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Université Paris Diderot, Inserm U 942, Paris, France

Received 25 May 2018; revised 6 August 2018; editorial decision 24 August 2018; accepted 14 September 2018; online publish-ahead-of-print 8 October 2018

* Corresponding author. Tel: þ49-931-201-46502, Email: Maack_C@ukw.de

Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

European Heart Journal (2019) 40, 3626–3644 SPECIAL ARTICLE
doi:10.1093/eurheartj/ehy600 Heart failure/cardiomyopathy

mailto:


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A
therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-
inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target
sarcomeres to improve systolic function putatively without elevating intracellular Ca2þ. Although meta-analyses of
smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative
trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemo-
dynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with
chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients
with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine
triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of
excitation–contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and
redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not
only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function
over a longer-term.

...................................................................................................................................................................................................

Keywords Heart failure • Acute decompensated heart failure • Inotropes • Cardiogenic shock • Excitation–contraction
coupling • Calcium • Sarcomeres • Mitochondria • Energetics • Adrenergic receptors • Contractility •
Levosimendan • Omecamtiv mecarbil • Nitroxyl

Introduction

Heart failure (HF) is a leading cause for hospital admissions in devel-
oped countries worldwide,1 and its incidence is further increasing as
average life expectancy rises. While the prognosis of patients with
chronic HF has improved over the last decades, the prognosis of acute
HF is still poor. Although only a small percentage of patients with
acute HF present with cardiogenic shock (�3%) and/or signs of hypo-
perfusion (�15%), their in-hospital mortality is much higher than of
patients with acute HF without these severe conditions.2 An import-
ant treatment option in these patients are inotropic agents to acutely
increase cardiac output.3 However, since the use of most inotropic
agents [in particular, catecholamines and phosphodiesterase (PDE)-
inhibitors] is complicated by adverse short- and long-term effects,
their use is not recommended in the absence of hypotension or
hypoperfusion.3 On the other hand, the oldest inotropic agent (digi-
talis) can be safely applied to patients with chronic HF and improves
morbidity.4 Here, we discuss the detailed mechanisms of inotropic
agents to estimate which mechanisms of action may provide benefit
in either acute or chronic HF.

In patients with HF with reduced ejection fraction (HFrEF), the in-
ability of the heart to eject sufficient blood for the needs of peripheral
tissues is caused by defects of excitation–contraction (EC) coupling
in cardiac myocytes (Figure 1).5 Traditionally, an acute increase in car-
diac output is achieved with drugs that increase intracellular cyclic ad-
enosine monophosphate (cAMP), such as catecholamines or (PDE)
inhibitors (Figure 2). However, these agents increase myocardial oxy-
gen (O2) consumption, predispose to life-threatening arrhythmias6

and activate signalling pathways of hypertrophy and cell death,7,8

which may explain why they are associated with adverse outcome.9

Consequently, recent developments aimed at increasing contractility
without increasing cAMP or Ca2þ through Ca2þ-sensitizing of
myofilaments or myosin activation. Although meta-analyses with the
Ca2þ sensitizer levosimendan suggest an overall benefit,10,11 larger

comparative trials failed to show a survival benefit despite haemo-
dynamic improvements.12–15 The myosin activator omecamtiv
mecarbil has passed Phase II trials,16–20 and a Phase III trial was recent-
ly launched in patients with chronic HF (GALACTIC-HF;
NCT0292932).

Considering the poor outcome of patients in cardiogenic shock
and/or signs of hypoperfusion2 and the mostly disappointing results
of inotropic agents in patients with acute HF, novel strategies are ur-
gently needed. To this end, the Committees on Translational
Research and on Acute Heart Failure of the Heart Failure
Association (HFA) of the European Society of Cardiology (ESC)
developed this position paper that addresses the following three key
issues:
(1) Why have classical inotropic agents failed?
(2) Is direct targeting of sarcomere function therapeutically advantageous?
(3) Which novel concepts are promising?

To understand the mechanisms of traditional, current, and fu-
ture medicines, it is essential to understand the physiology of EC
coupling and its pathological alterations in HF. We will also discuss
the bioenergetic consequences of inotropic interventions, since
these may impact the long-term prognosis of HF patients. Finally,
we will give recommendations for basic and clinical research
directed at developing novel strategies for inotropic interventions
in acute HF.

Physiology of excitation–
contraction coupling

During each action potential, Ca2þ enters cardiac myocytes via L-
type Ca2þ channels (LTCC), triggering even greater Ca2þ release
from the Ca2þ stores of the cell, i.e. the sarcoplasmic reticulum (SR;
Figure 1). This Ca2þ binds to troponin C, facilitating actin–myosin
interaction that induces the contraction of the heart muscle. During
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diastole, Ca2þ diffuses away from troponin C, initiating relaxation.
The Ca2þ that was released from the SR is taken back up by the SR
Ca2þ ATPase (SERCA), whereas the amount of Ca2þ that entered
the cell via LTCCs is exported by the Naþ/Ca2þ exchanger (NCX).4

Cardiac contractility is increased by three principle mechanisms:

(1) b-adrenergic stimulation,
(2) the Frank–Starling mechanism and
(3) the positive force-frequency relation (also known as ‘Bowditch-

Treppe’).

Noradrenaline (NA) is released from sympathetic nerve end-
ings in the myocardium and stimulates b1-adrenergic receptors
(b1-ARs), which couple to the stimulatory G-protein (Gs) and ac-
tivate the adenylyl cyclase (AC) to produce cAMP (Figures 1 and
2). Cyclic AMP activates protein kinase A (PKA) which (through
phosphorylation) activates LTCCs, accelerates SERCA, increases
SR Ca2þ release via ryanodine receptors (RyRs) and decreases
myofilament Ca2þ affinity. Furthermore, cAMP activates the ex-
change protein directly activated by cAMP (Epac), further activating
Ca2þ/Calmodulin-dependent protein kinase II (CaMKII) which
phosphorylates various Naþ- and Ca2þ-transporting proteins,
mostly synergistic with PKA-mediated actions (Figure 2).21 The
net result is an increase and acceleration of force generation and
relaxation (positive inotropic and lusitropic effects), maintaining the
refilling of the ventricles at elevated heart rates (positive chrono-
tropic effect). In the human heart, the breakdown of cAMP is gov-
erned primarily by PDE3 and to a lesser extent by PDE4.22

Besides b-AR stimulation, the ‘Bowditch-Treppe’ increases cardiac
contractility at elevated heart rates. This is explained by slower
Ca2þ-efflux (via the NCX) than -influx kinetics (via LTCCs), which
results in intracellular accumulation of Ca2þ at higher heart rates that
is sequestered into the SR by SERCA, from where it is released in
greater amounts on the ensuing beat. The Frank–Starling mechanism
is caused by a length-dependent increase of the Ca2þ affinity of the
myofilaments, resulting in stronger contraction at unchanged cytosol-
ic Ca2þ concentrations ([Ca2þ]c).

