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Abstract

Background: Machine learning (ML), a subset of artificial intelligence (Al) that aims to teach
machines to automatically learn tasks by inferring patterns from data, holds significant promise to
aid psoriasis care. Applications include evaluation of skin images for screening and diagnosis as
well as clinical management including treatment and complication prediction.

Objective: To summarize literature on ML applications to psoriasis evaluation and management
and to discuss challenges and opportunities for future advances.

Methods: We searched MEDLINE, Google Scholar, ACM Digital Library, and IEEE Xplore for
peer-reviewed publications published in English through December 1, 2019. Our search queries
identified publications with any of the 10 computing-related keywords and “psoriasis” in the title
and/or abstract.

Results: Thirty-three studies were identified. Articles were organized by topic and synthesized as
evaluation- or management-focused articles covering 5 content categories: (A) Evaluation using
skin images: (1) identification and differential diagnosis of psoriasis lesions, (2) lesion
segmentation, and (3) lesion severity and area scoring; (B) clinical management: (1) prediction of
complications and (2) treatment.

Conclusion: Machine learning has significant potential to aid psoriasis evaluation and
management. Current topics popular in ML research on psoriasis are the evaluation of medical
images, prediction of complications, and treatment discovery. For patients to derive the greatest
benefit from ML advancements, it is helpful for dermatologists to have an understanding of ML
and how it can effectively aid their assessments and decision-making.
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Introduction

Machine learning (ML) is a subset of artificial intelligence (Al) that aims to teach machines
to automatically learn tasks by inferring patterns from data. With the advent of medical
devices and electronic medical records, the amount of available medical data has grown
exponentially, and with it, so has ML’s potential to learn medical tasks. It is helpful for
clinicians to gain an understanding of what ML is, what its clinical applications are, and how
they can work with machine-assisted diagnoses and decisions in the future to provide
patients with the best possible care.

As a visual field with a large patient base, dermatology has seen perhaps some of the most
advanced progress in ML research, especially in the automatic interpretation of medical
images.1~8 Dermatological images are unique in which images of the skin can be taken in
clinic or at home by a clinician, patient, or caregiver, providing relatively speedy access to
valuable information on disease progression and patient outcomes. However, the
unstandardized process of dermatological image capture also poses challenges, such as wide
variability in quality metrics such as sharpness, exposure, color balance, and perspective.

Researchers have tackled medical image interpretation using a range of ML algorithms.1-12
Deep neural networks (DNNs) are one popular approach.1~8 Deep neural networks are
powerful in which they are designed to learn patterns from large quantities of data without
the need for user-provided domain knowledge of the task the DNN is trying to solve. Deep
convolutional neural networks (DCNNSs), a type of DNN especially well adapted for visual
imagery, have been used to classify images of melanoma without being explicitly instructed
to look for differences in asymmetry, borders, color, and diameter. Esteva et al used a DCNN
trained on 129 450 clinical images consisting of 2032 different diseases to classify benign
versus malignant skin lesions.! Their ML model achieved sensitivity and specificity on par
(area under the curve > 0.91) with 21 board-certified dermatologists at classifying malignant
carcinomas versus benign seborrheic keratoses and malignant melanomas versus benign
nevi.

The large patient base of dermatology also lends the field to big data analysis by ML.
Electronic health records and online patient forums such as Reddit are examples of large
databases that have been mined using natural language processing methods in order to
identify population-level trends in dermatology patient experiences and therapeutics, such as
the use of home therapies outside of standard clinical practice.13

Psoriasis is a skin disease with profound impacts on quality of life and significant
morbidities such as increased susceptibility to inflammatory (psoriatic) arthritis and major
cardiometabolic comorbidity.24-18 Given that the disease is largely evaluated and managed
through visual inspection and that it has a significant prevalence estimated at 7.4 million
adult Americans,9 psoriasis diagnosis and care lends itself well to ML tasks like those
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described above. We conducted a systematic review on studies applying ML to improve the
clinical evaluation and management of psoriasis. We conclude with a discussion of ML’s
challenges, opportunities, and future directions for dermatologists in psoriasis care.

We performed a literature search for peer-reviewed publications in 4 databases: MEDLINE,
Google Scholar, ACM Digital Library, and IEEE Xplore. We chose these databases in order
to cover medical (MEDLINE), computing (ACM Digital Library and IEEE Xplore), and
general resources (Google Scholar). Peer-reviewed articles published in English up to
December 1, 2019, were considered. We queried for studies with titles and/or abstracts
containing any of the 10 ML-related keywords combined with “psoriasis” using the “AND”
operator: “machine learning,” “artificial intelligence,” “segmentation,” “computer vision,”
“neural networks,” “deep learning,” “supervised learning,” “unsupervised learning,”
“natural language processing,” and “reinforcement learning.” An example query to
demonstrate our search method is “psoriasis[Title/Abstract] AND machine learning[Title/
Abstract].” The 10 keywords were chosen in order to cover a broad range of topics relevant
to ML research on psoriasis.

