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ABSTRACT

BACKGROUND AND PURPOSE: Functional neuroimaging studies in irritable bowel syndrome have revealed abnormalities in the corti-
colimbic regions, specifically, hyperactivity of the amygdala during visceral and somatic stimulation. This study investigated changes in the
neural circuitry of the amygdala in patients with irritable bowel syndrome based on resting-state functional connectivity.

MATERIALS AND METHODS: Functional MR imaging data were acquired from 31 patients with irritable bowel syndrome and 32 healthy
controls (matched for age, sex, and educational level) during rest, and the resting-state functional connectivity of bilateral amygdalae was
compared. Multiple regression was performed to investigate the relationship between clinical indices of patients with irritable bowel
syndrome and resting-state functional connectivity.

RESULTS: Compared with healthy controls, patients with irritable bowel syndrome had higher positive resting-state functional connec-
tivity between the amygdala and insula, midbrain, parahippocampal gyrus, pre- and postcentral gyri, and supplementary motor area. The
inclusion of anxiety and depression as covariates did not alter amygdala resting-state functional connectivity differences between the
study groups. Multiple covariate regression results showed that the pain intensity in patients with irritable bowel syndrome positively
correlated with resting-state functional connectivity between the amygdala and supplementary motor area, pre- and postcentral gyri, and
insula, while the Irritable Bowel Syndrome–Symptom Severity Score positively correlated with resting-state functional connectivity
between the amygdala and insula and midbrain.

CONCLUSIONS: Patients with irritable bowel syndrome showed disturbed amygdala resting-state functional connectivity with the
corticolimbic regions, which could partly account for the enhanced emotional arousal and visceral information processing associated with
irritable bowel syndrome.

ABBREVIATIONS: IBS � irritable bowel syndrome; PHG � parahippocampal gyrus; RSFC � resting-state functional connectivity; SMA � supplementary motor area

Irritable bowel syndrome (IBS) is a common chronic gastroin-

testinal condition characterized by abdominal pain, bloating,

and disturbed defecation.1,2 It is thought to result from a dysregu-

lation of the brain-gut interaction.3 With its high prevalence (ob-

served in up to 20% of the population)4 and the recurrent nature

of the symptoms, IBS negatively affects the quality of life of indi-

viduals with this condition and is a health care burden for soci-

ety5; however, the neural basis for IBS has not been examined in

detail, to our knowledge.

Functional neuroimaging is the only means of identifying the

human brain circuitry that is correlated with various phenotypic

and behavioral manifestations of functional gastrointestinal dis-

orders, including IBS6; convergent neuroimaging studies have

implicated an abnormal emotional arousal network that encom-

passes emotional, cognitive, and psychological aspects.7 Hyperac-

tivity of the amygdala within this network is a striking feature of

IBS, which has been documented in many studies by using vis-

ceral or somatic stimuli.6,8 The amygdala networks are important

in emotional regulation, modulation of sensory information, and

processing of visceral information in relation to emotional stim-

uli.9 On the basis of the importance of the amygdala in emotional
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systems and its implication in IBS, this study focused on examin-

ing amygdala functional connectivity in patients with IBS.

Brain activity is present even in the absence of an externally

activated task, which might cause fluctuations in blood oxygen

level– dependent signal. Thus, in task-based activation studies,

the background brain activity can distort the blood oxygen level–

dependent signal, making it difficult to elucidate the brain mech-

anisms involved within the studies. Resting-state functional MR

imaging is a fairly new approach, which could resolve this issue10

by measuring spontaneous blood oxygen level– dependent fluctu-

ations in the brain during rest,11 which has been used in the study

of IBS.6,12 Resting-state functional connectivity (RSFC)—the

quantification method most frequently used in resting-state func-

tional MR imaging studies10,13—measures interregional tempo-

ral correlation between a predefined seed region and functionally

related regions14 and has been used as a reliable and sensitive

index in studies of healthy subjects and patients with various brain

disorders such as Alzheimer disease, depression, and attention

deficit/hyperactivity disorder.11,15 However, there have been no

prior studies using RSFC to investigate the amygdala functional

connectivity in patients with IBS.