Pathophysiological changes of
excitation–contraction coupling in
heart failure

The central deficit of EC coupling in myocytes from failing hearts is a
decreased Ca2þ load of the SR. This is primarily the result of reduced
SERCA expression and activity and a Ca2þ leak from the SR via RyRs,
reducing systolic SR Ca2þ release and thereby the activator Ca2þ at
the myofilaments (Figure 1).5 The reduced rate of SERCA-mediated
Ca2þ re-uptake into the SR also slows relaxation. Furthermore, the
cytosolic Naþ concentration ([Naþ]i) is elevated in failing cardiac
myocytes through changes in the ‘late Naþ current’, Naþ/Hþ exchan-
ger (NHE) and Naþ/Kþ-ATPase (NKA) activities.23 While this facili-
tates Ca2þ-influx via the reverse mode of the NCX during the action
potential,5 partly compensating for decreased systolic SR Ca2þ

Figure 1 The physiology of excitation–contraction coupling and how this is altered in systolic heart failure. AR, adrenergic receptor; cAMP, cyclic
adenosine monophosphate; ETC, electron transport chain; ICa and INa, Ca2þ and Naþ currents; NCX; Naþ/Ca2þ-exchanger; NKA, Naþ/Kþ-ATPase;
PDE, phosphodiesterase; PKA, protein kinase A; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; SERCA, SR Ca2þ ATPase; T-tubule, transversal
tubule. Red arrows ("#) indicate the direction of change in heart failure.

3628 C. Maack et al.
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release,24 relaxation is further slowed by hampering diastolic Ca2þ

extrusion via the forward mode NCX. This is particularly problemat-
ic at higher heart rates, when diastole progressively shortens.
Consequently, the normally positive force–frequency relationship is
blunted or even negative in failing human hearts, mediated by a vari-
able combination of elevated diastolic [Ca2þ]c and tension as well as
decreased SR Ca2þ load and release.25,26 This decreases left ventricu-
lar ejection fraction (LVEF) and cardiac output at higher heart rates
in vivo.27 Finally, elevated diastolic [Ca2þ]c and increased open prob-
ability of RyRs increases the probability of spontaneous SR Ca2þ re-
lease events, which (by subsequent Ca2þ extrusion via the
electrogenic NCX) can induce delayed after-depolarizations, a well-
defined trigger of ventricular arrhythmias.

In addition to the defects in ion handling and the ensuing inversion
of the force–frequency relationship, continuous stimulation of car-
diac b1-ARs through activation of the sympathetic nervous system
desensitizes and downregulates b1-ARs (Figure 2),7,8 blunting their re-
sponse to endogenous or exogenous catecholamines. Consequently,
phosphorylation of several Ca2þ handling proteins is reduced. In fail-
ing hearts, the Ca2þ affinity of the myofilaments is increased as a re-
sult of decreased PKA-mediated phosphorylation of troponin I,28,29

although this issue is not fully settled yet.30

Energetic aspects

Excitation–contraction coupling requires high amounts of energy in
the form of ATP, which is replenished by oxidative phosphorylation
in mitochondria. During b-adrenergic stimulation, mitochondria take
up Ca2þ to stimulate the Krebs cycle, which produces NADH as the

main electron donor for ATP production at the respiratory chain
(Figure 3).31 Mitochondrial function is impaired in HF, resulting in en-
ergetic deficit and oxidative stress (Figure 3).31–33 Mitochondrial dys-
function is linked to defects in EC coupling, since the Krebs cycle
requires stimulation of its key enzymes by Ca2þ, and decreased SR
Ca2þ release hampers mitochondrial Ca2þ uptake via the uniporter
(MCU). In addition, elevated [Naþ]i accelerates mitochondrial Ca2þ

efflux via the mitochondrial Naþ/Ca2þ exchanger (NCLX; Figure 3).
Impaired Krebs cycle activity limits NADH-dependent ATP produc-
tion at the respiratory chain and provokes excess emission of reactive
oxygen species (ROS) through depletion of the NADPH-dependent
anti-oxidative capacity, causing oxidative stress.31 Reduced ATP pro-
duction can limit the contractile reserve of the LV,34 and most Naþ

and Ca2þ transporting mechanisms are sensitive to redox-dependent
modifications.35 Thus, the tight interplay between EC coupling and
mitochondrial energetics (Figure 3) can set in motion a vicious cycle
of deteriorated ion handling, energetic deficit, and oxidative stress to
aggravate systolic and diastolic dysfunction in HF.

In patients with HF, iron deficiency (ID) predicts adverse out-
come,36 while iron supplementation improves functional capacity and
quality of life.37 In failing hearts, myocardial iron content is reduced
and associated with reduced activity of Krebs cycle dehydrogenases
and expression of anti-oxidative enzymes.38 In preclinical models, se-
vere cardiac or skeletal muscle ID perturbs mitochondrial
function and induces systemic metabolic derangements and cardio-
myopathy.39,40 Accordingly, ID may further aggravate energy supply
and demand mismatch and oxidative stress in HF. However, since
plasma ID does not directly correlate with myocardial ID, these
issues require further investigation (for more in-depth discussion see
ref. 41).

Figure 2 Signal transduction of b1-adrenergic stimulation in cardiac myocytes and its impact on inotropy, but also arrhythmias, hypertrophy, and
apoptosis. 5’-AMP, 5’ adenosine monophosphate; AC, adenylyl cyclase; ADR, adrenaline; AR, adrenergic receptor; CaMKII, Ca2þ/calmodulin-depend-
ent protein kinase II; cAMP, cyclic adenosine monophosphate; EPAC, exchange protein directly activated by cAMP; GRK2, G-protein coupled recep-
tor kinase 2; NA, noradrenaline; PDE, phosphodiesterase; PKA, protein kinase A; a, b, c, a-, b- and c-subunits of the stimulatory G-protein.

Treatments targeting inotropy 3629
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..‘Classical’ inotropic agents

Digitalis
Digitalis-derived cardiotropic glycosides (CTG) are the oldest ino-
tropic drugs and increase [Naþ]i in cardiomyocytes by inhibiting Naþ

export via the NKA (Figure 4). [Naþ]i accumulation hampers diastolic
Ca2þ extrusion via the NCX and supports Ca2þ influx via the reverse
mode NCX during systole, thereby increasing diastolic [Ca2þ], Ca2þ

transient amplitudes and consequently, inotropy (Figure 4). On the
other hand, elevated [Naþ]i accelerates mitochondrial Ca2þ efflux
via the NCLX, reducing Ca2þ-activation of the Krebs cycle and its re-
generation of NADH and NADPH. Since NADPH is required for
anti-oxidative enzymes to detoxify ROS (Figure 3), CTG-induced
NADPH oxidation increases mitochondrial ROS emission and there-
by arrhythmias (Figure 4).42 The pro-arrhythmic actions of CTG nar-
row its therapeutic range.43

In patients with HFrEF, digoxin may be considered in symptomatic
patients in sinus rhythm despite treatment with an ACE-inhibitor (or
angiotensin receptor blocker), a b-blocker, and a mineralocorticoid
antagonist to reduce the risk of hospitalizations (Class IIb, B3).
However, the Digitalis Investigation Group (DIG) Trial4 was con-
ducted before b-blockers became a mainstay of HF therapy, and di-
goxin did not improve all-cause mortality, but reduced
hospitalization due to HF worsening. At the lower dosages used in
current practice, digitalis may be preferentially a modulator of

autonomic tone and less inotropic stimulator.44 The ongoing DIGIT-
HF study prospectively investigates the role of digitoxin in patients
with HFrEF already on current guideline-adherent therapy (http://
digit-hf.de). In atrial fibrillation, clinical evidence is limited to small and
observational studies, and there is an ongoing debate on potentially
increased mortality.45 However, prescription bias in the retrospect-
ive analyses likely mimics the perceived digoxin driven mortality.46