Two reviewers (K.Y. and M.S.) independently evaluated citation titles and abstracts to assess
study eligibility. Duplicates, non-peer-reviewed articles, non-English articles, and articles
published only as an abstract were removed. Abstracts were assessed for relevance to ML
research on psoriasis, and differences in opinion between the 2 reviewers were resolved
through discussion. The remaining eligible publications were reviewed in full-text,
summarized, grouped into topic categories, and qualitatively synthesized. Figure 1 reports
our systematic review process using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses framework.20

Our search method identified 294 citations. After following the review protocol, 33 full-text
articles were included for qualitative synthesis (Figure 1). These were divided into 2 broad
categories each with 2 to 3 subcategories: (A) Evaluation using skin images: (1)
identification and differential diagnosis of psoriasis lesions (8 articles), (2) lesion
segmentation (8 articles), and (3) lesion severity and area scoring (12 articles); (B) clinical
management: (1) prediction of complications (2 articles) and (2) treatment (3 articles). The
33 studies are summarized in Table 1 and are qualitatively synthesized in this review to
describe the current state of advances in ML research on psoriasis, its limitations and
challenges, and its future directions.

Evaluation Using Skin Images

Similar to the previous example of skin cancer, ML can aid in the evaluation and diagnosis
of skin diseases through the automatic interpretation of skin images. This includes the ability
to identify an image of a psoriasis lesion as psoriasis and to differentiate it from other skin
diseases, to trace the outlines of a psoriasis lesion in an image, and to score the severity and
area of psoriasis from an image.

J Psoriasis Psoriatic Arthritis. Author manuscript; available in PMC 2021 March 16.



1duasnuely Joyiny aduel|ly yoseasay yiesH

1duosnuey Joyiny aduel|ly yosessay yiesH

Yuetal.

Page 4

Identification and differential diagnosis of psoriasis lesions.—We identified 8
articles that applied ML to identify an image of a psoriasis lesion as psoriasis and to
differentiate it from other skin diseases.21-28 Shrivastava et al have conducted a few studies
to classify skin images from psoriasis patients as healthy versus diseased. After extracting
feature information such as texture, color, and redness from images of psoriasis lesions, they
used a support vector machine (SVM) model to classify 540 skin images from 30 psoriasis
patients of Indian descent as healthy versus diseased, with a classification accuracy of
approximately 99%.24-26 Other groups have focused on identifying psoriasis from images
representing several common skin disorders, including diseases commonly mistaken for
psoriasis like atopic dermatitis.21-23.27.28 For example, Zhao et al used convolutional neural
networks to classify 8021 images of 9 common disorders—Ilichen planus, lupus
erythematosus, basal cell carcinoma, squamous cell carcinoma, atopic dermatitis,
pemphigus, psoriasis, and seborrheic keratosis—from patients at a Chinese hospital as
psoriasis versus non-psoriasis.23 When tested on 100 new images, their algorithm showed
superior performance to 25 Chinese dermatologists, with a misdiagnosis rate of 3%
compared to 27% by dermatologists. Meanwhile, Kim et al focused specifically on the
differential diagnosis of seborrheic dermatitis versus psoriasis on the scalp using
smartphone-based multispectral imaging, achieving a sensitivity of 65% to 75% and
specificity of 70% to 80%.22

Lesion segmentation.—After an image has been identified as containing psoriasis, it is
useful to identify the outlines of a psoriasis lesion in the image, a task called

“segmentation.” While this can be done manually, ML has the power to automate
segmentation, enabling subsequent higher level tasks like automated body surface area
(BSA) scoring. Fortunately, psoriasis plaques tend to be well-circumscribed, making it easier
for a machine to segment a psoriasis lesion than for poorly circumscribed skin diseases.

We identified 8 studies tackling the task of psoriasis lesion segmentation.2%-36 For example,
Dash et al built a DCNN to automatically segment psoriasis lesions in RGB color images,
trained on 5241 skin images from 1026 psoriasis patients.2® Their model achieved an
accuracy of 94.8%, with 89.6% sensitivity and 97.6% specificity. Other groups have
conducted similar work with a range of ML methods, including superpixel clustering,30
SVM,31:32 K-means clustering,33 and subspace classification.3%:36 Besides skin images, ML
is also being used to automatically segment psoriasis in skin biopsy images using DCNNs.34

Lesion severity and area scoring.—Segmentation of psoriasis lesions in a skin image
from a psoriasis patient makes it possible to automate evaluation of psoriasis lesion severity
and affected area. We identified 12 articles related to severity and area grading of psoriasis
using skin images.3748

Dermatologists grade psoriasis severity according to the Psoriasis Area and Severity Index
(PASI) and Physician Global Assessment (PGA) systems.4? These severity grading systems
involve clinical assessment of lesion erythema, scaliness, and induration by a dermatologist.
Machine learning methods have been applied to automatically score erythema3’:38 and
scaliness3940 from an image and to detect change in scaliness across time for a times series
of images taken over a week.40 For erythema, automatic severity scoring method by George
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et al achieved an F1 score (weighted average of precision and recall) of 0.71.37 For scaliness,
their method achieved an accuracy of 80.81%.39 Automatic scoring of induration from 2-
dimensional images remains a bigger challenge due to its 3-dimensional nature.

