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Abstract

Background: Machine learning (ML), a subset of artificial intelligence (AI) that aims to teach 

machines to automatically learn tasks by inferring patterns from data, holds significant promise to 

aid psoriasis care. Applications include evaluation of skin images for screening and diagnosis as 

well as clinical management including treatment and complication prediction.

Objective: To summarize literature on ML applications to psoriasis evaluation and management 

and to discuss challenges and opportunities for future advances.

Methods: We searched MEDLINE, Google Scholar, ACM Digital Library, and IEEE Xplore for 

peer-reviewed publications published in English through December 1, 2019. Our search queries 

identified publications with any of the 10 computing-related keywords and “psoriasis” in the title 

and/or abstract.

Results: Thirty-three studies were identified. Articles were organized by topic and synthesized as 

evaluation- or management-focused articles covering 5 content categories: (A) Evaluation using 

skin images: (1) identification and differential diagnosis of psoriasis lesions, (2) lesion 

segmentation, and (3) lesion severity and area scoring; (B) clinical management: (1) prediction of 

complications and (2) treatment.

Conclusion: Machine learning has significant potential to aid psoriasis evaluation and 

management. Current topics popular in ML research on psoriasis are the evaluation of medical 

images, prediction of complications, and treatment discovery. For patients to derive the greatest 

benefit from ML advancements, it is helpful for dermatologists to have an understanding of ML 

and how it can effectively aid their assessments and decision-making.
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Introduction

Machine learning (ML) is a subset of artificial intelligence (AI) that aims to teach machines 

to automatically learn tasks by inferring patterns from data. With the advent of medical 

devices and electronic medical records, the amount of available medical data has grown 

exponentially, and with it, so has ML’s potential to learn medical tasks. It is helpful for 

clinicians to gain an understanding of what ML is, what its clinical applications are, and how 

they can work with machine-assisted diagnoses and decisions in the future to provide 

patients with the best possible care.

As a visual field with a large patient base, dermatology has seen perhaps some of the most 

advanced progress in ML research, especially in the automatic interpretation of medical 

images.1–8 Dermatological images are unique in which images of the skin can be taken in 

clinic or at home by a clinician, patient, or caregiver, providing relatively speedy access to 

valuable information on disease progression and patient outcomes. However, the 

unstandardized process of dermatological image capture also poses challenges, such as wide 

variability in quality metrics such as sharpness, exposure, color balance, and perspective.

Researchers have tackled medical image interpretation using a range of ML algorithms.1–12 

Deep neural networks (DNNs) are one popular approach.1–8 Deep neural networks are 

powerful in which they are designed to learn patterns from large quantities of data without 

the need for user-provided domain knowledge of the task the DNN is trying to solve. Deep 

convolutional neural networks (DCNNs), a type of DNN especially well adapted for visual 

imagery, have been used to classify images of melanoma without being explicitly instructed 

to look for differences in asymmetry, borders, color, and diameter. Esteva et al used a DCNN 

trained on 129 450 clinical images consisting of 2032 different diseases to classify benign 

versus malignant skin lesions.1 Their ML model achieved sensitivity and specificity on par 

(area under the curve > 0.91) with 21 board-certified dermatologists at classifying malignant 

carcinomas versus benign seborrheic keratoses and malignant melanomas versus benign 

nevi.

The large patient base of dermatology also lends the field to big data analysis by ML. 

Electronic health records and online patient forums such as Reddit are examples of large 

databases that have been mined using natural language processing methods in order to 

identify population-level trends in dermatology patient experiences and therapeutics, such as 

the use of home therapies outside of standard clinical practice.13

Psoriasis is a skin disease with profound impacts on quality of life and significant 

morbidities such as increased susceptibility to inflammatory (psoriatic) arthritis and major 

cardiometabolic comorbidity.14–18 Given that the disease is largely evaluated and managed 

through visual inspection and that it has a significant prevalence estimated at 7.4 million 

adult Americans,19 psoriasis diagnosis and care lends itself well to ML tasks like those 
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described above. We conducted a systematic review on studies applying ML to improve the 

clinical evaluation and management of psoriasis. We conclude with a discussion of ML’s 

challenges, opportunities, and future directions for dermatologists in psoriasis care.

