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Orbital Fat Volumetry and Water Fraction Measurements
Using T2-Weighted FSE-IDEAL Imaging in Patients with

Thyroid-Associated Orbitopathy
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ABSTRACT

BACKGROUND AND PURPOSE: The quantitative evaluation of orbital fat proliferation and edema and the assessment of extraocular
muscles are useful for diagnosing and monitoring thyroid-associated orbitopathy. To evaluate therapy-induced quantitative changes in
the orbital fat of patients with thyroid-associated orbitopathy, we performed volumetric and water fraction measurements by using
T2-weighted FSE iterative decomposition of water and fat with echo asymmetry and least-squares estimation (FSE-IDEAL) imaging.

MATERIALS AND METHODS: Orbital FSE-IDEAL images of 30 volunteers were acquired twice within 1 week. Nine patients with thyroid-
associated orbitopathy underwent FSE-IDEAL imaging before and after methylprednisolone pulse therapy, and the treatment results were
assessed by using their pre- and post-methylprednisolone pulse therapy clinical activity scores. We performed volumetric and water
fraction measurements of orbital fat by using FSE-IDEAL imaging and evaluated interscan differences in the volunteers. In patients with
thyroid-associated orbitopathy, we compared pre- and posttherapy orbital fat measurements and assessed the correlation between the
pretherapy values and clinical activity score improvement.

RESULTS: The reproducibility of results obtained by the quantitative evaluation of orbital fat in volunteers was acceptable. After
methylprednisolone pulse therapy, the water fraction in the orbital fat of patients with thyroid-associated orbitopathy was significantly
decreased (P � .001). There was a significant positive correlation between the pretherapy water fraction and clinical activity score
improvement (right, r � 0.82; left, r � 0.79) and a significant negative correlation between the pretherapy volume and clinical activity score
improvement (bilateral, r � �0.84).

CONCLUSIONS: Volumetric and water fraction measurements of orbital fat by using FSE-IDEAL imaging are feasible and useful for monitoring
the effects of therapy and for predicting the response of patients with thyroid-associated orbitopathy to methylprednisolone pulse therapy.

ABBREVIATIONS: CAS � clinical activity score; FSE-IDEAL � FSE iterative decomposition of water and fat with echo asymmetry and least-squares estimation;
MPPT � methylprednisolone pulse therapy; SI � signal intensity; TAO � thyroid-associated orbitopathy

Thyroid-associated orbitopathy (TAO) is the most common

extrathyroid manifestation of Graves disease. The enlarge-

ment of orbital fat and extraocular muscles in the relatively fixed

volume space imposed by the bony orbit may produce proptosis,

ocular motility loss, and decreased visual acuity.1 Histologic stud-

ies showed lymphocytic infiltration and edema due to the accu-

mulation of hydrophilic, interstitial glycosaminoglycans in the

orbital fat and extraocular muscles,2,3 attributable to antigenic

cross-reactivity between thyroid proteins and orbital fibroblasts.4

The course of TAO can be divided into the active, regressing,

and a burnt-out phase.5 Early active disease is treated with com-

bined immunosuppression.6,7 The identification of patients who

stand to benefit from this therapy is important but clinically dif-

ficult, despite the availability of activity scoring systems. Conse-

quently, objective methods are needed.

CT has been used to quantify the volume of extraocular mus-

cles and orbital fat in TAO.8-11 However, ocular radiation expo-

sure limits its clinical use. Because MR imaging without ionizing

radiation yields orbital images with excellent soft-tissue contrast

in any plane, it has been used for evaluating TAO.12-15

The quantitative evaluation of the orbital fat volume on T1-

weighted images was reported useful for assessing the severity of

TAO and for monitoring the treatment response.12,16 Recently,
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Higashiyama et al17 demonstrated that after methylprednisolone

pulse therapy (MPPT), the orbital fat volume was unchanged,

while the total volume of extraocular muscles was decreased on

T2-weighted images. However, in our search of the literature, we

found no reports on quantitative changes in orbital fat edema

after MPPT or orbital irradiation. Consequently, the correlation

between the volume and edema of orbital fat and the treatment

response of patients with TAO remains to be elucidated.