Body surface area is another quantitative metric that a dermatologist will assess when
evaluating a psoriasis patient, traditionally done in the clinic through a full body skin exam.
Body surface area and a severity assessment averaged across all lesions (eg, PGA) are
combined (eg, PGA x BSA or PASI) to evaluate psoriasis.4® Machine learning researchers
are working to automate estimation of involved BSA.#1:47:48 The DCNN of Meienberger et
al achieved an accuracy of more than 90% in 77% of images, with automated area estimates
differing from physicians’ area estimates by 8.1% on average.*! Additionally, total body
imaging systems are being designed to generate more comprehensive images for automatic
PASI and BSA measurements.#2 Together, the information from ML-automated severity and
area grading can be used to automatically risk stratify psoriasis lesions.43-4°

Clinical Management

Prediction of complications.—Psoriasis is associated with a number of comorbidities, 8
including psoriatic arthritis,14 cardiovascular disease,® and diabetes.>® Machine learning
can be used to identify characteristics that correlate with a psoriasis patient’s likelihood of
developing complications. We identified 2 articles that used ML to assess the risk of
complications of psoriasis. Patrick et al used genetic data to assess the risk of psoriatic
arthritis.5>1 Munger et al used patient records to identify top predictors of noncalcified
coronary plaque burden in psoriasis, which included obesity, dyslipidemia, and
inflammation factors.>2

Treatment.—We found 3 articles that used ML to advance research on psoriasis treatment,
such as identifying new drugs and predicting patient response to approved therapies.53-55
Potential new drugs for psoriasis treatment can be identified using natural language
processing (NLP) by mining medical literature databases such as MEDLINE in combination
with clinical patient data. Patrick et al used NLP to predict drugs not currently prescribed for
psoriasis that could be repurposed to treat psoriasis.>3 This approach would be a cost-
effective method to identify new psoriasis treatments, but the output may not be informative.
For example, their highest scoring predictions for psoriasis treatment included budesonide—
not a new finding as systemic steroids improve psoriasis but with an unacceptable safety
profile—and hydroxychloroquine—which has no evidence of benefit in psoriasis and is
reported to trigger psoriasis flares.>® Meanwhile, Zhang et al used NLP to uncover drug-
drug interactions, such as potential for lisinopril (an antihypertensive) and sertraline (an
antidepressant) to increase the likelihood and severity of psoriasis when used together.>*
Finally, Tomalin et al used ensemble ML methods that predicted, with 71% accuracy,
psoriasis patients’ long-term treatment response to tofacitinib and etanercept given blood
quantification of 157 inflammatory and cardiovascular proteins.>® Their model represents
266 patients and must be validated in larger, independent patient cohorts before it can be
clinically applied.
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Discussion

Challenges

Bringing ML technologies into the dermatologist’s office faces challenges both common to
dermatology and specific to psoriasis. Common challenges center on quality and quantity of
data. A machine’s ability to learn is dependent on the quality of data it receives, an
important limitation to emphasize for clinical researchers collecting the data that ML
researchers use to train their algorithms. A big challenge is the standardization of data,
especially for skin images that are oftentimes taken with no standardized protocol, leading to
variation in color normalization, exposure, perspective, and other parameters that make it
tough for ML algorithms to discriminate between true and artificial differences between
captured lesions. The International Skin Imaging Collaboration has attempted to address this
by producing a set of technique standards for skin lesion imaging,®” but ensuring adoption of
these standards across dermatological practices is difficult, particularly when images are
patient-generated. A data set that is too small also has the potential to introduce bias and
inaccuracies, especially for computationally expensive systems like DNNs, which require a
large training set to produce generalizable output. An unrepresentative and small data set is
especially problematic for ML algorithms like DNNs, which already operate as opaque
“black boxes” lacking explainable reasoning for decisions. If the rationale of the algorithm is
hard to interpret and'the input data are unrepresentative, we may inadvertently use biased
ML algorithms that increase health inequities without knowing it. For dermatology, a data
set unrepresentative of diverse skin types may exacerbate already existing health disparities
by generating ML models that are erroneous for underrepresented groups.>82° Finally, many
algorithms developed for dermatology have not yet been tested in a clinical setting nor
evaluated for important clinical metrics such as positive- and negative-predictive value.
Thus, their clinical utility remains to be determined.

