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Background: The impact of precision psychiatry for clin-
ical practice has not been systematically appraised. This 
study aims to provide a comprehensive review of valid-
ated prediction models to estimate the individual risk of 
being affected with a condition (diagnostic), developing 
outcomes (prognostic), or responding to treatments (pre-
dictive) in mental disorders. Methods: PRISMA/RIGHT/
CHARMS-compliant systematic review of the Web of 
Science, Cochrane Central Register of Reviews, and Ovid/
PsycINFO databases from inception until July 21, 2019 
(PROSPERO CRD42019155713) to identify diagnostic/
prognostic/predictive prediction studies that reported indi-
vidualized estimates in psychiatry and that were internally or 
externally validated or implemented. Random effect meta-
regression analyses addressed the impact of several factors 
on the accuracy of prediction models. Findings: Literature 
search identified 584 prediction modeling studies, of which 
89 were included. 10.4% of the total studies included pre-
diction models internally validated (n = 61), 4.6% models 
externally validated (n = 27), and 0.2% (n = 1) models con-
sidered for implementation. Across validated prediction 
modeling studies (n = 88), 18.2% were diagnostic, 68.2% 
prognostic, and 13.6% predictive. The most frequently 

investigated condition was psychosis (36.4%), and the most 
frequently employed predictors clinical (69.5%). Unimodal 
compared to multimodal models (β = .29, P = .03) and di-
agnostic compared to prognostic (β = .84, p < .0001) and 
predictive (β = .87, P = .002) models were associated with 
increased accuracy. Interpretation: To date, several valid-
ated prediction models are available to support the diag-
nosis and prognosis of psychiatric conditions, in particular, 
psychosis, or to predict treatment response. Advancements 
of knowledge are limited by the lack of implementation re-
search in real-world clinical practice. A new generation of 
implementation research is required to address this trans-
lational gap.

Key words:  risk/prognosis/prediction/individualized/
prevention/evidence/implementation/validation

Introduction

Precision medicine is an emerging approach for disease 
prevention, diagnosis, and treatment that considers indi-
vidual variability in patient and disease characteristics, 
genes, environment, and lifestyle of each person.1,2 The 
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concept of precision medicine is not new; clinicians have 
been working to personalize care tailored to people’s in-
dividual health needs throughout the history of medicine 
(eg, matching human blood groups across donors and 
recipients during blood transfusion).3 Yet, modern ad-
vancements of knowledge in the field of individualized 
prediction modeling have allowed the consolidation of an 
evidence-based science of precision medicine.4 Prediction 
modeling can be used to forecast the probability of a 
certain condition being present (diagnostic models), 
outcomes (prognostic models), or the response to inter-
ventions (predictive models) at the individual subject 
level. From a methodological perspective, individualized 
prediction modeling research includes studies that inves-
tigate the development, internal or external validation of 
prediction models, and prediction model impact studies, 
which investigate the real-world effect of using prediction 
models in clinical practice.5 External validity is the extent 
to which the predictions can be generalized to the data 
from plausibly related settings, while internal validity 
is the extent to which the predictions fit the derivation 
data after controlling for overfitting and optimism, with 
the latter representing the difference in a model’s perfor-
mance in the derivation data and unseen individuals (for 
further details see4).

More recently, individualized prediction models have 
been developed in psychiatry,4 and a new field of pre-
cision psychiatry has emerged.6–8 The area where indi-
vidualized prediction models have been more extensively 
investigated in psychiatry relates to psychotic disorders. 
The high personal, clinical, and societal burden associ-
ated with psychosis, coupled with the limited pathophys-
iological understanding, has stimulated research into 
diagnostic prediction models. Incorporation of a clinical 
staging model for psychosis,9 together with the emergence 
of the clinical high-risk state for psychosis (CHR-P),10,11 
has prompted research into prognostic prediction models, 
as well as several ongoing international collaborations.12 
The associated need to stratify or personalize early in-
tervention or preventive treatment for psychosis13,14 has 
stimulated research of predictive prediction models. 
Furthermore, emerging research has indicated that pre-
diction modeling can benefit from transdiagnostic ap-
proaches that allow methodological cross-fertilization 
across other nonpsychotic disorders.15–17