The present study examined abnormalities of the amygdala

functional connectivity in IBS. We hypothesized that amygdala

RSFC with corticolimbic regions associated with emotion arousal

and visceral information processing would be higher in patients

with IBS relative to healthy control subjects, underlying clinically

well-observed IBS features such as amplified experience of pain

and a negative emotional state. Moreover, given that anxiety and

depression have been linked to visceral sensation processing,16 we

conjectured that anxiety and depression scores would affect

amygdala RSFC differences between patients with IBS and healthy

controls when included as covariates in the analysis.

MATERIALS AND METHODS
Subjects
All participants provided informed consent to procedures ap-

proved by the local Medical Research Ethics Committee. Pa-

tients with IBS were recruited from the Digestive Disease

Clinic of our hospital and by community advertisements.

Thirty-two right-handed patients who were identified as hav-

ing IBS were recruited for this study between December 2013

and December 2014. A diagnosis of IBS was made by a gastro-

enterologist with expertise in functional gastrointestinal disor-

ders based on the Rome III criteria,17 which include recurrent

abdominal pain or discomfort associated with �2 of the fol-

lowing: relief/improvement by defecation, onset related to a

change in stool frequency, and onset related to a change in

stool appearance.

Inclusion criteria for patient recruitment were as follows:

older than 18 years of age and a diagnosis positive for IBS based on

the Rome III criteria. Exclusion criteria were as follows: a history

of gastrointestinal surgery; current or past psychiatric illnesses or

substance abuse; treatment with any centrally acting medications

such as selective serotonin reuptake inhibitors, aspirin, or non-

steroidal anti-inflammatory drugs for �2 weeks before enroll-

ment; major medical or neurologic conditions; and head motion

of �1.0 mm in translation or 1.0° in rotation during MR imaging.

One patient with IBS was excluded for excessive head motion. The

remaining 31 patients with IBS (25 men, 6 women; mean age,

29.23 � 9.69 years) were included in the final analysis.

Thirty-two age-, sex-, and educational level–matched right-

handed healthy control subjects (25 men, 7 women; mean age,

27.47 � 8.64 years) were recruited by advertisement and were

screened through a medical examination for the absence of

chronic pain, bowel disturbance, and visceral disease. Other ex-

clusion criteria were the same as those applied to the IBS patient

group.

Questionnaires
Before MR imaging, each subject completed a set of neuropsycho-

logical tests, which included the Mini-Mental State Examination,

Montreal Cognitive Assessment, and Zung Self-Rating Anxiety

and Depression Scales. When making the research plan before the

experiment, we included the Mini-Mental State Examination to

avoid inclusion of those subjects with possible dementia,18 espe-

cially for the older subjects who might be recruited, so this test was

performed in all subjects, including those with relatively young

age. The Montreal Cognitive Assessment19 was used to screen

subjects for mild cognitive impairment and to evaluate their gen-

eral cognition, and the Zung Self-Rating Anxiety Scale20 and the

Zung Self-Rating Depression Scale21 were used to rate anxiety-/

depression-related symptoms. In addition, patients with IBS

were also tested for the IBS–Symptom Severity Score,22 and the

IBS–Quality of Life score,23 and with the visual analog scale

(0 –100 points), which included the descriptors “no pain sen-

sation” at zero and “the most intense pain sensation imagin-

able” at 100.24

MR Imaging Data Acquisition
Subjects were scanned by using a 3T MR imaging scanner (Tim

Trio; Siemens, Erlangen, Germany). A foam pad was used to

minimize head motion. First, high-resolution T1 structural

images were acquired in the sagittal orientation with a magne-

tization-prepared rapid acquisition of gradient echo sequence

(TR/TE, 2300/2.98 ms; flip angle, 9°; FOV, 256 � 256 mm2;

acquisition matrix, 256 � 256; 191 sections with section thick-

ness of 1 mm). Resting-state fMRI data were then obtained by

using a single-shot, gradient-recalled echo-planar imaging se-

quence (250 volumes; TR/TE, 2000/30 ms; FOV, 240 � 240

mm; flip angle, 90°; matrix, 64 � 64; voxel size, 3.75 � 3.75 �

4 mm; 30 axial sections aligned along the anterior/posterior

commissure).