According to the current HF Guidelines, an intravenous bolus of di-
goxin should be considered in digoxin-naı̈ve-patients in New York
Heart Association (NYHA) Class IV and rapid ventricular rate to
slow heart rate (Class IIa, B).3

Catecholamines
The three endogenous catecholamines dopamine, adrenaline, and
NA stimulate b1-ARs, and to variable degrees also a1- and b2-ARs
and dopaminergic D1- and D2-receptors (Table 1).6 Thus, their
haemodynamic actions are not limited to increasing cardiac contract-
ility via b1-ARs (Figure 2). In fact, a1-AR-mediated vasoconstriction by
adrenaline and NA (Table 1) renders them useful in patients with sep-
tic shock where vasodilation underlies hypotension. The haemo-
dynamic profile of dopamine, the immediate precursor to NA in the
synthetic pathway, is dominated by vasodilation at low concentra-
tions at which binding to dopaminergic D1- and D2-receptors
increases blood flow to the heart, brain, kidney, and various other
organs. Its traditional use to increase renal blood flow, however, was

Figure 3 Interplay between EC coupling and mitochondrial energetics. Krebs cycle activity is controlled by Ca2þ, and mitochondrial Ca2þ uptake
is diminished in heart failure by changes in cytosolic Ca2þ and Naþ handling. This provokes an energetic deficit and oxidative stress, which further
impairs EC coupling and aggravates systolic and diastolic function. AR, adrenergic receptor; ATPase, F1Fo-ATP synthase; CaMKII, Ca2þ/calmodulin-
dependent protein kinase II; CK, creatine kinase; Cr, creatine; ETC, electron transport chain; IDPm, isocitrate dehydrogenase; late INa, late Naþ

current; MCU, mitochondrial Ca2þ uniporter; Mn-SOD, mitochondrial superoxide dismutase; NCLX, mitochondrial Naþ/Ca2þ-exchanger; Nnt,
nicotinamide nucleotide transhydrogenase; PCr, phosphocreatine; RyR, ryanodine receptor; SERCA, SR Ca2þ ATPase. Red arrows ("#) indicate the
direction of change in heart failure.

3630 C. Maack et al.
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..discouraged after neutral effects in trials on patients with acute de-
compensated HF, with or without renal dysfunction.47–49 At higher
doses, dopamine increases blood pressure by vasoconstriction via
a1-ARs and positive inotropic and chronotropic effects via b-ARs,
respectively.

Since in patients with cardiogenic shock, neuroendocrine activa-
tion induces vasoconstriction and tachycardia, the ideal drug should
be positive inotropic without further increasing systemic vascular re-
sistance (SVR). Dobutamine fulfils these requirements.50 It is a full
agonist at b1-ARs, inducing a positive inotropic effect with similar effi-
cacy as isoproterenol, a synthetic b1- and b2-AR agonist without any
a-AR agonism (Table 1). The affinity of dobutamine for b2-AR is�10-
fold lower than for b1-ARs and in particular, its agonist efficacy at

b2-ARs and a1-ARs much weaker than at b1-ARs.51 Through its dom-
inating inotropic effect and mutually offsetting vascular effects of a1-
and b2-AR agonism, the decrease of SVR at intermediate and higher
doses is mediated by reflex withdrawal of the endogenous sympa-
thetic tone.52 For any given increase in cardiac contractility, the in-
crease of heart rate and blood pressure is lower with dobutamine
than with dopamine or NA, further reflecting dobutamine’s selectiv-
ity for b1- over b2- and a1-ARs.50 However, this favourable haemo-
dynamic profile comes at the cost of elevated myocardial O2

consumption50,52 and arrhythmias.
Noradrenaline may be considered in patients who have cardio-

genic shock despite treatment with another inotrope to increase
blood pressure and vital organ perfusion.3 The combination of

Figure 4 Mechanisms of action of cardiotonic glycosides (CTG) and istaroxime (ISTA). ICa and INa, Ca2þ and Naþ currents; NCLX, mitochondrial
Naþ/Ca2þ-exchanger; NCX, Naþ/Ca2þ-exchanger; NKA, Naþ/Kþ-ATPase; ROS, reactive oxygen species; RyR, ryanodine receptor; SERCA, SR
Ca2þ ATPase; SR, sarcoplasmic reticulum; TCA, tricarboxylic acid (Krebs) cycle. Red arrows ("#) indicate the direction of change in response to
CTG.

....................................................................................................................................................................................................................

Table 1 Adrenergic affinities of endogenous and synthetic catecholamines and their effects on haemodynamics

Drug a1 b1 b2 D1/D2-R SVR SV HR Arrh.

Adrenaline þþþþ þþþ þþþþ 0 þþ þþþþ þþþ þþþ
Noradrenaline þþþþ þþþ þ 0 þþþþ þþþ þ þþþ
Dopamine þþþ þþ þþþ þþþþ þþþ þþþþ þþ
Dobutamine þþ þþþ þ 0 -/0/þ þþþþ þ þ
Isoproterenol 0 þþþþ þþþþ 0 --- þþþ þþþþ þþþ
Phenylephrine þþþþ þ þ 0 þþþþ -/0 (-)

- to ---, increasing degrees of negative effects; þ to þþþþ, increasing degrees of positive effects; 0, neutral effect; Arrh., arrhythmias; HR, heart rate; SV, stroke volume; SVR,
systemic vascular resistance.

Treatments targeting inotropy 3631
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adrenaline with dobutamine, however, portends a particular risk for
adverse outcome.53 In a recent meta-analysis, adrenaline was associ-
ated with a three-fold increase in mortality,54 and in patients with car-
diogenic shock after acute myocardial infarction, refractory shock
was five-fold more frequent with adrenaline than with NA.55 For a
similar effect on blood pressure, adrenaline (but not NA) increased
heart rate (due to its strong b2-AR activation; Table 1) and myocardial
oxygen consumption (derived from the cardiac double product),
increasing lactate as a sign of metabolic compromise.55 These data
underscore that adrenaline should be avoided in patients with cardio-
genic shock.

In patients with HF, elevated plasma NA levels predict adverse
outcome.56 Chronic b-AR stimulation desensitizes and downregu-
lates b-ARs via PKA, GRK2 (also known as b-ARK1), and b-
arrestin.7,8,57 Furthermore, b-arrestin activates CaMKII which sus-
tains contractility despite desensitization of b-ARs from PKA-
mediated inotropy (Figure 2).21 CaMKII activation, however, is a
major driver of cardiac arrhythmias.58 The net functional conse-
quence of all these processes is a decreased responsiveness of the
human failing heart to b-AR stimulation. Therefore, despite its fa-
vourable short-term haemodynamic profile that improves symp-
toms,9 dobutamine treatment is associated with tolerance,59

arrhythmias, and mortality, respectively.60,61

Phosphodiesterase-inhibitors
To overcome desensitization and down-regulation of cardiac b-ARs
as well as their blockade through b-blockers, PDE-inhibitors were
developed. In human failing myocardium, inhibition of PDE3, but not
PDE4 potentiates b-AR-mediated positive inotropic effects.62

Conversely, in human atrial myocardium, inhibition of PDE4 potenti-
ates arrhythmias induced by both b1- and b2-AR stimulation, while
PDE3 inhibition only potentiates b1-AR-induced arrhythmias.63