FSE iterative decomposition of water and fat with echo asym-

metry and least-squares estimation (FSE-IDEAL), a novel 3-point

Dixon method, is useful for separating the fat signal from the

water signal18,19 but has not been used to quantify the orbital

structures in TAO. To evaluate the feasibility of FSE-IDEAL im-

aging for the precise quantitative evaluation of orbital fat, we sub-

jected healthy volunteers to 2 FSE-IDEAL imaging studies per-

formed during 1 week. We measured the volume and the water

fraction of their orbital fat and ascertained the reproducibility of

the measurement results. We also acquired FSE-IDEAL images

in patients with TAO to assess MPPT-induced changes in the

volume and water fraction of their orbital fat and evaluated the

correlation between the quantitative values of orbital fat and

the improvement in their symptoms.

MATERIALS AND METHODS
Subjects
This prospective study was approved by the Ethics Committee of

Hiroshima University. Informed consent was obtained from all

participants before entry into the study.

We recruited 30 healthy volunteers (15 men, 15 women; me-

dian age, 29 � 7.6 years). They underwent orbital FSE-IDEAL

imaging twice within 1 week to evaluate the reproducibility of the

water fraction and the volume measurements of the orbital fat.

We also recruited 16 patients older

than 20 years of age who had a clinical

diagnosis of TAO between December

2013 and November 2015. The recorded

activity of their TAO was based on their

clinical activity score (CAS), including

pain, eyelid erythema or edema, con-

junctival hyperemia and chemosis, and a

swollen caruncle.20 All 16 patients un-

derwent orbital FSE-IDEAL imaging.

Two of them underwent local injection

of triamcinolone acetonide into the or-

bit, and 5 of them followed a conserva-

tive wait-and-see approach because

their TAO was slight and the risk of

MPPT would exceed the benefit. Conse-

quently, the 9 patients (2 men, 7 women;

median age, 57 � 12.5 years; 18 eyes)

who received MPPT (500 mg of methyl-

prednisolone administered intrave-

nously once a day for 3 consecutive

days) were included in this study and

underwent FSE-IDEAL imaging again

1.6 � 0.7 months thereafter. Re-evalua-

tion of the TAO activity was based on the

latest CAS obtained around the time of

the second MR imaging study (the interval, 1–15 days; median,

6.5 days).

MR Imaging
All images were acquired on a 3T scanner (Signa Excite HD 3.0;

GE Healthcare, Milwaukee, Wisconsin; gradient strength, 40

mT/m; slew rate, 150 T/m/s) by using an 8-channel phased array

brain coil. We optimized the T2-weighted FSE-IDEAL sequence

(TR/TE, 6000/100 ms; flip angle, 90°; image matrix, 288 � 160;

FOV, 160 � 160 mm; section thickness/gap, 2/0 mm; asymmetric

echo shifts, ��/6, �/2, 7�/6; number of acquisitions, 3; number

of sections, 32; scan time, 2 minutes 42 seconds) and obtained

orbital water and fat images for all subjects.

Orbital Fat Water Fraction and Volume Measurements
We placed an ROI in the orbital fat on FSE-IDEAL images of water

and fat and measured the average signal intensity (SI) in the ROIs.

Next, we defined and calculated the water fraction of the orbital

fat as [SI Water / (SI Water � SI Fat)] to assess the orbital fat

edema on the basis of the fat fraction (SI Fat / [SI Water � SI

Fat]),18 defined to quantify fatty infiltration (Fig 1). The orbital

fat volume of both eyes was measured on a workstation (Vir-

tual Place Raijin; AZE Ltd, Tokyo, Japan). We first separated

fat tissue from other structures by using the threshold value,

recorded as the mean value between the average SI plus the SD

of the ROI in the internal rectus muscle and the average SI

minus the SD of the ROI in the orbital fat, considering some

dispersion of signal intensities in the ROIs. Then we manually

removed the fatty marrow of the orbital bone and outer fat; the

orbital fat volume was automatically measured on the work-

station (Fig 2).

FIG 1. Axial water (A) and fat (B) images of a healthy volunteer. The ROIs are encircled in yellow.

FIG 2. Axial fat image (A) of a healthy volunteer. The selected orbital fat is light green. We
separated fat tissue by using an adequate signal-intensity threshold and manually removed ex-
traorbital fat. In this volunteer, the internal rectus muscle showed an average SI of 207 and an SD
of 112, whereas the orbital fat showed an average SI of 1636 and an SD of 88. Therefore the
threshold value was [(207 � 112) � (1636 � 88) / 2 � 933]. Using FSE-IDEAL images, we then
produced 3D reconstruction images of the bilateral orbital fat (B) and measured the orbital fat
volume on a workstation.
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Statistical Analyses
All statistical analyses were performed with commercially avail-

able software (XLSTAT, version 2015.6.01.244, Addinsoft;

https://www.xlstat.com/en/company/about-us) and Excel 2010

(Microsoft, Redmond, Washington).