Data Preprocessing
Data preprocessing was performed by using SPM8 software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). For each par-

ticipant, the first 10 volumes were discarded to account for

steady-state longitudinal magnetization and the remaining 240

images were corrected for temporal differences and head

motion. Data from 1 patient with IBS were discarded because

of excessive head motion. Therefore, 31 patients and 32 con-

trols were included in the analysis. Group differences in trans-

lation and rotation of head motion were also evaluated accord-

ing to the following formula25:
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HeadMotion/Rotation �

1

L � 1 �
i�2

L

��xi � xi�1�2 � �yi � yi�1�2 � �zi � zi�1�2,

where L is the length of the time-series (L � 240 in this study), and

xi, yi, and zi are translations/rotations at the ith time point in the x,

y, and z directions, respectively. No differences in image quality

were found between patients with IBS and healthy controls (2-

sample t test, t � 1.35, P � .18 for translational motion and t �

1.47, P � .15 for rotational motion). In this study, T1-weighted

images were used as the bridge for the fMRI scans normalized

from individual space to the Montreal Neurological Institute

space because these T1 structural images had higher resolution

than the EPI fMRI scans, which meant that the transformation

deviation of individual T1 image to Montreal Neurological Insti-

tute space would be smaller than that of the EPI. First, the T1

structural image of each subject was coregistered to the corre-

sponding functional image. Second, the coregistered structural

T1 image was segmented by using the unified segmentation algo-

rithm,26,27 which can significantly improve the accuracy of spatial

normalization, and it was then transformed into the Montreal

Neurological Institute space. Third, the functional images were

subsequently warped into the standard Montreal Neurological

Institute stereotaxic space of 3 � 3 � 3 mm3 by applying the

parameters of the structural image normalization and then

smoothed by convolution with an isotropic Gaussian kernel

(8-mm full width at half maximum). After smoothing, imaging

data were temporally filtered (bandpass, 0.01–0.08 Hz) to remove

the effects of low-frequency drift and high-frequency noise. Before

functional connectivity analysis, several sources of spurious vari-

ance—including 6 head-motion parameters obtained by rigid-body

head-motion correction and average signals from CSF and white

matter—were removed by applying linear regression.28 The global

signal was not regressed according to a previous study.29

Functional Connectivity Analysis
The FMRIB Integrated Registration and Segmentation Tool

(FIRST; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) was used

on T1 images to delineate the amygdalae in each subject; the in-

dividual amygdala mask was then normalized to the Montreal

Neurological Institute space. For the fMRI data of every subject,

the average time-series across all voxels of each amygdala was

separately computed as a reference time course and correlated with

the time-series of the rest of the brain. Correlation coefficients were

then converted to z values with the Fisher r-to-z transformation to

standardize the statistical analysis. Thus, whole-brain RSFC maps of

the bilateral amygdala were generated for each subject.

Statistical Analysis
SPSS, Version 16.0 (IBM, Armonk, New York) was used to ana-

lyze demographic and clinical data. SPM8 was used to analyze

RSFC maps for each subject. A random 2-sample t test was then

performed to assess differences in amygdala RSFC maps between

patients with IBS and healthy controls, while eliminating the ef-

fects of age, sex, and educational level by regression. Significant

clusters were identified by using the joint expected probability

distribution,29 with height (P � .005) and extent (P � .05) thresh-

olds corrected at the whole-brain level.

