA technique. The average AUC value

achieved by DeepIsoFun with DA in all four groups is 0.730 and the corre-

sponding AUC achieved by DeepIsoFun without DA is 0.695. The benefit of

DA is also clearly shown in the comparison over individual groups

Fig. 6. Comparison between the distribution of expression similarity and the

distribution of similarity concerning predicted functions. The plot shows a

clear positive correlation between the two distributions
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labeled data were imbalanced, we also compared the performance in

AUPRC and observed similar improvements. On Dataset#1

(Dataset#2 and Dataset#3), DeepIsoFun performed 59% (29 and

41%, respectively) better than mi-SVM in AUPRC against respective

baselines, 11% (23 and 10%, respectively) better than iMILP, 57%

(32 and 20%, respectively) better than MILP and 63% (62 and

85%, respectively) better than WLRM. We think that these signifi-

cant improvements in performance over the existing methods on

several human and mouse datasets demonstrate the success of the

DA technique as well as the power of deep learning.

Some comparisons of the methods in terms of divergence of pre-

dicted isoform functions and time efficiency are given in the

Supplementary Material (Supplementary Fig. S6 and Table S1). We

also compared the performance of the methods on two additional

datasets concerning Arabidopsis thaliana and Drosophila mela-

nogaster (i.e. fruit fly) and summarize the comparison results in

Supplementary Tables S2 and S3. As the tables show, DeepIsoFun

consistently performed better than the other methods in both AUC

and AUPRC. The performance of the methods on all five datasets

with respect to different GO term sizes is given in Supplementary

Tables S4 and S5.

3.3.8 Validation of some predicted isoform functions

As mentioned before, there has been little systematic study on iso-

form functions in the literature, and not many specific

experimentally verified functions of isoforms have been reported.

Some of the reported functions concern differential regulatory

behaviors of isoforms in important processes such as the ‘regulation

of apoptosis process’ (GO: 0042981). Apoptosis refers to

programed cell death. This GO term has two children with opposite

functions, i.e. the ‘positive regulation of apoptosis process’ or pro-

apoptosis (GO: 0043065) and the ‘negative regulation of apoptosis

process’ or anti-apoptosis (GO: 0043066). For MIGs with both pro-

apoptosis and anti-apoptosis functions, it would be interesting to

know if it has some isoforms that are pro-apoptosis but not anti-

apoptosis and some other isoforms that are anti-apoptosis but not

pro-apoptosis. In other words, we would like to know if the pro-

and anti-apoptosis functions of the gene are differentiated among its

isoforms. To investigate such MIGs, we searched for all genes that

have multiple isoforms and are annotated with both pro-apoptosis

and anti-apoptosis functions. Totally, 18 such genes were found (see

Supplementary Table S6). The number of isoforms in each of these

genes ranges from 2 to 17. Supplementary Tables S6–S9 show the

performance of DeepIsoFun, iMILP, mi-SVM and WLRM, respect-

ively, in predicting the apoptosis regulatory, pro-apoptosis and anti-

apoptosis functions, measured at the gene level. DeepIsoFun was

able to predict the apoptosis regulatory function for the isoforms

of 17 out of the 18 genes (94.4% recall), the pro-apoptosis

function for the isoforms of 13 genes (72.2% recall) and the anti-

apoptosis function for the isoforms of 14 genes (77.7% recall). In

contrast, iMILP achieved recalls 77.7, 55.6 and 61.1%, mi-SVM

achieved recalls 83.3, 66.7 and 61.1% and WLRM achieved

recalls 77.7, 61.1 and 72.2% in predicting the three functions,

respectively. Futhermore, the tables show that DeepIsoFun was

able to differentiate the pro- and anti-apoptosis functions among

isoforms for 8 of the 18 genes while iMILP, mi-SVM and WLRM

were only able to do it for 5, 4 and 3 genes, respectively. Although

we do not know exactly how many of these genes have differenti-

ated pro- and anti-apoptosis functions among their isoforms, it is

perhaps reasonable to conjecture that most of these genes do

possess this property.

4 Discussion

Although DeepIsoFun achieved significant improvement over the

existing methods in isoform function prediction, its performance as

measured by AUC and AUPRC in our experiments still remained

less than desirable. The prediction of isoform functions is challeng-

ing not only because of the lack of labeled training data (i.e. specific

functions are known for very few isoforms) and noisy GO annota-

tion, but also because the data were very imbalanced. That is, most

GO terms are only associated with a small number of genes and

hence the negative examples are far more than the positive exam-

ples. This makes the situation especially bad when the performance

is measured in AUPRC since the number of false positive examples

tends to be high and thus the precision tends to be low. We dealt

with the problem by leaving out infrequent GO terms that are

associated with fewer than five genes, although such terms often

represent specific functions and could be biologically the most

relevant. On the other hand, most functions of genes are yet to be

discovered. Hence, three-class classification was proposed in Li

et al. (2014) as a way to address the data imbalance issue.