Methods

We performed a literature search for peer-reviewed publications in 4 databases: MEDLINE, 

Google Scholar, ACM Digital Library, and IEEE Xplore. We chose these databases in order 

to cover medical (MEDLINE), computing (ACM Digital Library and IEEE Xplore), and 

general resources (Google Scholar). Peer-reviewed articles published in English up to 

December 1, 2019, were considered. We queried for studies with titles and/or abstracts 

containing any of the 10 ML-related keywords combined with “psoriasis” using the “AND” 

operator: “machine learning,” “artificial intelligence,” “segmentation,” “computer vision,” 

“neural networks,” “deep learning,” “supervised learning,” “unsupervised learning,” 

“natural language processing,” and “reinforcement learning.” An example query to 

demonstrate our search method is “psoriasis[Title/Abstract] AND machine learning[Title/

Abstract].” The 10 keywords were chosen in order to cover a broad range of topics relevant 

to ML research on psoriasis.

Two reviewers (K.Y. and M.S.) independently evaluated citation titles and abstracts to assess 

study eligibility. Duplicates, non-peer-reviewed articles, non-English articles, and articles 

published only as an abstract were removed. Abstracts were assessed for relevance to ML 

research on psoriasis, and differences in opinion between the 2 reviewers were resolved 

through discussion. The remaining eligible publications were reviewed in full-text, 

summarized, grouped into topic categories, and qualitatively synthesized. Figure 1 reports 

our systematic review process using the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses framework.20

Results

Our search method identified 294 citations. After following the review protocol, 33 full-text 

articles were included for qualitative synthesis (Figure 1). These were divided into 2 broad 

categories each with 2 to 3 subcategories: (A) Evaluation using skin images: (1) 

identification and differential diagnosis of psoriasis lesions (8 articles), (2) lesion 

segmentation (8 articles), and (3) lesion severity and area scoring (12 articles); (B) clinical 

management: (1) prediction of complications (2 articles) and (2) treatment (3 articles). The 

33 studies are summarized in Table 1 and are qualitatively synthesized in this review to 

describe the current state of advances in ML research on psoriasis, its limitations and 

challenges, and its future directions.

Evaluation Using Skin Images

Similar to the previous example of skin cancer, ML can aid in the evaluation and diagnosis 

of skin diseases through the automatic interpretation of skin images. This includes the ability 

to identify an image of a psoriasis lesion as psoriasis and to differentiate it from other skin 

diseases, to trace the outlines of a psoriasis lesion in an image, and to score the severity and 

area of psoriasis from an image.
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Identification and differential diagnosis of psoriasis lesions.—We identified 8 

articles that applied ML to identify an image of a psoriasis lesion as psoriasis and to 

differentiate it from other skin diseases.21–28 Shrivastava et al have conducted a few studies 

to classify skin images from psoriasis patients as healthy versus diseased. After extracting 

feature information such as texture, color, and redness from images of psoriasis lesions, they 

used a support vector machine (SVM) model to classify 540 skin images from 30 psoriasis 

patients of Indian descent as healthy versus diseased, with a classification accuracy of 

approximately 99%.24–26 Other groups have focused on identifying psoriasis from images 

representing several common skin disorders, including diseases commonly mistaken for 

psoriasis like atopic dermatitis.21–23,27,28 For example, Zhao et al used convolutional neural 

networks to classify 8021 images of 9 common disorders—lichen planus, lupus 

erythematosus, basal cell carcinoma, squamous cell carcinoma, atopic dermatitis, 

pemphigus, psoriasis, and seborrheic keratosis—from patients at a Chinese hospital as 

psoriasis versus non-psoriasis.23 When tested on 100 new images, their algorithm showed 

superior performance to 25 Chinese dermatologists, with a misdiagnosis rate of 3% 

compared to 27% by dermatologists. Meanwhile, Kim et al focused specifically on the 

differential diagnosis of seborrheic dermatitis versus psoriasis on the scalp using 

smartphone-based multispectral imaging, achieving a sensitivity of 65% to 75% and 

specificity of 70% to 80%.22

Lesion segmentation.—After an image has been identified as containing psoriasis, it is 

useful to identify the outlines of a psoriasis lesion in the image, a task called 