Other challenges are specific to features of psoriasis. For one, psoriasis can be present in
many forms, including plaque, guttate, pustular, palmoplantar, and nail psoriasis. An ML
algorithm trained on only the most common psoriasis manifestations would be unable to
recognize rarer presentations as the same disease. Secondly, psoriasis can be present
anywhere across the body and can vary in size and form within the same patient. Most
photos capture only spots of psoriasis, precluding the calculation of an accurate BSA, and an
ML algorithm may erroneously compare lesions on the extremities with those on the
buttocks. Whole-body photography is one solution to this problem, but it is not available in
most contexts including normal clinic visits and telemedicine. An ideal algorithm for
psoriasis would be trained to sophisticatedly combine multiple images from a single patient
to make a holistic assessment. Otherwise, an ML algorithm may inaccurately evaluate
lesions in isolation, for example, deciding that lesions it sees as small are best spot-treated
with topicals, while a dermatologist would be able to see that a patient with many small
lesions dispersed across the body would be better treated with phototherapy. Savolainen et al
attempted to build an algorithm that can conduct more sophisticated holistic assessments
with a color segmentation method that estimated BSA in psoriasis patients across multiple
images.*8 Human eye estimates differed from their image analysis in almost one-third of
cases, especially in cases with BSA <30%. Their algorithm had particular difficulties with
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cylindrical body parts like the limbs. They noted additionally that the process of
photographing and processing multiple images was time-consuming and technically
demanding. Fadzil et al also developed a method to assess the area of psoriasis lesions
across images of multiple body regions (face, anterior and posterior trunk, and both left and
right upper and lower limbs), with an accuracy of greater than 90% in 28 out of 30 cases.50
The scalp, buttocks, genitals, hands, and soles were not included, and 2 of the 30 cases
demonstrated a significantly lower accuracy, showcasing the difficulty of accurate psoriasis
area estimation using 2D images. These examples show the challenge of whole-body
analysis; on the other hand, it may be possible for ML to detect information from individual
plaques that are informative about the entire body.

Even if we zoom in on individual psoriasis lesions, there are still characteristic features of
psoriasis that pose challenges. The 3 key measures to score psoriasis lesion severity are
erythema, scale, and induration. An accurate assessment of erythema would benefit from
color normalization and controlled illumination conditions; otherwise, a bright red lesion
could appear dark brown.81:62 Interpreting scaliness requires complex texture analysis, and
the silvery scale of psoriasis is complicated in how it reflects light. Finally, induration is
challenging to assess accurately in 2 dimension.

Lastly, psoriasis sometimes causes post-inflammatory hyperpigmentation and
hypopigmentation even after plaque clearance, especially in skin of color.59:63 This could be
a source of confusion for an ML model attempting to, say, calculate erythema, if it has not
also been trained to distinguish posttreatment pigmentation abnormalities from active
lesions.

Future Directions and Relevance to Clinicians

Machine learning holds substantial promise to improve psoriasis care, from diagnostic
evaluation to management and treatment. As a diagnostic aid, ML can automate tasks such
as identifying areas of psoriasis in a photo, differentiating images of psoriasis from other
common skin disorders, and scoring the severity of disease and area affected. Automation of
these tasks can expedite the ability of dermatologists to make clinical assessments, which are
significant given the high-volume nature of many dermatological practices.

As a therapy and management aid, ML can help prevent disease complications. For example,
a psoriasis patient predicted by ML to have characteristics putting them at greater risk of
cardiovascular complications, as was studied by Munger et al,52 could be targeted for
preventative cardiology services.

Machine learning can also improve psoriasis treatment. Automated lesion-evaluation
technologies could assist dermatologists in making treatment decisions and in monitoring
patients. For example, a high PGA computed by ML could alert a dermatologist that a
psoriasis patient may need more intensive systemic treatment or phototherapy over topicals.
Long-term treatment response, drug-drug interactions, and potential new therapies for
psoriasis can also be predicted using ML.53-55
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Machine learning can not only provide information for dermatologist decision-making but
also make joint decisions with dermatologists using an approach called reinforcement
learning (RL). Reinforcement learning teaches a machine to make decisions in order to
maximize some reward, with applications like using past decisions and their outcomes to
inform future decisions. In sepsis management, RL has been used to identify optimal
treatment decisions given the data on past decisions and outcomes from 17 083 hospital
admissions.®* For psoriasis, RL could use a patient’s past positive and negative responses to
particular treatments (eg, loss of treatment response to a particular biologic therapy) to
systematically decide whether a patient should continue or switch treatment regimens. This
could help dermatologists make care decisions earlier and with a more efficient and
evidence-based approach.
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