Despite the increasing number of  records published 
in this area over recent years, the impact of  precision 
psychiatry for psychosis, and more broadly for clin-
ical practice, is unclear. No study to our knowledge has 
comprehensively reviewed the advancements and chal-
lenges of  prediction modeling in clinical psychiatry to 
date. Our primary aim was to systematically appraise 
diagnostic, prognostic, or predictive individualized pre-
diction models that can be considered for clinical use in 
psychiatry, with a specific focus on psychosis; the sec-
ondary aim was to test potential moderating factors. The 

evidence reviewed was then used to formulate pragmatic 
recommendations to advance knowledge in this area. To 
address the potential impact of  precision psychiatry, we 
focused on diagnostic, prognostic, and predictive predic-
tion model studies with at least internal or external vali-
dation and implementation studies.

Methods

This study (study protocol: PROSPERO 
CRD42019155713) was conducted in accordance with 
the RIGHT18 and PRISMA19 statements (supplementary 
table 1).

Search Strategy and Selection Criteria

A multistep independent researcher systematic literature 
search strategy was used to identify the relevant articles. 
First, the Web of Science, Cochrane Central Register of 
Reviews, and Ovid/ PsycINFO database were searched, 
from inception until July 21, 2019 in English (specific 
search terms are reported in supplementary methods 1). 
Second, the references of  the articles identified in pre-
vious reviews in the field and the references from the 
included studies were manually searched to identify ad-
ditional relevant records. Abstracts identified through 
the previous step were then screened and, after the ex-
clusion of  those not relevant to the current study, their 
full texts were assessed against the inclusion and exclu-
sion criteria. In a fourth step, a researcher with exper-
tise in risk estimation models in psychiatry (E.S.) further 
checked the articles against the core biostatistical inclu-
sion criteria (ie, presence of  appropriate internal or ex-
ternal validation).

The inclusion criteria were (1) original studies or 
study protocols published in the databases searched 
or gray literature; (2) studies reporting the diagnostic 
(principally predicts the presence of  a certain con-
dition), prognostic (principally predicts the clinical 
outcomes in the absence of  therapy20), predictive (prin-
cipally predicts the response to a particular interven-
tion20), or implementation of  risk estimation models; 
(3) providing estimates at the individual subject level 
or in subgroups; (4) studies investigating individuals 
affected by mental disorders or mental conditions or 
individuals at risk of  mental disorders, defined ac-
cording to established psychometric criteria, and (5) 
diagnostic, prognostic, or predictive studies that per-
formed at least a proper internal or external validation 
(see below). The exclusion criteria were: (1) abstracts, 
conference proceedings, reviews, or meta-analyses; (2) 
diagnostic, prognostic, or predictive models that did 
not provide individualized or subgroup risk estimates; 
(3) diagnostic, prognostic, or predictive studies that 
did not perform any proper internal or external valida-
tion (see supplementary methods 2); or (4) predictors-
finding studies that did not report prediction models.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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Descriptive Measures and Data Extraction

The variables extracted in the current review included 
items listed in the “Checklist for critical Appraisal and 
data extraction for systematic Reviews of prediction 
Modelling Studies” (CHARMS21). Additional variables 
were included22 as detailed in the supplementary methods 
3. When more than one outcome per study was found in 
the same category, we extracted the information for the 
primary outcome, as defined in each article, unless the 
study reported multiple primary co-outcomes.

Quality Assessment

Risk of bias was assessed for each of the included studies 
adapting “The Prediction Model Risk of Bias Assessment 
Tool” (PROBAST v5/05/20195,23). PROBAST includes 
4 steps and assesses the risk of bias and applicability of 
4 core domains (participants, predictors, outcome, and 
analysis) to obtain an overall judgment of the risk of 
bias.5 An outcome is considered to be at high risk of bias 
when at least one of the questions answered is not appro-
priate (no or probably no). The overall risk of bias is con-
sidered high when one or more domains are considered to 
be at high risk24 (details can be found in supplementary 
methods 4).