Statistical analysis was also performed by including anxiety

and depression scores (along with age, sex, and educational level)

as covariates30 to evaluate the effect of anxiety and depression on

amygdala RSFC during comparisons. Because the Zung Self-Rat-

ing Anxiety Scale and the Self-Rating Depression Scale scores

showed high correlations within each group (patient group: Spear-

man � � 0.76, P � .001; control group: Spearman � � 0.78, P �

.001), the scores were taken together (covariates 1 and 2) rather than

considered separately as covariates to evaluate the psychosocial ef-

fects on the RSFC as described in a previous study of IBS.31

A multiple linear regression analysis was used to investigate

the relationship between amygdala RSFC in patients with IBS and

the IBS–Symptom Severity Score, IBS–Quality of Life score, and

pain intensity in SPM8. The statistical threshold was the same as

that in the above-mentioned 2-sample t test.

RESULTS
Clinical Data
Demographic and clinical information for the subjects is shown in

Table 1. There were no differences in terms of age, sex, or educa-

tional level between patients with IBS and healthy controls

(P � .05). Scores for the Mini-Mental State Examination (�26)

and the Montreal Cognitive Assessment (�26) for all subjects

were in the normal range, while patients with IBS had lower Mini-

Mental State Examination and higher Zung Self-Rating Anxiety

Scale and Depression Scale scores than controls (P � .05) (Table

1). All cases were diarrhea-predominant based on bowel habits,

with pain reported as a symptom by each patient.

Amygdala Resting-State Functional Network and Effect
of Psychosocial Factors
Patients with IBS had a higher left amygdala positive RSFC

with the right insula, midbrain, left pre-/postcentral gyri, right

precentral gyrus, left parahippocampal gyrus (PHG), and bi-

lateral supplementary motor areas (SMAs) and higher right

amygdala positive RSFC with the right insula, midbrain, left

Table 1: Demographic and clinical data for patients with IBS and
healthy controlsa

Protocols HC (n = 32) Patients (n = 31) P Value
Sex (M/F) 25:7 25:6 .81

b

Mean age (yr) 27.47 � 8.64 29.23 � 9.69 .45c

Education (yr) 14.18 � 2.33 13.87 � 3.24 .66c

SAS 34.44 � 5.64 39.74 � 9.64 .01c

SDS 36.09 � 8.32 41.12 � 10.26 .04c

MMSE 27–30; median, 30 28–30; median, 30 .02c

MoCA 28.09 � 2.16 27.69 � 1.39 .39c

IBS-QOL 66.05 � 12.04
IBS-SSS 242.48 � 28.74
VAS (pain) intensity 30.47 � 14.86
Duration (months) 32.67 � 23.56

Note:—HC indicates healthy controls; SAS, Self-Rating Anxiety Scale; SDS, Self-Rat-
ing Depression Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal Cog-
nitive Assessment; IBS-QOL, IBS–Quality of Life; IBS-SSS, IBS–Symptom Severity
Score; VAS, visual analog scale.
a Values are expressed as means.
b P value for sex distribution was obtained by the �2 test.
c P values for age, education, and neuropsychological test scores were obtained by
the 2-sample t test.
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PHG, bilateral precentral gyri, and right SMA relative to

healthy controls (Table 2 and Figs 1 and 2). No amygdala RSFC

differences between patients with IBS and controls were re-

moved when anxiety and depression were included as covari-

ates (along with age, sex, and educational level) in the analysis.

Correlation Analysis
Multiple covariate regression results suggested that the pain in-

tensity in patients with IBS positively correlated with RSFC be-

tween the left amygdala and bilateral SMA, pre- and postcentral

gyri, and insula; and the RSFC between the right amygdala and the

right precentral gyrus and right insula, while the IBS–Symptom

Severity Score positively correlated with RSFC between the left

amygdala and bilateral insula and the midbrain and with RSFC

between the right amygdala and right insula (Fig 3).

