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Abstract

We recently suggested new statistical metrics for routine reporting in random-effects meta-

analyses to convey evidence strength for scientifically meaningful effects under effect 

heterogeneity. First, given a chosen threshold of meaningful effect size, we suggested reporting the 

estimated proportion of true effect sizes above this threshold. Second, we suggested reporting the 

proportion of effect sizes below a second, possibly symmetric, threshold in the opposite direction 

from the estimated mean. Our previous methods applied when the true effects are approximately 

normal, when the number of studies is relatively large, and when the proportion is between 

approximately 0.15 and 0.85. Here, we additionally describe robust methods for point estimation 

and inference that perform well under considerably more general conditions, as we validate in an 

extensive simulation study. The methods are implemented in the R package MetaUtility (function 

prop_stronger). We describe application of the robust methods to conducting sensitivity analyses 

for unmeasured confounding in meta-analyses.
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Introduction

We recently suggested new statistical metrics for routine reporting in random-effects meta-

analyses to convey evidence strength for scientifically meaningful effects under effect 

heterogeneity1. First, given a chosen threshold of meaningful effect size (q), we suggested 

reporting the estimated proportion of true effect sizes above this threshold (P > q). Second, 

we suggested reporting the proportion of effect sizes below a second, possibly symmetric, 

threshold in the opposite direction from the estimated mean. These metrics can help identify 

if: (1) there are few effects of scientifically meaningful size despite a “statistically 

significant” pooled point estimate; (2) there are some large effects despite an apparently null 

point estimate; or (3) strong effects in the direction opposite of the pooled estimate also 

regularly occur. Additionally, these metrics can sometimes adjudicate apparent “conflicts” 

between meta-analyses2 and can convey evidence strength in multisite replication projects3.
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We had proposed parametric estimation methods with asymptotic inference based on the 

delta method1; those methods applied when the true effects are approximately normal, when 

the number of studies is relatively large, and when P > q is between approximately 0.15 and 

0.85. Here, we additionally describe robust methods for point estimation and inference that 

perform well under more general conditions.

Methods

Let θi, θ i, and σi respectively denote the true effect size, the point estimate, and the 

estimated standard error of the ith study. If the parameter θi for each study were known, then 

a simple nonparametric estimate P > q would simply be the sample proportion of θi greater 

than q. Given that the θi are in fact unknown, it would seem intuitive to instead compute the 

sample proportion of point estimates θ i greater than q, but this approach is incorrect because 

dispersion in the θ i reflects not only true effect heterogeneity, but also statistical error due to 

finite sample sizes in the meta-analyzed studies. Thus, the θ i are overdispersed compared to 

the θi and would not themselves yield an unbiased estimate P > q.

We therefore suggest computing the sample proportion using recently proposed “calibrated” 

estimates that have been appropriately shrunk to correct the overdispersion4. Let μ and τ2

represent classical Dersimonian-Laird5 meta-analytic estimates of the mean and variance of 

the true effects; these moment-based estimates do not require parametric assumptions. Wang 

et al. (2019)4 defined the calibrated point estimate for the ith study as:

θ i = μ + τ2/ τ2 + σi2 θi − μ

and showed that Var θi = τ2, as desired. Intuitively, the calibrated estimate θi shrinks the 

point estimate θ i toward the estimated meta-analytic mean μ with a degree of shrinkage that 

is inversely proportional to the study’s precision: relatively imprecise estimates θ i (i.e., those 

with large σi) receive strong shrinkage toward μ, while relatively precise estimates receive 

less shrinkage and remain closer to their original values. Wang et al. (2019)4 demonstrated 

that the calibrated estimates can be used to construct approximately unbiased prediction 

intervals for small meta-analyses and for non-normal true effect distributions. For our 

purposes, we propose estimating the proportion of scientifically meaningful effect sizes as 

the sample proportion of calibrated estimates above q, i.e., P > q = P θi > q . For inference, 

one can bootstrap pairs of θ i, σi  by drawing with replacement from the original sample and 

estimating in turn μ and τ2, θi for each study, and finally P > q. A bias-corrected and 

accelerated (BCa) confidence interval6;7 can then be constructed from the bootstrapped 

values of P > q. (Naturally, analogous methods can be used to estimate the proportion of 

effects below another threshold.)