“segmentation.” While this can be done manually, ML has the power to automate 

segmentation, enabling subsequent higher level tasks like automated body surface area 

(BSA) scoring. Fortunately, psoriasis plaques tend to be well-circumscribed, making it easier 

for a machine to segment a psoriasis lesion than for poorly circumscribed skin diseases.

We identified 8 studies tackling the task of psoriasis lesion segmentation.29–36 For example, 

Dash et al built a DCNN to automatically segment psoriasis lesions in RGB color images, 

trained on 5241 skin images from 1026 psoriasis patients.29 Their model achieved an 

accuracy of 94.8%, with 89.6% sensitivity and 97.6% specificity. Other groups have 

conducted similar work with a range of ML methods, including superpixel clustering,30 

SVM,31,32 K-means clustering,33 and subspace classification.35,36 Besides skin images, ML 

is also being used to automatically segment psoriasis in skin biopsy images using DCNNs.34

Lesion severity and area scoring.—Segmentation of psoriasis lesions in a skin image 

from a psoriasis patient makes it possible to automate evaluation of psoriasis lesion severity 

and affected area. We identified 12 articles related to severity and area grading of psoriasis 

using skin images.37–48

Dermatologists grade psoriasis severity according to the Psoriasis Area and Severity Index 

(PASI) and Physician Global Assessment (PGA) systems.49 These severity grading systems 

involve clinical assessment of lesion erythema, scaliness, and induration by a dermatologist. 

Machine learning methods have been applied to automatically score erythema37,38 and 

scaliness39,40 from an image and to detect change in scaliness across time for a times series 

of images taken over a week.46 For erythema, automatic severity scoring method by George 
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et al achieved an F1 score (weighted average of precision and recall) of 0.71.37 For scaliness, 

their method achieved an accuracy of 80.81%.39 Automatic scoring of induration from 2-

dimensional images remains a bigger challenge due to its 3-dimensional nature.

Body surface area is another quantitative metric that a dermatologist will assess when 

evaluating a psoriasis patient, traditionally done in the clinic through a full body skin exam. 

Body surface area and a severity assessment averaged across all lesions (eg, PGA) are 

combined (eg, PGA × BSA or PASI) to evaluate psoriasis.49 Machine learning researchers 

are working to automate estimation of involved BSA.41,47,48 The DCNN of Meienberger et 

al achieved an accuracy of more than 90% in 77% of images, with automated area estimates 

differing from physicians’ area estimates by 8.1% on average.41 Additionally, total body 

imaging systems are being designed to generate more comprehensive images for automatic 

PASI and BSA measurements.42 Together, the information from ML-automated severity and 

area grading can be used to automatically risk stratify psoriasis lesions.43–45

Clinical Management

Prediction of complications.—Psoriasis is associated with a number of comorbidities,18 

including psoriatic arthritis,14 cardiovascular disease,15 and diabetes.50 Machine learning 

can be used to identify characteristics that correlate with a psoriasis patient’s likelihood of 

developing complications. We identified 2 articles that used ML to assess the risk of 

complications of psoriasis. Patrick et al used genetic data to assess the risk of psoriatic 

arthritis.51 Munger et al used patient records to identify top predictors of noncalcified 

coronary plaque burden in psoriasis, which included obesity, dyslipidemia, and 

inflammation factors.52

Treatment.—We found 3 articles that used ML to advance research on psoriasis treatment, 

such as identifying new drugs and predicting patient response to approved therapies.53–55 

Potential new drugs for psoriasis treatment can be identified using natural language 

processing (NLP) by mining medical literature databases such as MEDLINE in combination 

with clinical patient data. Patrick et al used NLP to predict drugs not currently prescribed for 

psoriasis that could be repurposed to treat psoriasis.53 This approach would be a cost-

effective method to identify new psoriasis treatments, but the output may not be informative. 