DISCUSSION
The present study investigated changes in amygdala RSFC in

IBS. The results showed that patients with IBS had higher RSFC

between the amygdala and insula, midbrain, PHG, and sensori-

motor regions. In addition, including anxiety and depression as

covariates in the analysis had no effect on the RSFC differences

between patients with IBS and controls.

Higher Amygdala-Insula RSFC in IBS
In this study, patients with IBS had higher RSFC between the left

and right amygdala and the insula, a major component of the

limbic system32 that is closely connected to the amygdala.9 The

insula is involved in emotional arousal and visceral sensory, au-

tonomic visceral motor, and pain processing33 and is consistently

activated in healthy subjects exposed to visceral stimuli.6 The in-

sula is also an essential node in the homeostatic afferent network

that is hyperactivated in IBS.8,16,34 Increased insula activities in

patients with IBS during rectal distension35 and in response to

cutaneous heat stimuli36 have been reported. Evidence also

showed that a functional network between the amygdala and in-

sula mediates anxious anticipation of a negative event, and anx-

FIG 1. Functional connectivity analysis of the left amygdala. Compared with healthy controls, patients with IBS had higher positive RSFC
between the left amygdala and the right insula, midbrain, left pre-/postcentral gyri, right precentral gyrus, left PHG, and bilateral SMA.

FIG 2. Functional connectivity analysis of the right amygdala. Patients with IBS had higher right amygdala–positive RSFC with the right insula,
midbrain, left PHG, bilateral precentral gyri, and right SMA relative to healthy controls.

Table 2: Brain regions showing amygdala RSFC differences
between patients with IBS and healthy controls

Brain Regions BA
MNI Coordinates

(mm) (x, y, z)
Voxel
No.

T
Valuea

Left amygdala
Right insula 13 42, 6, �3 77 �3.22
Midbrain 12, �30, �21 70 �3.24
Left pre-/postcentral gyri 4,9 �60, �6, 27 78 �2.89
Right precentral gyrus 9 63, 6, 27 72 �2.94
Left PHG 35 �24, �18, �12 77 �3.31
Left SMA 6 �15, �15, 48 98 �3.18
Right SMA 6 6, �6, 60 83 �3.42

Right amygdala
Right insula 13 42, 12, �12 75 �3.20
Midbrain 12, �30, �21 74 �3.27
Left PHG 35 �33, �21, �18 76 �3.57
Left precentral gyrus 4 �53, �8, 27 96 �2.89
Right precentral gyrus 4 63, 3, 27 80 �2.94
Right SMA 6 12, �30, 60 71 �3.37

Note:—BA indicates Brodmann area; MNI, Montreal Neurological Institute.
a Positive value represents higher positive RSFC.
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ious individuals display exaggerated activity within this network

during anticipation of aversive stimuli.37 An increase in func-

tional connectivity has been interpreted as increased wiring inside

the network or increased neuronal synchrony and/or activity.38,39

Thus, the observed higher amygdala-insula functional coupling

here may be a mechanism supporting the enhanced emotional

arousal and visceral information processing associated with IBS.

In addition, the association between insula RSFC and pain inten-

sity in IBS implies a role for the insula in pain processing in these

patients. Previous studies have also indicated that the insula is

involved in the processing of the affective dimension of pain40 and

coding of pain intensity.41

Higher Amygdala-Midbrain RSFC in IBS
A higher RSFC between the amygdala and midbrain was detected in