Data Analysis

All the included studies were systematically summarized 
in tables stratified by the model type (diagnostic, prog-
nostic, and predictive)—those implemented were then 
discussed in a separate section—and reporting core de-
scriptive variables (supplementary methods 5). The top 
10% of the most widely employed predictors and all the 
studied conditions were summarized in graphs, and the 
specific methodological characteristics of the studies 
were summarized in a separate table. These descriptive 
analyses were complemented by the Pearson correlation 
between apparent vs external accuracy within the models 
that reported both.16, 25–52 We further conducted meta-
analytical regressions to estimate the association between 
accuracy and (1) the type of validation (internal vs ex-
ternal); (2) the type of accuracy measure (area under the 
curve [AUC] vs C-statistics vs accuracy, with the latter 
category including accuracy measures other than AUC 
or C-statistics as defined by each study); (3) the type of 
model (diagnostic vs prognostic vs predictive model); (4) 
the number of specific predictors; (5) the type of pre-
dictors (clinical or service use or sociodemographic vs 
any biomarker—neuroimaging or electroencephalog-
raphy or magnetoencephalography or proteomic or ge-
netic or cognitive—vs a combination of modalities); (6) 
the modality of predictors (unimodal, using only 1 type 
of predictor, eg, clinical only, vs multimodal, using more 
than 1 type of predictor, eg, clinical and biomarker); (7) 
type of analysis (machine learning vs statistical modeling, 

as defined in supplementary methods 6). For analyses 
4–7, we also included the interaction between accuracy 
and meta-regressors. For analyses 2–7, we used accuracy 
values prioritizing external validation over internal vali-
dation, in line with the previous meta-analyses of predic-
tion models.53 In the case of multiple studies on the same 
prediction model in which the previous order of priority 
could not be applied, the study with the largest data set 
was employed. We performed a meta-regression of the 
difference between logit transformed accuracy (because 
of the bounded nature of AUC53) using a random effect 
meta-analysis model, taking 1–7 clustering of compari-
sons into account.53 The analyses were performed with 
Comprehensive Meta-Analysis Version 3.54

Results

Database

The literature search yielded 50  698 records and, after 
the exclusion of  nonrelevant abstracts, 1033 full-text 
articles were screened to identify a total of  584 predic-
tion studies reporting on prediction models developed. 
These models were then screened for eligibility against 
the inclusion and exclusion criteria to identify 89 studies 
with individualized prediction models, which were val-
idated or implemented and represented the final sample 
(PRISMA; figure 1): 61 were internally validated (10.4% 
of the total models developed), 27 were externally val-
idated (4.6% of the total models developed), and 1 
(0.2% of the total models developed) described a pro-
tocol for the implementation of  a prediction model 
(figure 2). Thirty point three percent (27/89) of  the pre-
diction models included were externally validated. 8.2% 
studies reported on diagnostic prediction models, 68.2% 
on prognostic models, and 13.6% on predictive models; 
55.6% of studies employed sociodemographic pre-
dictors, 69.5% employed clinical predictors, 10.2% em-
ployed cognitive predictors, 13.6% employed service use 
predictors, 25.0% employed physical health predictors, 
17.0% employed neuroimaging predictors, 0.4% em-
ployed magnetoencephalography or electroencephalog-
raphy predictors, 0.1% employed proteomic data, and 
2.3% employed genetic predictors. The most frequently 
reported predictors were age (n = 38, 45.8%), sex (n = 27, 
32.5%), education (n = 21, 25.3%), and depressive symp-
toms (n = 18, 21.7%; figure 3). The most frequently re-
ported condition was psychosis (36.4%; figure  3). The 
total sample size was 3 889 457 individuals, ranging from 
2955 to 2 960 92956 individuals. The average age ranged 
from 1.857 to 64.738 years. The source of  data encom-
passed cohorts (46 studies, 52.3%), case-control studies 
(13 studies, 14.8%), clinical trials (16 studies, 18.2%), and 
registry data (13 studies, 14.8%).