Phosphodiesterase-inhibitors also decrease SVR through cAMP-
mediated vasodilation, which is beneficial in patients with acute HF
and high SVR, but limits its application in patients with cardiogenic
shock due to reductions in blood pressure. In patients with HF
treated with b-blockers, the efficacy and potency of PDE-inhibitors is
maintained, while the effects of dobutamine are blunted.64

Why have classical inotropes failed?
Currently, dobutamine, dopamine, and PDE-inhibitors are recom-
mended in patients with hypotension (SBP <90 mmHg) and/or signs/
symptoms of hypoperfusion despite adequate filling status to increase
cardiac output and blood pressure and to improve peripheral perfu-
sion and maintain end-organ function (IIb, C).3 However, while in
analyses that evaluated cAMP-dependent inotropes in general, their
short-term use yielded neutral effects, longer-term use was associ-
ated with adverse outcome in patients hospitalized for acute HF des-
pite improved quality of life.60,65,66 Therefore, inotropic agents are
explicitly restricted to patients that fulfil the above mentioned criteria
and are not recommended for any other patients (Class IIIA).3 The
adverse long-term effects may be related to PKA- and CaMKII-
induced maladaptive cardiac remodelling through inducing hyper-
trophy, apoptosis, and fibrosis (Figure 2).7,8 In particular, activation of
b1-ARs induces apoptosis,67 which is an important mechanism for LV
remodelling and dysfunction in HF.68,69 Furthermore, b-adrenergic
activation alters myocardial substrate utilization and thereby, may

trigger energetic deficit and oxidative stress.61 These data indicate
that despite their favourable acute haemodynamic profile, the use of
adrenergic agonists and PDE-inhibitors leads to adverse outcome by
triggering maladaptive cardiac remodelling and arrhythmias, while vice
versa, antagonizing b1-ARs can reverse remodelling, improve LV func-
tion, and prolong survival.7 Therefore, a new generation of inotropes
had to be developed to avoid activation of adrenergic pathways and
increase contractility without raising Ca2þ, which is pro-arrhythmic
and causes higher energy consumption through activation of Ca2þ

transporting systems.

Treatments targeting sarcomeres

Ca2þ sensitizers
Ca2þ sensitizers shift the relationship between [Ca2þ]c and force de-
velopment of sarcomeres (i.e. the pCa–force relationship) to the left,
increasing force at any given [Ca2þ]c. They were developed in the
early 1980s as cardiotonic agents with a number of theoretical advan-
tages over catecholamines and PDE-inhibitors:

i. Ca2þ sensitizers should neither increase trans-sarcolemmal influx of
Ca2þ nor alter SR Ca2þ fluxes during systole or diastole. This should
be less pro-arrhythmic and less energy consuming.

ii. Ca2þ sensitizers should not affect heart rate or blood pressure if a
compound was selective for cardiac myofilaments, which may have
positive effects on energetics.

iii. Ca2þ sensitizers should be independent of the desensitized b-AR/
cAMP system in HF and should themselves not induce tolerance.

Examples of this class of drugs are EMD-57033, CGP-48506, pimo-
bendan, and levosimendan. The mechanisms of Ca2þ sensitization dif-
fer between Ca2þ sensitizers. While levosimendan and pimobendan
increase the affinity of troponin C to bind Ca2þ,70–72 CGP-48506
acts downstream of troponin C, and EMD-57033 affects the actin–
myosin interaction by direct binding to the myosin motor do-
main.73,74 Independent of the mechanism, the shift of the pCa-force
curve to the left increases systolic force generation for any given
[Ca2þ]c, but on the other hand impedes relaxation following the de-
crease in [Ca2þ]c. The slowing of relaxation is an inherent property
of pure Ca2þ sensitizers and may be the reason why most pharma-
ceutical companies stopped their development. In this context, muta-
tions in sarcomeric proteins that cause hypertrophic cardiomyopathy
(HCM) commonly increase myofilament Ca2þ sensitivity as a unifying
disease mechanism.75,76 Moreover, both HCM mutations and drugs
that increase Ca2þ sensitivity are arrhythmogenic, presumably by
providing a sink for Ca2þ that is released during diastole, causing
depolarisations via the electrogenic NCX.77,78

Levosimendan
In contrast to CGP-48506, levosimendan does not prolong relax-
ation time or compromise diastolic relaxation. Thus, it does not have
the same profile as pure Ca2þ sensitizers. The most likely reason is
that levosimendan is not only a Ca2þ sensitizer binding to troponin
C,71 but also a potent and selective PDE3-inhibitor with an IC50 in
the nanomolar range, but �1000-fold lower affinity for PDE4.79,80

Accordingly, levosimendan increases cAMP with similar potency as it
increases force.81 Furthermore, its positive inotropic effect is

3632 C. Maack et al.
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.
abolished by the muscarinic receptor agonist carbachol, which acts
through inhibiting cAMP generation. Also in human myocardium, the
inotropic effects of levosimendan require b-adrenergic pre-
stimulation and/or elevations of [Ca2þ]c and can be prevented by
PDE3-, but not PDE4-inhibition.82–84

Levosimendan’s clinical activity during long-term treatment is
mainly governed by its active metabolite OR-1896, which has a much
longer half-life (81 vs. 1 h85). OR-1896 stimulated contractile force
with a roughly similar potency as levosimendan, had a 4.5-fold lower
potency as a Ca2þ sensitizer and a 38-fold lower potency as a PDE3
inhibitor.80 Yet, even the inotropic effect of OR-1896 is sensitive to
carbachol and therefore likely mediated by PDE3 inhibition.86

Therefore, also for OR-1896, a combination of PDE3-inhibition with
Ca2þ sensitization is the mechanism that is responsible for positive
inotropy.

A common alternative explanation why levosimendan does not
prolong relaxation (other than through PDE3-inhibition) is that levo-
simendan’s binding to troponin C is Ca2þ-dependent. However, it is
currently unclear—if not rather unlikely—whether levosimendan
can bind and unbind troponin C on a beat-to-beat basis in a millisec-
ond and micromolar range, as would be required to explain the lack
of relaxation prolongation by this mechanism (see the
Supplementary material online for a detailed discussion of this issue).
Besides its effects on EC coupling, levosimendan also activates
glibenclamide-sensitive sarcolemmal ATP-dependent Kþ-currents
(IKATP), which may add to its vasodilating activity and potentially pro-
vide cardioprotective effects through activation of mitochondrial IKATP

(see Supplementary material online for a more detailed discussion).
These data indicate that for levosimendan, PDE3 inhibition syner-

gizes with Ca2þ sensitization for its inotropic action (Figure 5), which
may be particularly relevant to human failing myocardium in which
PDE3 plays the dominant role for controlling intracellular cAMP.62

From this it can be predicted that the more b-ARs are pre-activated
by endogenous or exogenous catecholamines, the more pronounced
is the inotropic effect of levosimendan, and the more this effect is
mediated by PDE3-inhibition rather than Ca2þ sensitization.
Conversely, at low b-AR pre-activation (such as during pharmaco-
logical b-blockade), the Ca2þ sensitization effect of levosimendan
may become more important for inotropy. In this context, it is inter-
esting to observe that in the SURVIVE trial, patients with (but not
without) b-blocker pre-treatment had improved short-term survival
with levosimendan compared to dobutamine.87,88 Conversely, in
patients with septic shock who were all co-treated with catechol-
amines, levosimendan was associated with higher rates of supraven-
tricular tachycardia and a numerical, but non-significant increase in
mortality (hazard ratio 1.24, P = 0.17).89 Therefore, although the clin-
ical evidence for these considerations is limited, levosimendan’s
PDE3-inhibitory effect may be potentiated through pre-activation of
b-ARs by endogenous or exogenous catecholamines also under
in vivo conditions, and such potentiated adrenergic signalling may po-
tentially contribute to arrhythmias and adverse consequences for
cardiomyocyte biology (Figure 2).

