Skip to main content
. 2021 Jan 25;6(1):e20.00091. doi: 10.2106/JBJS.OA.20.00091

TABLE II.

The Variables Selected by Lasso Penalized Logistic Regression and Corresponding Coefficients for Predicting Each of the Outcomes*

Variable Model
Periprosthetic Joint Infection Dislocation Periprosthetic Fracture Death
Intercept −8.576 −6.801 −9.138 −7.017
ASA class (per class) 0.387 0.459 0.404 0.491
Male sex (1 if yes, 0 if no) 0.444
Age (per 10 years) 0.244 0.104
BMI (per kg/m2) 0.103
Preoperative diagnosis: fracture (1 if yes, 0 if no) 0.861 0.878
Previous contributing operations (1 if any, 0 if no) 0.675
Surgical approach: posterior (1 if yes, 0 if no) 0.606
Anesthesia: general (1 if yes, 0 if no) 0.636
Fixation: cementless (1 if yes, 0 if no) 1.479
Head diameter 32 mm (1 if yes, 0 if no) 0.355
Example calculations
 Raw score (sum of patient value × coefficient) 4.681 2.844 4.350 3.058
Transformed score = 11 + e(Intercept + Raw score) 0.020 or 2.0% 0.019 or 1.9% 0.008 or 0.8% 0.019 or 1.9%
*

The coefficients indicate the impact of 1-unit change in a predictor variable, given in parentheses, on the response variable when the other predictors are held constant. Fields without a numerical value indicate that the indicated variable is not needed for predicting the risk of the designated outcome (i.e., regression coefficient equals zero).

Example calculations are given for a 68-year-old female patient with ASA class III, BMI of 28 kg/m2, preoperative fracture diagnosis, and no previous contributing operations for a surgical procedure performed using a posterior surgical approach, general anesthesia, and cementless fixation to install an implant with a head diameter of >32 mm.