However, such an approach often leads to conservative predictions

and may fail to predict many isoform specific functions. We plan

to study machine learning (including unsupervised learning)

Table 1. Comparison between DeepIsoFun and MILP/iMILP on dif-

ferent expression datasets in terms of AUC and AUPRC values

AUC AUPRC

Dataset

method

DeepIsoFun MILP iMILP DeepIsoFun MILP iMILP

Dataset#1 0.742 0.620 0.648 0.368 0.271 0.342

Dataset#2 0.734 0.574 0.635 0.270 0.224 0.235

Dataset#3 0.720 0.540 0.674 0.331 0.294 0.311

Note: Dataset#1 was generated from 1735 RNA-Seq experiments by using

Kallisto (Bray et al., 2016). Dataset#2 and Dataset#3 were obtained from

Eksi et al. (2013) and Li et al. (2014), respectively. The benchmark positive

and negative instances of each GO term used in testing were defined by fol-

lowing the procedure in Li et al. (2014). The unlabeled instances were ignored

in testing. Both Dataset#1 and Dataset#2 were divided based on read length

to create different ‘study groups’. There are 24, 24 and 29 study groups in

Dataset#1, Dataset#2 and Dataset#3, respectively. On the average, each study

group consists of 71, 16 and 17 SRA experiments in Dataset#1, Dataset#2

and Dataset#3, respectively. As done in Li et al. (2014), a selection algorithm

was employed by iMILP to choose a subset of study groups on each dataset

optimize its performance.

Table 2. Comparison among DeepIsoFun, mi-SVM and WLRM on

different expression datasets in terms of AUC and AUPRC values

AUC AUPRC

Dataset

method

DeepIsoFun mi-

SVM

WLRM DeepIsoFun mi-

SVM

WLRM

Dataset#1 0.735 0.679 0.691 0.292 0.221 0.218

Dataset#2 0.729 0.667 0.658 0.246 0.209 0.182

Dataset#3 0.704 0.643 0.664 0.234 0.198 0.177

Note: The benchmark positive and negative instances of each GO term

used in testing were defined by following the procedure in Eksi et al. (2013).
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techniques that can help produce meaningful predictions for infre-

quent GO terms.

Another challenge we faced was the heterogeneity of the expres-

sion data. While a large dataset covering many tissues and condi-

tions (such as Dataset#1) provides rich information about isoform

functions, it also contains a lot of noise that makes the extraction of

informative features difficult. Li et al. (2014) solved this problem by

using an elaborate search procedure to identify the best subset of

RNA-Seq experiments in the input data. However, the search con-

sumes a lot of time, especially when the number of input RNA-Seq

experiments is large. We plan to apply DeepIsoFun to tissue-specific

data to see how its performance will be affected as well as if some

tissue-specific isoform functions can be discovered.
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Végran,F. et al. (2006) Overexpression of caspase-3s splice variant in locally

advanced breast carcinoma is associated with poor response to neoadjuvant

chemotherapy. Clin. Cancer Res., 12, 5794–5800.

Vinayagam,A. et al. (2004) Applying support vector machines for Gene

Ontology based gene function prediction. BMC Bioinformatics, 5, 116.

Wang,E.T. et al. (2008) Alternative isoform regulation in human tissue tran-

scriptomes. Nature, 456, 470–476.

Wang,J. et al. (2017) Multiple-instance learning via an RBF kernel-based ex-

treme learning machine. J. Intell. Syst., 26, 185–195.

Wang,X. et al. (2015) Relaxed multiple-instance SVM with application to ob-

ject discovery. In: Proceedings of the IEEE International Conference on

Computer Vision, pp. 1224–1232.

Wei,X.S. et al. (2014) Scalable multi-instance learning. In: 2014 IEEE

International Conference on Data Mining (ICDM), IEEE, pp. 1037–1042.

Wei,X.S. et al. (2017) Scalable algorithms for multi-instance learning. IEEE

Trans. Neural Netw. Learn. Syst., 28, 975–987.

Yang,J. et al. (2015) The I-TASSER Suite: protein structure and function pre-

diction. Nat. Methods, 12, 7–8.

2544 D.Shaw et al.


	l
	l
	l
	l
	bty1017-TF1
	bty1017-TF2