Clinical trials

Several clinical trials tested the effects of levosimendan in patients
with HF, comparing it to either placebo or dobutamine. In the LIDO
trial, levosimendan improved haemodynamics more effectively than

dobutamine and was associated with lower mortality than dobut-
amine after 180 days.90 In the SURVIVE trial, however, mortality after
180 days (the primary endpoint) was not different between dobut-
amine and levosimendan despite a more favourable haemodynamic
profile (BNP reduction) in the first 5 days after randomization.12 As
mentioned above, pre-treatment with a b-blocker was associated
with improved short-term outcome at day 5 in a post hoc analysis.87

In the REVIVE trial,13 levosimendan (compared to placebo) was
associated with more frequent hypotension and cardiac arrhythmias
during the infusion period, and a numerical (but insignificant) risk of
death despite improved symptoms and reduced plasma BNP levels.
In a meta-analysis on 5480 patients in 45 randomized clinical trials,
however, levosimendan was associated with a 20% relative risk re-
duction of mortality, and this reduction was confirmed in studies with
placebo (-18%; P < 0.05) or dobutamine as comparator (-32%;
P < 0.005).10 These trends were confirmed by another meta-ana-
lysis.11 However, in these meta-analyses, trials on patients with acute
cardiac events were combined with trials on patients undergoing
elective cardiac surgery. Furthermore, in the recent CHEETAH14 and
LEVO-CTS15 trials, levosimendan did not improve outcome of
patients with systolic HF undergoing cardiac surgery, although the
use of inotropes 24 h after surgery was reduced with levosimendan
in LEVO-CTS.15

Several smaller trials evaluated the usefulness of repeated doses of
levosimendan for patients with advanced HF in outpatient settings.
Post hoc and meta-analyses of these mostly underpowered trials sug-
gest that levosimendan may have favourable effects on haemodynam-
ics, symptoms, rehospitalization, and biomarkers.91 In the recent
LION-HEART study on 69 patients with advanced HF, biweekly infu-
sions of levosimendan for 12 weeks reduced NT-proBNP, improved
quality of life and reduced hospitalization without adverse effects.92

Therefore, the initiation of a larger trial to test this treatment strategy
for advanced HF patients is warranted.

Taken together, the principle of Ca2þ sensitization alone was no
breakthrough in the treatment of the common forms of HF, because
it is associated with worsening of diastolic relaxation, which is already
compromised in HF in the first place. The ancillary PDE-inhibitory ef-
fect of levosimendan improves its haemodynamic profile compared
to other, more pure Ca2þ sensitizers, although this may come at the
cost of cAMP-related side effects (e.g. arrhythmias). So far, there is
no clear evidence that levosimendan improves survival compared to
placebo or a comparator drug.

Based on its clinical profile, the current HF Guidelines make the
following recommendations for the use of levosimendan:

• Short-term intravenous infusion of levosimendan may be consid-
ered in patients with hypotension (SBP <90 mmHg) and/or signs/
symptoms of hypoperfusion despite adequate filling status to in-
crease cardiac output and improve peripheral perfusion and main-
tain end-organ function (similar to dobutamine, dopamine, and
PDE-inhibitors; IIb, C).3

• When mean arterial pressure needs pharmacological support, a
vasopressor (preferably NA) may be used in combination with
levosimendan.3

• An intravenous infusion of levosimendan (or a PDE inhibitor) may
be considered to reverse the effect of b-blockade if b-blockade is
thought to be contributing to hypotension with subsequent hypo-
perfusion (IIb, C).3
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.• Levosimendan is not recommended unless the patient is symp-
tomatically hypotensive or hypoperfused because of safety con-
cerns (IIIA).3

Omecamtiv mecarbil
Omecamtiv mecarbil (OM) is a small-molecule, selective cardiac my-
osin activator whose therapeutic rationale and discovery were
described elsewhere.93,94 Omecamtiv mecarbil binds to the catalytic
domain of cardiac myosin, stabilizing the pre-powerstroke state,95

thus increasing the transition rate of myosin into the strongly actin-
bound force-generating state (Figure 6A)96 and thus increasing cardiac
contractility. The pharmacodynamic signature of OM is an increase in
the systolic ejection time (SET). This is a consequence of the increase
in the number of myosin heads interacting with actin filaments, facili-
tating a longer duration of systole, even as [Ca2þ]c already decays.
Omecamtiv mecarbil prolongs the time and increases the amplitude,
but not the rate of cell shortening, and does not interfere with
[Ca2þ]c transients (Figure 6B).96

A number of dose-finding studies with an intravenous formulation
of OM were performed in a dog model of HF,97 healthy men17 and
patients with acute19 and chronic HF,16 respectively. In the dog HF
model, OM prolonged SET and increased stroke volume (SV;
Table 2).96,97 Consequently, cardiac output increased, thereby
decreasing SVR and heart rate, presumably through reducing en-
dogenous sympathetic activation.96,97 Although OM might increase
ATP turnover at the level of the sarcomere,96 this increase appears
to be counterbalanced by the reduction in heart rate, SVR (reducing
cardiac afterload) and end-diastolic volume (reducing myocardial wall

stress), resulting in no significant change of cardiac O2 consumption
despite the increase of cardiac output.96,97 Consequently, cardiac effi-
ciency should improve.

In healthy men and patients with stable HF, at comparable
increases in SET, however, the net increases in SV, cardiac output
and the ensuing decreases in heart rate were overall smaller than in
the preclinical studies, perhaps reflecting the broader range of base-
line conditions found in human studies (Table 2). In these early stud-
ies, OM was studied over a broad range of plasma concentrations, in
some cases exceeding 1200 ng/mL. Increases in SET are noted at
plasma concentrations as low as 100–200 ng/mL, while the effect on
SV appeared to plateau at 400–500 ng/mL. In some individuals, myo-
cardial ischaemia developed with chest pain, ECG changes and/or
troponin rises at plasma concentrations beyond 1200 ng/mL.16,17

This may be explained by an excessive increase in SET, prolonging
cardiac contraction, and progressively shortening diastole (during
which coronary perfusion takes place).16,17 In a trial of patients with
ischaemic cardiomyopathy and angina in daily life, however, OM at
target plasma concentrations of 295 ng/mL and 550 ng/mL, respect-
ively, did not affect symptom-limited exercise capacity in treadmill
tests or plasma troponin I levels.18 Subsequent trials focused on dose
regimens that constrain exposure to less than 1000 ng/mL.