The most frequent type of external validation was geo-
graphical, examining the model performance in other cen-
ters or regions 24/27 (88.9%). Internal validation was more 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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frequently done by cross-validation in 34/61 (55.7%). The 
most frequent modeling method was machine learning 
in 35/88 (39.8%) (supplementary table  2). In half of the 

studies (51.1%), there was no explicit handling of missing 
data; imputation (27.3%) was the most common method 
for data missingness (supplementary table 2). AUC was the 

Fig. 2.  Proportion of prediction models studies developed, internally validated, externally validated, and implemented in the psychiatric 
literature.
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Fig. 1.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart outlining study selection process.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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most commonly reported measure of model performance 
(78.4%; supplementary table 2). Only 10.2% of the studies 
presented their model in full: almost half of them did not 
present any details of their model (46.6%) or the calibration 
results clearly (47.7%; supplementary table 2).

Diagnostic Risk Estimation Models

Four studies employed neuroimaging methods58–60 and 
proteomic data61 to classify individuals with schizophrenia 

compared to healthy controls (HC)58,59,61 or to differen-
tiate schizophrenia spectrum disorder and HC with or 
without impaired social functioning60 (supplementary 
table  3). One study employed clinical predictors to dis-
criminate between affective and schizophrenia spectrum 
psychoses.62

Two studies employed neuroimaging to differentiate 
unipolar vs bipolar depression25 or major depression vs 
dysthymia in individuals with panic disorder and ag-
oraphobia.63 Another study used clinical predictors to 
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Fig. 3.  Most frequently reported predictors (above, top 10%) and conditions (below, all) in the included studies.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data


289

Implementing Precision Psychiatry

distinguish melancholic vs non-melancholic features in 
individuals with major depression.64

A neuroimaging study discriminated smokers and non-
smoking HC.65 Another study using sociodemographic, 
clinical, and cognitive data discriminated individuals 
with cocaine dependence from HC.66 Problematic in-
ternet use was discriminated from HC using clin-
ical and sociodemographic predictors.26 Two studies 
classified posttraumatic stress disorder in veterans 
using sociodemographic and clinical predictors67 or 
magnetoencephalography.68 Three studies focused on au-
tism spectrum disorders to discriminate them from atten-
tion deficit hyperactive disorder69,70 or from HC57 using 
clinical predictors69,70 or genomic biomarkers57 (supple-
mentary table 3).

Prognostic Models

A considerable proportion of the prognostic risk esti-
mation studies16, 27–32, 71–82 (31.7%) investigated the CHR-
P83 (supplementary table  4). These studies focused on 
the prediction of psychosis onset in CHR-P individuals 
(n  =  13),27–29,71–80 functional outcomes and disability in 
CHR-P individuals (n  =  2),81,82 psychosis onset in indi-
viduals undergoing a CHR-P assessment (pretest risk 
n  =  1),30 and the transdiagnostic onset of psychosis in 
secondary mental health care (n = 3).16,31,32 Six of these 
studies employed sociodemographic or clinical predictors 
only,16,28,31,32,73,74 1 employed sociodemographic and 
service use data,30 2 included cognitive measures beyond 
sociodemographic and clinical data,27,72 3 included cog-
nitive measures alone,29,71,77 1 employed electroencepha-
lography predictors,75 3 neuroimaging alone,76,78,80 and 2 
neuroimaging in association with clinical measures81,82 or 
in association with sociodemographic, clinical, and cog-
nitive measures (n = 1).79 Four other studies focused on 
established psychosis using different combinations of 
sociodemographic, clinical, service use, cognitive, and 
physical health predictors to forecast psychotic relapses,84 
hospital admission,33 employment, education or training 
status,34 and mortality.85 Nine studies focused on depres-
sion.35–40,82,86,87 A combination of sociodemographic, clin-
ical, and physical health factors was used by 3 studies 
to predict the onset of major depression in the general 
population35–37 and by 5 other studies to predict persist-
ence38,86,87 or recurrence39,40 of major depression. A further 
study predicted disability in recent-onset depression using 
clinical and neuroimaging data.82 One study focused on 
the onset of bipolar spectrum disorders in youth at family 
risk using sociodemographic and clinical factors,88 while 
another one predicted cognitive impairment in bipolar 
disorder using sociodemographic and cognitive factors.89 
Six studies used a combination of sociodemographic, 
clinical, physical health, and service use to predict sui-
cidality, focusing on suicide ideation in the general pop-
ulation,41,90 suicide attempts after outpatient visits,56 