We used Bland-Altman analysis and the Pearson correlation

coefficient to evaluate interscan differences in the volunteers and

used the mean value of the water fraction and the volume of the

bilateral orbit in our analyses.

In patients with TAO, we performed paired-sample t tests to

compare the water fraction and the volume of orbital fat before

and after MPPT. The right and left orbits were examined separately

because patients with unilateral TAO manifested unilateral excess fat

exophthalmos.10 To ascertain that the values obtained before and

after treatment were significantly different, we applied the 2-sample t

test to compare the therapy-induced changes with the values ob-

tained in the volunteers. We defined the therapeutic effect of MPPT

as the following formula: [CAS Improvement Ratio � (Pretherapy

CAS � Posttherapy CAS) / Pretherapy CAS)] and determined the

correlation between the measured values before MPPT and the CAS

improvement ratio with the Pearson correlation coefficient test. Dif-

ferences of P � .05 were considered statistically significant.

RESULTS
Volunteers
The difference in the water fraction and the volume of orbital fat

on the first and second scans was 1.1% � 11.9% and 0.5% �

3.6%, respectively. Bland-Altman analysis of the measurement

results showed that their reproducibility was adequate (water

fraction: r � 0.71, bias � �0.002; 95% CI bias, �0.012– 0.007;

95% CI, �0.052– 0.047; volume: r � 0.99, bias � �0.066; 95% CI

bias, �0.235– 0.102; 95% CI, �0.951– 0.819) (Fig 3).

Patients
The clinical characteristics of the 9 patients with TAO are sum-

marized in the Table. After MPPT, the water fraction in the

orbital fat on both sides was significantly decreased (right,

12.4% � 3.8%, P � .001; left, 13.6% � 6.5%, P � .001; Fig 4A).

The treatment-induced reduction in the water fraction was sig-

nificantly larger than the interscan difference observed in

the volunteers (right, P � .002; left, P � .001). There was no

significant difference in the orbital fat volume pre- and

posttreatment (right, 2.0% � 7.8%, P � .37; left, 1.9% � 3.8%,

P � .17, Fig 4B).

The pre- and posttreatment CAS fell by 3 points in 2 patients,

by 2 points in 1 patient, and by 1 point in 3 patients. In the other

3, there was no change. The positive correlation between the pre-

treatment water fraction and the CAS improvement rate (right,

r � 0.82, P � .007; left, r � 0.79, P � .012) showed that the higher

the pretreatment water fraction, the greater was the posttreatment

CAS improvement. On the other hand, there was a negative cor-

relation between the fat volume and CAS improvement (right, r �

�0.84, P � .005; left, r � �0.84, P � .005), indicating that the

larger the pretreatment orbital fat volume, the lower the post-

treatment CAS improvement rate.

DISCUSSION
To the best of our knowledge, this is the first quantitative eval-

uation of orbital fat by using FSE-IDEAL imaging. We docu-

ment an MPPT-induced reduction in the water fraction of or-

bital fat in patients with TAO and report the positive

correlation between the pretreatment water fraction and the
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FIG 3. Bland-Altman analysis confirming the interscan reproducibility of the water fraction (A) and the volume of orbital fat (B) on FSE-IDEAL
images of the volunteers.

Patient profiles
Characteristics

Median age (yr) (range) 57 (43–82)
Sex: male/female 2/7
Median duration of the treatment for GD (mo) (range) 11 (1–168)
Median duration from the onset of TAO (mo) (range) 4 (1–8)
Smoking: yes/no 3/6
Median pretherapy CAS (range) 2 (1–4)
Involvement of extraocular muscle: yes/no 7/2

Note:—GD indicates Graves disease.
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CAS improvement rate and the negative correlation between

the pretreatment orbital fat volume and the CAS improvement

rate.

We used FSE-IDEAL imaging to acquire axial images of the

bilateral orbits and measured the water fraction and the volume of

orbital fat in healthy volunteers and patients with TAO. Although

many images contained motion artifacts due to voluntary and

involuntary eye movements, it was possible to differentiate the SI

of orbital fat and other intraorbital structures by applying an

adequate threshold in the orbital fat volumetry. To measure

the water fraction in orbital fat, we placed ROIs on the intraor-

bital fat; measurement of the SI was not hampered by motion

artifacts. The reproducibility of water fraction and fat volume

measurements on all iteratively acquired FSE-IDEAL images

was sufficient.