In the ATOMIC-AHF study on patients with AHF and an LVEF
<_40%, the primary endpoint of dyspnoea relief was not reached by
three ascending doses of intravenous infusion of OM vs. placebo.19

However, in the highest dose group (n = 202), more patients
responded with dyspnoea relief to OM (51%) than to placebo (37%;
P = 0.034). In an echocardiographic substudy, OM prolonged SET and

Figure 5 Mode of action of levosimendan and its active metabolite OR-1896. Both Ca2þ-sensitization and PDE3-inhibition at nanomolar concen-
trations (nM) contribute to their inotropic and lusitropic effects. Activation of mitochondrial KATP (mitoKATP) channels at micromolar concentrations
(mM) may provide protection against ischaemia/reperfusion. AR, adrenergic receptor; cAMP, cyclic adenosine monophosphate; ETC, electron trans-
port chain; ICa and INa, Ca2þ and Naþ currents; NCX, Naþ/Ca2þ-exchanger; NKA, Naþ/Kþ-ATPase; PDE, phosphodiesterase; PKA, protein kinase
A; RyR, ryanodine receptor; SERCA, SR Ca2þ ATPase; SR, sarcoplasmic reticulum; T-tubule, transversal tubule. Red arrows ("#) indicate the direction
of change in heart failure, while green arrows ("#) indicate the direction induced by levosimendan.
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Figure 6 Mechanism of action and effects of omecamtiv mecarbil. (A) The mechanochemical cycle of myosin. Yellow indicates myosin weakly
bound to actin, while red indicates the myosin strongly bound to actin. Omecamtiv mecarbil (OM) accelerates the transition rate of myosin into the
strongly actin-bound force-generating state. (B) Representative tracings showing that OM (200 nM) increases the time and amplitude of myocyte
shortening without any effect on the cytosolic Ca2þ transient. In contrast, the b-AR agonist isoproterenol increases myocyte shortening through
increasing cytosolic Ca2þ transients. Fractional systolic sarcomere shortening and diastolic cell length (C) as well as time to peak and maximal relax-
ation velocity (D) in isolated rat cardiac myocytes in response to escalating concentrations of OM. (A–D) are from Malik et al.96 with permission. (E)
Impact of OM (20 min infusion at a dose that prolonged SET by 20%) on LV pressure-volume loops in a pig model of myocardial stunning (termed
‘post-ischaemic’ heart). The volumes indicate LV stroke volume and end-diastolic volume, of which EF is calculated. Taken from Bakkehaug et al.99

with permission. (F) The impact of OM at 0.1 or 1 mM on normalized isometric force in response to increasing Ca2þ concentrations (decreasing pCa)
in skinned rat cardiac myocytes. Taken from Nagy et al.102 with permission.

....................................................................................................................................................................................................................

Table 2 Effects of omecamtiv mecarbil on haemodynamics in large animal models and clinical trials

Study Species,

condition

Appl. n Time of OM

admin.

OM Plasma

Conc. (ng/mL)

SET SV HR C. O. SVR LVEDP LVEDV

(LVEDD)

Shen Dog MI/Pacing i.v. 6 15 min–72 h ? þ20-30% þ44% -15% þ22% -15% -17%

Malik Dog MI/Pacing i.v. 5 15 min ? þ25% þ61% -17% þ29%

Bakkehaug Pig (stunning) i.v. 7 20 min 500–1000 þ20% 0 0 0 -17% -31% -18%

Teerlink Human Con i.v. 34 1–24 h 400–500 þ18% þ11% -3%

Cleland Human CHF i.v. 45 1.5–96 h 400–500 þ19% þ13% þ9% 0

ATOMIC-HF Human AHF i.v. 89 48 h 300–787 þ17%a 0 -2 b.p.m. 0 (EDD)

COSMIC Human CHF oral 427 20 weeks 318 þ8% þ7% -4% 0b c -2% (EDD)

From Shen et al.,84 Malik et al.,83 Bakkehaug et al.,86 Teerlink et al.,16 Cleland et al.,15 ATOMIC-HF,18 and COSMIC-HF.19

C. O., cardiac output; HR, heart rate; ICM, dog model of ischaemic cardiomyopathy; LVEDP, LV end-diastolic pressure; LVEDV(D), LV end-diastolic volume (dimension); n,
number of animals/patients; SET, systolic ejection time; SV, stroke volume; SVR, systemic vascular resistance.
aEstimated; no baseline SET indicated; assuming a SET of 316 ms as in Cleland et al. (2011).
bEstimated from the least square mean changes in SV and HR.
cDecrease of NT-proBNP by 970 pg/mL vs. placebo.
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decreased LV end-systolic dimension, although LV stroke volume
was not increased.19 Additionally, slight decreases in heart rate (-2
b.p.m.) and increases in systolic blood pressure were noted (Table 2).

In the COSMIC-HF trial, oral OM at either a fixed dose (25 mg
twice daily) or dosing based on a pharmacokinetic titration protocol
was tested against placebo in patients with stable (not acute) systolic
HF receiving standard of care therapy.20 After 20 weeks, moderate
increases in SET and SV and a slight reduction in heart rate were
noted in the pharmacokinetic titration group (Table 2). The latter ef-
fect may reflect slightly reduced endogenous sympathetic activity.98

Furthermore, the LV end-diastolic volume decreased by 11 mL and
NT-proBNP levels dropped by 970 pg/mL compared to placebo, re-
spectively. As in ATOMIC-AHF,19 there was a small increase in car-
diac troponin I that did not correlate with OM plasma
concentrations.16,17 The frequency of deaths, arrhythmias, hospital
admissions, or adverse events was not different between groups, sug-
gesting safety.

Overall, the haemodynamic profile of OM appears promising with-
in its therapeutic range. The increase in cardiac contractility and sub-
sequent prolongation of SET increases LV stroke volume in patients
with chronic HF and consequently, blood pressure should rise initially
which then may reduce endogenous sympathetic activation. This is
indicated by the slight, though consistent lowering of heart rate in
human and animal studies. As a result, cardiac output in humans
appears largely unchanged despite the modest decrease in heart rate,
suggesting improved cardiac efficiency. Furthermore, the decrease in
LV filling pressures, as indicated by the decrease in NT-proBNP in
COSMIC-HF or the decrease of LV end-diastolic pressures in acute
studies in the dog indicate LV unloading that may facilitate reverse
remodelling of the LV. The now initiated GALACTIC-HF trial
(NCT02929329), which aims to include 8000 patients with chronic
HF will eventually clarify the long-term outcome by OM. Meanwhile,

some uncertainties remain regarding the mechanisms of action of
OM and their implications for cardiac function and long-term
outcome.

Diastolic dysfunction

In cardiac myocytes, the increase in systolic function by OM comes at
the cost of increased diastolic tension (Figure 6C), indicated by short-
ening of diastolic cell length. At low (OM) of 200–400 nM, systolic im-
provement outweighs the diastolic deficit in rat cardiac myocytes,
while at 800 nM, this relation reverses. In an in vivo pig model of myo-
cardial stunning after ischaemia/reperfusion, OM reduced both end-
diastolic and end-systolic volumes to similar extents (Figure 6E) at
concentrations that prolonged SET by 20% (Table 2). Thereby LVEF
pseudo-increased, while SV did not.99 Furthermore, the OM-induced
increase in cardiac output was smaller in humans with or without HF
compared to the dogs with HF (Table 2). In light of the results on
post-ischaemic pigs,99 it needs to be considered whether an improve-
ment of SET (and therefore, SV) by OM may have been (partly) offset
by decreases in end-diastolic volume or filling. The improvement of
NT-proBNP by long-term OM in COSMIC HF 20 however, rather
argues against a meaningful deterioration of diastolic function by
these doses of OM.