suicide attempts in adolescents,91 suicidal behavior,92 
or deaths by suicide after hospitalization in soldiers.93 
Seven studies focused on posttraumatic stress disorder 
(PTSD).94–100 Three studies employed a combination of 
sociodemographic, clinical, physical health, and service 
use factors to predict the onset of PTSD94–96 or the re-
mission of PTSD (n = 3 studies),97–99 and a further study 
used clinical predictors alone to forecast PTSD features 
in soldiers.100 Sociodemographic, clinical, and physical 
health data were used by 2 studies42,43 to predict the onset 
of generalized anxiety disorders and panic disorder in the 
general population and by another study to predict the 
recurrence of panic disorder.44

Two studies predicted alcohol use in young people 
using sociodemographic and clinical45,46 predictors in 
combination with cognitive46 predictors, while another 2 
studies predicted abstinence from heavy drinking using 
sociodemographic and/or clinical47,101 data. A prediction 
model forecasted offending behavior in schizophrenia 
and delusional disorder using forensic information.102 
Compulsory admission into psychiatric wards was pre-
dicted by a combination of sociodemographic, clinical, 
and service use factors,103 and medication-induced al-
tered mental status in hospitalized patients was pre-
dicted by sociodemographic, clinical, service use, and 
physical health data.104 Other models predicted the 
onset of common mental disorder in a working popu-
lation using sociodemographic, clinical, and physical 
health105 variables, mental health hospital readmission 
using sociodemographic, clinical, and service use106 data, 
and violent offending in severe mental disorders using 
sociodemographic, clinical, and service use48 data.

Predictive Models

Two studies employed a combination of clinical, 
sociodemographic, or physical health features to pre-
dict remission49,50 or response to antidepressants107,108 
in major depression. Three studies predicted the onset 
of treatment-resistant depression using clinical and 
sociodemographic variables,51,52,109 service use data,52,109 
and physical health data.109 A  study employed clinical 
and sociodemographic data to predict the level of func-
tioning at 4 and 52 weeks after antipsychotic treatment 
in patients with first-episode psychosis.110 Two studies 
predicted the clinical response to transcranial magnetic 
stimulation combining neuroimaging and electroenceph-
alography factors.55,111 A further study employed clinical 
and physical health data to predict treatment dropout 
from psychotherapy in anxiety disorders112 (supplemen-
tary table 5)

Implementation of Prediction Models

Among externally validated models, the transdiagnostic 
model predicting psychosis onset in secondary mental 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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health care,16,31,32 the model predicting psychosis onset in 
CHR-P,27,72 the model predicting the onset of generalized 
anxiety disorders and panic disorder in the general popu-
lation,42,43 and the model predicting the onset of major de-
pression in the general population36,37 were all replicated 
twice (table 1). None of the models included in the cur-
rent systematic review were fully implemented in clinical 
practice. However, 1 study113 described the protocol for 
the implementation of the transdiagnostic risk calculator 
to detect individuals at risk of psychosis in secondary 
mental health care.16,31,32 The core aim of this study was 
to integrate the prediction model in the local electronic 
health register and evaluate the clinician’s adherence to 
the recommendations made by the risk calculator.113

Accuracy of Prediction Models and Meta-Regressions

Accuracy of prediction models was highly variable, ran-
ging from 0.5640 to 1.071 (0.6925–0.9669 for diagnostic 
models, 0.5640 to 1.071 for prognostic models, and 0.66108 to 
0.92114 for predictive models) (supplementary tables 3–5). 
Within the nonoverlapping prediction model studies that 
reported apparent and external accuracy (n  =  18), the 
2 measures were strongly correlated (r  =  .78, 95% CI: 
0.39–0.95, P < .001; figure 4). Meta-regressions revealed 
that accuracy was higher in unimodal (n = 25) vs multi-
modal (n = 71) prediction models (β = .29, P = .03), di-
agnostic (n = 14) vs prognostic (n = 51; β = .84, P < .001) 
models, and diagnostic (n  =  14) vs predictive (n  =  11; 

β = .87, P = .002) models, but no other significant meta-
regressions or interactions were detected (supplementary 
results and supplementary table 6).