For example, their highest scoring predictions for psoriasis treatment included budesonide—

not a new finding as systemic steroids improve psoriasis but with an unacceptable safety 

profile—and hydroxychloroquine—which has no evidence of benefit in psoriasis and is 

reported to trigger psoriasis flares.56 Meanwhile, Zhang et al used NLP to uncover drug-

drug interactions, such as potential for lisinopril (an antihypertensive) and sertraline (an 

antidepressant) to increase the likelihood and severity of psoriasis when used together.54 

Finally, Tomalin et al used ensemble ML methods that predicted, with 71% accuracy, 

psoriasis patients’ long-term treatment response to tofacitinib and etanercept given blood 

quantification of 157 inflammatory and cardiovascular proteins.55 Their model represents 

266 patients and must be validated in larger, independent patient cohorts before it can be 

clinically applied.
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Discussion

Challenges

Bringing ML technologies into the dermatologist’s office faces challenges both common to 

dermatology and specific to psoriasis. Common challenges center on quality and quantity of 

data. A machine’s ability to learn is dependent on the quality of data it receives, an 

important limitation to emphasize for clinical researchers collecting the data that ML 

researchers use to train their algorithms. A big challenge is the standardization of data, 

especially for skin images that are oftentimes taken with no standardized protocol, leading to 

variation in color normalization, exposure, perspective, and other parameters that make it 

tough for ML algorithms to discriminate between true and artificial differences between 

captured lesions. The International Skin Imaging Collaboration has attempted to address this 

by producing a set of technique standards for skin lesion imaging,57 but ensuring adoption of 

these standards across dermatological practices is difficult, particularly when images are 

patient-generated. A data set that is too small also has the potential to introduce bias and 

inaccuracies, especially for computationally expensive systems like DNNs, which require a 

large training set to produce generalizable output. An unrepresentative and small data set is 

especially problematic for ML algorithms like DNNs, which already operate as opaque 

“black boxes” lacking explainable reasoning for decisions. If the rationale of the algorithm is 

hard to interpret and the input data are unrepresentative, we may inadvertently use biased 

ML algorithms that increase health inequities without knowing it. For dermatology, a data 

set unrepresentative of diverse skin types may exacerbate already existing health disparities 

by generating ML models that are erroneous for underrepresented groups.58,59 Finally, many 

algorithms developed for dermatology have not yet been tested in a clinical setting nor 

evaluated for important clinical metrics such as positive- and negative-predictive value. 

Thus, their clinical utility remains to be determined.

Other challenges are specific to features of psoriasis. For one, psoriasis can be present in 

many forms, including plaque, guttate, pustular, palmoplantar, and nail psoriasis. An ML 

algorithm trained on only the most common psoriasis manifestations would be unable to 

recognize rarer presentations as the same disease. Secondly, psoriasis can be present 

anywhere across the body and can vary in size and form within the same patient. Most 

photos capture only spots of psoriasis, precluding the calculation of an accurate BSA, and an 