IBS relative to control subjects, which has not been previously re-

ported. Previous studies have reported brain stem activation in

healthy controls in response to visceral and somatic stimulation42

and higher midbrain activation in patients with IBS than in healthy

controls during rectal stimulation.8 Animal studies have also identi-

fied strong connections between the amygdala and brain stem that

are responsible for processing visceral information related to emo-

tional stimuli.9 We speculate that the higher functional coupling be-

tween the amygdala and midbrain observed

in this study may be related to an amplified

nociceptive response to visceral information

in IBS.6

Higher Amygdala-PHG RSFC in IBS
The RSFC between the amygdala and

PHG was also higher in patients with IBS

compared with control subjects. A pre-

vious fMRI study of patients with IBS

showed that increased hippocampal

activity was associated with the anticipa-

tion of rectal distension,43 and a fol-

low-up study reported a significant

correlation between a decreased blood

oxygen level– dependent response in the

hippocampus during rectal distension

and the improvement of gastrointestinal

symptoms after the IBS was treated.44

The amygdala has extensive connections

with the hippocampus and PHG,45

which modulate emotional memories.46

In addition, a prior fMRI study in healthy

adults showed that amygdala-hippo-

campal connectivity increases during

encoding and retrieval of emotional

memories.47 Thus, in this study, the

higher amygdala-PHG RSFC in patients

with IBS may arise from long-time

encoding of negative emotional memo-

ries such as visceral pain. This specula-

tion requires further investigation ex-

amining how the amygdala-PHG RSFC

changes because of treatment for IBS.

Higher Amygdala–Sensorimotor Region RSFC in IBS
We also noted a higher RSFC between the amygdala and the sen-

sorimotor regions (SMA, pre- and postcentral gyri). The SMA

plays an important role in motor inhibition and response48 and

the functional processing of painful stimuli.49 Pre- and postcen-

tral gyri are important components of motor and sensory areas.

These sensorimotor regions, which are core regions within the

so-called pain network,40 are commonly observed with enhanced

activations in IBS and other functional gastrointestinal disor-

ders.50 Using resting-state functional MR imaging, Cifre et al39

reported increased connectivity between the primary motor cor-

tex and SMA in patients with fibromyalgia, another chronic pain

condition, and interpreted that as the result of the widespread

central sensitization in patients. Thus, we speculated that the

higher RSFC in this study may be related to the central pain am-

plification in patients with IBS.8

Psychosocial Effects on the Amygdala RSFC in IBS
In this study, anxiety and depression had no effect on amygdala

RSFC differences between patients with IBS and healthy controls,

contrary to our hypothesis that RSFC abnormalities in IBS could

be partly explained by anxiety and depression symptoms. The

FIG 3. Correlation between amygdala RSFC and clinical indices in patients with IBS. The pain intensity
in patients with IBS positively correlated with RSFC between the left amygdala and bilateral SMA, pre-
and postcentral gyri, and insula, and the RSFC between the right amygdala and right precentral gyrus
and right insula. The IBS–Symptom Severity Score positively correlated with RSFC between the left
amygdala and bilateral insula and midbrain, and RSFC between the right amygdala and right insula.
IBS-SSS indicates IBS-Symptom Severity Score; FC, functional connectivity.
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negative finding may be due to the small number of patients with

IBS with severe anxiety or depression symptoms that was included

in this study and requires confirmation in a larger sample of pa-

tients with IBS.

Limitations
This study had some limitations. First, the study population was

relatively small and consisted of Chinese patients with diarrhea-

predominant IBS; thus, the results may not be generalizable to

patients of other ethnicities or with other subtypes of IBS. Second,

the exact neurophysiologic meaning of functional connectivity

still remains unclear, and much work is needed before it can be

used routinely in the clinical setting. Longitudinal studies are also

needed to address whether the observed results are altered by IBS

treatment. Third, sex differences in IBS51 were not considered due

to the small number of female patients. Sex differences in brain

responses to emotion-related stimuli52 and in the resting state53

have been observed in patients with IBS; thus, the potential role of

sex in amygdala RSFC should be addressed in future studies.

Fourth, although we used the whole amygdala as a seed region,

previous research has shown that amygdala subregions have dis-

tinct functional networks,54 and future investigations should con-

sider variations in RSFC pattern across these subregions.

CONCLUSIONS
Patients with IBS had abnormalities in amygdala RSFC in several

corticolimbic regions, which could, in part, underlie the en-

hanced emotional arousal and visceral information processing

associated with IBS.
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