Others12,21 used a 1.5T MR imaging scanner and a receiver

surface coil to measure orbital fat volumes. Although surface coils

can yield orbital images with high spatial resolution, the signal

strength decreases as the distance from the coil increases. Our

use of a 3T MR imaging scanner and an 8-channel brain coil

resulted in orbital images with a high enough signal-to-noise

ratio for the estimation of the orbital fat volume and the water

fraction.

Orbital images with high spatial and temporal resolution and

fewer motion artifacts due to eye movement can be acquired on

multidetector row CT scanners.11 However, the low soft-tissue

contrast on multidetector row CT images makes it difficult to

separate out orbital fat. In addition, ocular radiation exposure is a

serious concern. Therefore, MR imaging with high soft-tissue

contrast is safer for orbital imaging.

We found that MPPT reduced the water fraction in the orbital

fat of patients with TAO, possibly because it decreased the severity

of edema. Earlier studies7,22-25 reported that the SI of extraocular

muscles on short � inversion recovery sequences correlated well

with the disease activity assessed with clinical methods. The cor-

relation was maintained as disease activity changed. Although the

reversibility of the relaxation time in muscles with prolonged T2

values was explained as a therapy-induced decrease in the water

content,8 treatment-induced changes in orbital fat have not been

documented.

Like Higashiyama et al,17 we detected no significant difference

in the pre- and posttreatment orbital fat volume. Others26-28

found no difference in the degree of exophthalmos, which is

related to an increase in orbital fat, in patients with TAO

who had undergone MPPT. Expansion of the adipose tissue

volume is elicited by glycosaminoglycan-related edema and the

emergence of a population of newly differentiated fat cells

in these tissues.29 Although MPPT can reduce orbital fat

edema, the increase in the number of fat cells may persist after

therapy.

In Japan, MPPT is generally applied in patients with TAO with

low CAS scores because the Japanese patients with TAO often

have orbital inflammation despite low CAS scores.30 We found

that the higher the pretreatment water fraction, the greater the

posttreatment decrease in the CAS, despite the low pretreatment

CAS scores of our study patients. An increase in the water fraction

is indicative of an increase in the tissue water content and may

reflect acute inflammatory changes. Earlier studies on extraocular

muscles found a correlation between the SI increase on pretreat-

ment STIR images and a good therapeutic response31-33 and be-

tween prolonged pretreatment T2 values and a good response to

systemic corticosteroids or orbital radiation therapy.33 These

findings indicate that treatment at an early and immunologi-

cally active stage of orbitopathy is important.11,34,35 Our quan-

titative MR imaging study by using the FSE-IDEAL sequence

showed that MPPT was useful in patients with TAO whose

orbital fat contained an elevated water fraction. On the other

hand, the larger the pretreatment orbital fat volume, the lower

the posttreatment CAS improvement rate. Because a longer

duration of TAO is associated with a larger orbital fat mass and

fibrosis,36 we think that a response to steroids is less likely

when the disease is in its late, inactive stage with more

fibrosis.33,34

Our study has several limitations. The number of patients with

TAO who underwent MPPT was small, and the lack of age-

matched controls limits the comparison between patients with

TAO and healthy individuals. In addition, we used the T2-

weighted FSE-IDEAL sequence provided by GE Healthcare. It is a

novel, 3-point Dixon method that applies iterative algorithms and

the region-growing technique to estimate local field inhomoge-

neities.37-39 Application of the 3-point Dixon method developed

by different vendors may result in significantly different measure-

ment results with respect to the water fraction of orbital fat. In

addition, the demarcation between orbital and upper or lower
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FIG 4. Comparison of the pre- and posttreatment water fraction (A) and the volume of orbital fat (B) in patients with TAO. Methylprednisolone
pulse therapy significantly decreased the water fraction. The volume was unchanged.
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eyelid fat is ambiguous, and this feature may introduce some in-

terobserver variability in the orbital fat volume. Last, the correct

cutoff value for the water fraction and the volume of the orbital fat

between patients with TAO and their controls remains to be

determined.

CONCLUSIONS
The estimation of the water fraction and the volume of orbital

fat on FSE-IDEAL images is feasible, and the reproducibility of

these measurements is adequate. FSE-IDEAL imaging is useful

for monitoring the effects of therapy and for predicting the

response of patients with TAO to methylprednisolone pulse

therapy.
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