ML algorithm may erroneously compare lesions on the extremities with those on the 

buttocks. Whole-body photography is one solution to this problem, but it is not available in 

most contexts including normal clinic visits and telemedicine. An ideal algorithm for 

psoriasis would be trained to sophisticatedly combine multiple images from a single patient 

to make a holistic assessment. Otherwise, an ML algorithm may inaccurately evaluate 

lesions in isolation, for example, deciding that lesions it sees as small are best spot-treated 

with topicals, while a dermatologist would be able to see that a patient with many small 

lesions dispersed across the body would be better treated with phototherapy. Savolainen et al 

attempted to build an algorithm that can conduct more sophisticated holistic assessments 

with a color segmentation method that estimated BSA in psoriasis patients across multiple 

images.48 Human eye estimates differed from their image analysis in almost one-third of 

cases, especially in cases with BSA <30%. Their algorithm had particular difficulties with 
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cylindrical body parts like the limbs. They noted additionally that the process of 

photographing and processing multiple images was time-consuming and technically 

demanding. Fadzil et al also developed a method to assess the area of psoriasis lesions 

across images of multiple body regions (face, anterior and posterior trunk, and both left and 

right upper and lower limbs), with an accuracy of greater than 90% in 28 out of 30 cases.60 

The scalp, buttocks, genitals, hands, and soles were not included, and 2 of the 30 cases 

demonstrated a significantly lower accuracy, showcasing the difficulty of accurate psoriasis 

area estimation using 2D images. These examples show the challenge of whole-body 

analysis; on the other hand, it may be possible for ML to detect information from individual 

plaques that are informative about the entire body.

Even if we zoom in on individual psoriasis lesions, there are still characteristic features of 

psoriasis that pose challenges. The 3 key measures to score psoriasis lesion severity are 

erythema, scale, and induration. An accurate assessment of erythema would benefit from 

color normalization and controlled illumination conditions; otherwise, a bright red lesion 

could appear dark brown.61,62 Interpreting scaliness requires complex texture analysis, and 

the silvery scale of psoriasis is complicated in how it reflects light. Finally, induration is 

challenging to assess accurately in 2 dimension.

Lastly, psoriasis sometimes causes post-inflammatory hyperpigmentation and 

hypopigmentation even after plaque clearance, especially in skin of color.59,63 This could be 

a source of confusion for an ML model attempting to, say, calculate erythema, if it has not 

also been trained to distinguish posttreatment pigmentation abnormalities from active 

lesions.

Future Directions and Relevance to Clinicians

Machine learning holds substantial promise to improve psoriasis care, from diagnostic 

evaluation to management and treatment. As a diagnostic aid, ML can automate tasks such 

as identifying areas of psoriasis in a photo, differentiating images of psoriasis from other 

common skin disorders, and scoring the severity of disease and area affected. Automation of 

these tasks can expedite the ability of dermatologists to make clinical assessments, which are 

significant given the high-volume nature of many dermatological practices.

As a therapy and management aid, ML can help prevent disease complications. For example, 

a psoriasis patient predicted by ML to have characteristics putting them at greater risk of 

cardiovascular complications, as was studied by Munger et al,52 could be targeted for 

preventative cardiology services.

Machine learning can also improve psoriasis treatment. Automated lesion-evaluation 

technologies could assist dermatologists in making treatment decisions and in monitoring 

patients. For example, a high PGA computed by ML could alert a dermatologist that a 

psoriasis patient may need more intensive systemic treatment or phototherapy over topicals. 

Long-term treatment response, drug-drug interactions, and potential new therapies for 

psoriasis can also be predicted using ML.53–55
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Machine learning can not only provide information for dermatologist decision-making but 

also make joint decisions with dermatologists using an approach called reinforcement 

learning (RL). Reinforcement learning teaches a machine to make decisions in order to 

maximize some reward, with applications like using past decisions and their outcomes to 

inform future decisions. In sepsis management, RL has been used to identify optimal 

treatment decisions given the data on past decisions and outcomes from 17 083 hospital 

admissions.64 For psoriasis, RL could use a patient’s past positive and negative responses to 

particular treatments (eg, loss of treatment response to a particular biologic therapy) to 

systematically decide whether a patient should continue or switch treatment regimens. This 

could help dermatologists make care decisions earlier and with a more efficient and 

evidence-based approach.
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Figure 1. 
Systematic review flowchart according to the PRISMA framework. PRISMA indicates 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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