We also considered a simulation-based nonparametric method (here termed the “sign test 

method”) that was originally designed to estimate a given percentile of interest (e.g., the 
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median) of a distribution of effect sizes and to construct a confidence interval8. The method 

involves first conducting nonparametric hypothesis tests that are similar to sign tests for each 

of many possible values for the percentile of interest, then inverting the rejection region to 

form a confidence interval. This method can be straightforwardly repurposed to provide an 

estimate and confidence interval for the proportion of effects above a threshold, P>q, as we 

show in the eAppendix.

We assessed all methods’ performance in an extensive simulation study of 480 scenarios 

with a range of true effect distributions (including normal, highly skewed, bimodal, and 

heavy-tailed distributions), meta-analyses with 5 to 50 studies of varying size, varying 

heterogeneity, and true proportions from 0.05 to 0.50. We included both realistic and 

extreme distributions of effect sizes in order to establish the boundary conditions under 

which the statistical methods would perform well. Some of the more extreme distributions 

may be unlikely to occur in practice, and conducting an aggregate meta-analysis when 

effects are clearly multimodal may be scientifically ill-advised in the first place. Details on 

the simulation study design appear in the eAppendix.

Results and conclusions

Based on the simulation results (eAppendix), we recommend reporting P > q and inference 

only for meta-analyses with at least 10 studies. In such meta-analyses, we recommend by 

default estimating P > q using the calibrated estimates; this method was the least biased for 

all distributions, though its root mean square error (RMSE) was sometimes higher than that 

of other methods. For inference, even when the effects appear normal, we recommend by 

default constructing the confidence interval by applying the bias-corrected and accelerated 

bootstrap to the calibrated estimates (“BCa-calibrated”); this method achieved nominal 

coverage in almost all scenarios and always achieved at least 90% coverage. The sign test 

method sometimes performed poorly when heterogeneity was low to moderate, and it 

offered few advantages over the BCa-calibrated method. We therefore do not recommend its 

use in practice to estimate or conduct inference for P>q.

The BCa-calibrated method did sometimes lose considerable precision compared to the 

parametric method in certain scenarios in which the latter achieved approximately nominal 

coverage (e.g., see eFigure 7), so for large meta-analyses with apparently normal effects and 

estimating a proportion close to 0.50, one might reasonably choose to substitute the 

parametric interval for the default BCa-calibrated interval. For example, in relatively small 

meta-analyses, estimating the amount of heterogeneity can be inherently imprecise9. This 

uncertainty propagates to the confidence interval for P>q and, in small meta-analyses, may 

result in confidence intervals that span most or all of the possible range [0, 1]. Reporting 

confidence intervals in these settings may nevertheless be informative: a very wide 

confidence interval may instill appropriate circumspection about what can be learned 

regarding the distribution of true effects in a small meta-analysis, even if μ itself may have a 

narrow confidence interval (for example, see the applied example in the eAppendix). A wide 

confidence interval may further suggest the value of performing a larger meta-analysis when 

more literature becomes available. As an additional limitation, the BCa-calibrated interval 

Mathur and VanderWeele Page 3

Epidemiology. Author manuscript; available in PMC 2021 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may sometimes fail to converge for small meta-analyses. (When the BCa-calibrated interval 

fails to converge, it may seem attractive to construct a simpler bootstrapped confidence 

interval using percentiles of the bootstrapped calibrated estimates. However, we recommend 

against this method; additional simulation results suggested that it performed quite poorly.)

The recommended methods are implemented in the function prop_stronger in the R package 

MetaUtility as of version 2.0.0. We illustrate this software and approach with an applied 

example in the eAppendix, where we also discuss extensions to sensitivity analysis for 

unmeasured confounding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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