Bioenergetic aspects

In dogs with HF, OM did not increase O2 consumption97 although in
the post-ischaemic pig model, O2 consumption tended to increase.99

In isolated mouse hearts, OM impaired myocardial efficacy by
increasing O2 consumption in working hearts and during basal (rest-
ing) metabolism, which was abolished by a myosin-ATPase inhibi-
tor.99 These data suggest that OM increases (tonic) myosin-ATPase
activity100 and thereby O2 consumption, which however contrasts

Figure 7 Mechanisms of action of nitroxyl (HNO) in HF. HNO affects redox-sensitive residues of various proteins involved in myocyte Ca2þ han-
dling. In particular, HNO increases SERCA activity and sensitizes myofilaments to Ca2þ. In concert, these properties increase SR Ca2þ load, systolic
Ca2þ transients and contraction. Red arrows ("#) indicate the direction of change in heart failure, while green arrows ("#) indicate the direction
induced by HNO.
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with the effect of OM to inhibit the basal ATPase of myosin in vitro.101

In skinned rat cardiac myocytes, OM shifted the pCa/force relation-
ship to the left, indicative of sensitizing myofilaments to Ca2þ

(Figure 6F).102 In human myocardium, OM increased the myosin duty
ratio which resulted in enhanced Ca2þ sensitivity, but slower force
development.103 In a mouse model of dilated cardiomyopathy with
decreased myofilament Ca2þ sensitivity, OM resensitized myofila-
ments towards control levels.104 However, in the majority of patients
with HF, the Ca2þ affinity of the myofilaments is increased rather than
decreased,28–30,105,106 and in LV myocardium of patients with terminal
HF, increased diastolic tension consumes as much ATP and O2 as sys-
tolic tension, and elevated diastolic tension is a substantial energetic
burden in failing hearts especially at higher heart rates.107

In conclusion, whether OM has a neutral or even net energy-
sparing effect on myocardial bioenergetics, or whether the drug’s net
effect on myosin could increase O2-consumption is a question future
research should continue to address. Furthermore, the development
of small molecules targeting sarcomeric motor proteins is an emerg-
ing field that is discussed in more detail in the Supplementary material
online.

Alternative treatments targeting
excitation–contraction coupling

Nitroxyl
Nitroxyl (HNO) is produced by NO synthase under conditions of
oxidative or nitrosative stress. HNO donated by Angeli’s salt (AS)
improves cardiac function in normal and failing dogs, independent-
ly of b-AR signalling, with no change in cGMP levels.108,109 In car-
diac myocytes, HNO increases fractional shortening (FS) and
Ca2þ transients with no involvement of cAMP/PKA or cGMP/pro-
tein kinase G signalling.110 Instead, HNO modifies cysteine resi-
dues to enhance Ca2þ handling and increase myofilament Ca2þ

sensitivity. In particular, HNO alters the inhibitory interaction be-
tween phospholamban and SERCA2a in a redox-dependent man-
ner, improving SR Ca2þ uptake and release in isolated myocytes/
hearts (Figure 7).111,112 In addition, HNO modifies the actin–
tropomyosin and myosin heavy chain-myosin light chain 1 interac-
tions, increasing Ca2þ sensitivity and force generation in intact
and skinned muscles (Figure 7).113

Figure 8 Known and hypothesized bioenergetic consequences of inotropic interventions that either increase cytosolic Ca2þ or myofilament Ca2þ

sensitivity. ECC, excitation–contraction coupling; ETC, electron transport chain; MCU, mitochondrial Ca2þ uptake.
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Changes in HF

Take home figure Mechanisms of excitation-contraction coupling, known defects in heart failure and which targets inotropic compounds
have. In systolic HF, contractile dysfunction is primarily related to attenuated increases in cytosolic Ca2þ during systole. This is the result of decreased
activity of the sarcoplasmic reticulum (SR) Ca2þ ATPase (SERCA) and leaky ryanodine receptors (RyR). Maximal contractility is further limited by
decreased adenosine triphosphate (ATP) production in mitochondria. Dobutamine and norepinephrine activate b1-adrenergic receptors (b1-AR),
increasing cAMP which phosphorylates protein kinase A (PKA). PKA in turn phosphorylates proteins involved in EC coupling and thereby accelerates
the kinetics and amounts of cytosolic Ca2þ during systole. The phosphodiesterase 3 (PDE3) inhibitors enoximone and milrinone potentiate b-AR-
induced cAMP elevations and therefore, have similar effects on inotropy as dobutamine, increasing Ca2þ fluxes. Digitalis inhibits the Naþ/Kþ-ATPase
(NKA) and thereby elevates intracellular Naþ, which in turn elevates Ca2þ by hampering cytosolic Ca2þ export via the forward mode Naþ/Ca2þ ex-
changer (NCX) and may increase reverse mode NCX-mediated Ca2þ influx during the early phase of the action potential. Istaroxime has similar
effects as digitalis but also activates SERCA to accelerate diastolic Ca2þ uptake into the SR. SERCA2a gene therapy increases the mRNA and protein
levels of SERCA and thereby, potentiates SR Ca2þ uptake and release. Nitroxyl (HNO) activates SERCA activity and increases myofilament Ca2þ

sensitivity. Levosimendan increases the affinity of troponin C to Ca2þ and thereby, increases force generation for any given cytosolic Ca2þ concentra-
tion. In addition, levosimendan inhibits PDE3, which elevates cAMP and PKA activity with subsequent effects on Ca2þ handling as described above for
catecholamines and PDE-inhibitors. Omecamtiv mecarbil is a myosin activator that prolongs actin–myosin interaction and thereby, results in a pro-
longation (but not acceleration) of contraction. Elamipretide (also known as Bendavia or MTP-131) binds to cardiolipin in the inner mitochondrial
membrane, increasing ATP production and reducing the generation of reactive oxygen species (ROS). Trimetazidine and perhexiline optimize sub-
strate utilization and thereby, improve cardiac energetics. Iron restores iron deficiency and thereby, may improve function of Krebs cycle enzymes
and possibly, the electron transport chain (ETC).

....................................................................................................................................................................................................................

Table 3 Mechanisms of action of clinically tested agents targeting inotropy

Drug/mechanism Increasing

cAMP

Myofilament Ca21

sensitization

Restoring cytosolic

Ca21 handling

Dobutamine þþþ
Milrinone þþþ
Levosimendan þþ þþ
EMD-57033 (þ) þþþ
Omecamtiv mecarbil þþþ (a)

Nitroxyl (HNO) þ þþ
AAV1/SERCA2a þþþ
EF-hand Ca2þ-binding motifs þþþ

aPrinciple mechanism is myosin activation, but this increases myofilament Ca2þ sensitivity as well.89–91
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Whereas beneficial effects of NO signalling to cGMP may be lost

in conditions of cardiac oxidative stress (by the high reactivity of NO
with ROS), this does not occur with HNO, whose efficacy is pre-
served in conditions with altered redox balance.114,115 Novel HNO
donors (e.g. CXL-1020) are long-lasting and more specific. CXL-
1020 has HNO-dependent positive inotropic and lusitropic effects in
isolated cardiac myocytes in vitro and in whole animal studies in vivo, in
both normal and failing conditions. Human Phase I–IIa clinical trials
were recently completed (NCT01092325, NCT01096043). In
patients with systolic HF, CXL-1020 reduced both left and right heart
filling pressures and SVR, while increasing SV. Heart rate was un-
changed, and arterial pressure declined modestly.116 Currently, an
improved second-generation HNO donor, CXL-1427, is tested in
Phase I and II trials on healthy volunteers and patients with HF
(NCT02157506, NCT02819271).

Other compounds and interventions
The mechanisms and, where appropriate, clinical results of
Istaroxime, SERCA2a gene therapy and EF-hand proteins are dis-
cussed in the Supplementary material online.

Energetic considerations

Taken together, inotropic agents have three principal modes of action:

(1) Activation of the adrenergic system,
(2) sensitization of myofilaments to Ca2þ and
(3) reconstitution of cytosolic Ca2þ handling independent of adrenergic

activation.

The modes of action of inotropic drugs have important energetic
consequences. Most cellular ATP is consumed by SERCA, NKA, and
myosin ATPase.117 A central mechanism to match ATP supply to de-
mand is ‘parallel activation’ by Ca2þ,31 where Ca2þ activates both
ATP-consumption and -regeneration (Figures 3 and 8): Increases in
[Ca2þ]c accelerate ATP consumption by EC coupling, hastening res-
piration via ADP which oxidizes NADH and FADH2 at the respira-
tory chain. On the other hand, Ca2þ enters mitochondria to activate
Krebs cycle dehydrogenases, accelerating NADH and FADH2 regen-
eration (Figure 8).31 Consequently, hormones or drugs that increase
Ca2þ handling (e.g. catecholamines) in the short-term induce this
‘parallel activation’ of respiration, maintaining the redox state of
NADH and FADH2 in normal hearts (Figure 8).31 In the failing heart,
however, mitochondrial Ca2þ uptake is impaired, resulting in NADH
oxidation during b-adrenergic stimulation.31,33 Since NADH is
coupled to the NADPH pool, and NADPH required for ROS detoxi-
fication (Figures 3 and 8), a mismatch between cardiac work and mito-
chondrial Ca2þ uptake induces oxidative stress.31,33 This may
contribute to arrhythmias, systolic dysfunction, and maladaptive
remodelling through necrosis and other redox-sensitive signalling
pathways.33 Therefore, improving SR Ca2þ content and release, as
has been observed with AAV1/SERCA2a118 or HNO110 in animal
models of HF, may improve the efficiency of mitochondrial Ca2þ up-
take and make the failing heart less sensitive towards b-AR-mediated
oxidative stress and damage. In patients with improved LVEF in re-
sponse to b-blockers, SERCA gene expression was strongly upregu-
lated,119 suggesting that also b-blockers may improve mitochondrial

redox regulation through restoring defective EC coupling in the long
term.

Conversely, when sensitizing myofilaments to Ca2þ, the increase
in ATP consumption at the myofilaments may not be adequately
matched by Ca2þ-induced Krebs cycle activation in mitochondria
(Figure 8). In fact, pre-stretching cardiac trabeculae increases force
production independent of an increase in Ca2þ via the Frank–Starling
mechanism, which is related to myofilament Ca2þ sensitization, and
this oxidizes NADH.120 Whether such energetic mismatch and pos-
sibly further downstream consequences such as energetic deficit and
oxidative stress are also the result of Ca2þ sensitization through ino-
tropic drugs (i.e. EMD-57033, levosimendan, OM, nitroxyl etc.),
mutations occurring in patients with HCM75,76 and/or post-
translational modifications occurring in patients with systolic HF106

needs to be clarified by future research. In the context of inotropic
drugs, however, a profile where Ca2þ sensitization is coupled to res-
toration of Ca2þ handling (i.e. nitroxyl) or increases of Ca2þ (i.e. levo-
simendan; Table 3) may ameliorate energetic/redox mismatch
occurring through Ca2þ sensitization per se.

Finally, it should be considered whether targeting mitochondria may
be an alternative indirect inotropic intervention, since in dogs with HF,
elamipretide—which accumulates in mitochondria and improves mito-
chondrial function—acutely increased cardiac output by a similar extent
(þ25%)121 as OM (þ22 and þ29%, respectively; Table 2).96,97

Furthermore, trimetazidine and perhexiline target substrate metabol-
ism of mitochondria and improve LVEF, haemodynamics, cardiac ener-
getics, and symptoms in patients with HF (for more details on these
compounds see Supplementary material online).122–126 Finally, cardiac
myocyte-specific ID impaired the response to dobutamine in preclinical
models of HF which could be restored by iron supplementation,127

suggesting that pharmacological restoration of mitochondrial function
may also regenerate the heart’s response to inotropic stimulation.

Summary

Catecholamines and PDE-inhibitors are associated with excess mor-
tality presumably related to the induction of arrhythmias in the short-
term and the activation of signalling pathways that aggravate maladap-
tive remodelling of the failing heart in the long-term. Although levosi-
mendan has so far been viewed as a Ca2þ sensitizer, its inotropic
effect relies on PDE3-inhibition as well. As a myosin activator, OM
improves systolic function without activating adrenergic signalling or
increasing cytosolic Ca2þ, but its therapeutic range is limited by dia-
stolic dysfunction at higher doses. Nitroxyl restores cytosolic Ca2þ

handling in failing hearts without activating cAMP-dependent signal-
ling pathways and shows a promising haemodynamic profile, but its
clinical usefulness awaits further clinical testing. Besides the impact of
adrenergic signalling, bioenergetic aspects need to be considered to
estimate the comprehensive profile and long-term consequences of
any agent that affects inotropy.

Statements and recommendations

Based on these preclinical and clinical data as well as the bioenergetic
considerations, the Committees on Translational Research and on

Treatments targeting inotropy 3639
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Acute Heart Failure of the HFA of the ESC make the following state-
ments and recommendations:

• Currently available drugs primarily targeting inotropy are cardio-
tropic glycosides, catecholamines (in particular, dobutamine), PDE-
inhibitors, and levosimendan.

• According to the current HF Guidelines,3 the use of catechol-
amines, PDE-inhibitors and levosimendan should be limited to
patients with hypotension (SBP <90 mmHg) and/or signs/symptoms
of hypoperfusion despite adequate filling status to increase cardiac
output and improve peripheral perfusion to maintain end-organ func-
tion (IIb, C).

• PDE-inhibitors and levosimendan can cause hypotension due to
vasodilatory actions.

• Vasopressors (preferably norepinephrine) may be considered to
increase blood pressure and vital organ perfusion in patients with
cardiogenic shock despite the use of inotropes (IIb, B).3

• So far, all inotropic drugs recommended for the use in patients with
acute HF (including levosimendan) activate adrenergic signalling at
least to some extent.

• Longer-term use of drugs that exclusively target adrenergic signal-
ling (catecholamines, PDE-inhibitors) are associated with adverse
outcome.

• Levosimendan, with its hybrid Ca2þ sensitization and adrenergic action
(PDE3 inhibition), could be useful in selected patient populations,
which may include patients treated with b-blockers and patients with
advanced HF in an outpatient setting (repeated dosing) to reduce
hospitalization and improve quality of life, although this requires
additional proof from larger trials.

• Since mitochondrial function is intimately linked to cellular Ca2þ han-
dling,31 the bioenergetic consequences of treatments targeting ino-
tropy need to be considered to understand their short- and long-
term consequences.

• On theoretical grounds, treatments that restore the defects of cyto-
solic Ca2þ handling in the failing heart without activating adrenergic
signalling may be a promising avenue since they avoid diastolic dys-
function and potentially bioenergetic mismatch of pure Ca2þ sensi-
tization, but also adverse long-term consequences of adrenergic
activation.

• Future research should be directed towards deepening our under-
standing of the close interplay between EC coupling and mitochondrial
energetics, since only the integration of these aspects will resolve
the net biological effects of drugs targeting inotropy in the short-
and long-term.

Supplementary material

Supplementary material is available at European Heart Journal online.
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