Quality of Prediction Models

Applying PROBAST, 94.3% of the included studies were 
found to be at high risk of bias. The results from the different 
domains were heterogeneous: 1.1% were at high risk of bias 
in the participants domain, 65.9% in the predictors domain, 
90.9% in the outcomes domain, and 81.8% in the analysis 
domain (supplementary table 7; supplementary figure 1).

Discussion

This is the first large-scale systematic review to summa-
rize the transdiagnostic and life span-inclusive evidence 
regarding diagnostic, prognostic, or predictive prediction 
models that have been internally and externally validated 
and, thus, can be considered for clinical implementation 
in psychiatry. Currently, only 10.4% of the total models 
developed are internally validated, 4.6% are externally 
validated, and 0.2% are considered for implementation. 
Most of the models validated were prognostic, followed 
by diagnostic and more infrequently predictive models. 
Most research in this area focused on psychosis and was 
life span inclusive. Most prediction models employed 
clinical predictors. Many studies were at high risk of bias 
and accuracy was mediated by several factors.
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Fig. 4.  Correlation between apparent and external accuracy (n = 18).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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The main finding of this study is that precision psy-
chiatry has developed into a consolidated area of clin-
ical research, with a substantial number of individualized 
prediction models developed and validated on data from 
3 889 457 participants aged from 1.8 to 64 years. These 
substantial advancements in the field of precision psy-
chiatry reflect a life span-inclusive approach. Several val-
idated individualized prediction models are nowadays 
available, transdiagnostically targeting many psychiatric 
conditions encompassing psychotic disorders, affective 
disorders, substance use disorders, anxiety disorders, 
neurodevelopmental disorders, and several clinically 
relevant outcomes as well. However, to date, psychosis 
research has mostly led (36.4%) precision psychiatry. 
Notably, the majority (68.2%) of the current psychi-
atric prediction models were prognostic, with CHR-P 
studies representing a leading field (31.7%) in this domain 
(21.6% across all prognostic, diagnostic, and predictive 
models). This finding confirms the traction role of psy-
chosis research, as well as the close link between preci-
sion psychiatry and preventive approaches. Psychiatry 
as a discipline is essentially “Hippocratic,” whereby the 
prediction of outcomes becomes more relevant than the 
ascertainment of cross-sectional diagnostic categories.4 
The validity of diagnostic categories in psychiatry has al-
ways been criticized and it has recently been further ques-
tioned by transdiagnostic approaches, which challenged 
discrete and fixed self-delimitating boundaries across 
International Classification of Diseases or Diagnostic 
and Statistical Manual of Mental Disorders entities.15,17 
These considerations are particularly valid for early psy-
chosis, where the prediction of outcomes can inform 
treatment approaches and can explain why diagnostic 
models were not so frequent (18.2%). Predictive models 
were even less frequently investigated (13.6%), presum-
ably because these types of studies are inherently more 
complex to run owing to the intervention-related compo-
nent. Despite these speculations, accuracy in diagnostic 
models remained superior to prognostic and predictive 
models, presumably because diagnostic models rely on 
more established gold standards to define outcomes.

Despite the substantial progress in developing and 
validating individualized prediction models for psychi-
atry, this study also highlighted some important barriers 
to the advancement of knowledge. The first barrier is that, 
across the overall pool of prediction models developed and 
published in the broader psychiatric literature (n = 584), 
we found only about 15% (n = 88) to be properly valid-
ated (n = 61: 10.4% internal validation and n = 27: 4.6% 
independent external validation). Within those included 
in the review, about one-third were validated in external 
databases (supplementary limitations). This finding aligns 
with a previous review suggesting that external validation 
of prediction models is infrequent.115 A  growing body 
of evidence has confirmed a replicability crisis in several 
areas of scientific knowledge, such as cancer research,116 

economics,117 behavioral ecology economics,117 and ge-
netic behavior research.118 Since precision psychiatry is a 
relatively emerging paradigm compared to other precision 
medicine approaches, research to date may have priori-
tized the development of new models over the external 
validation of models already established. For example, 
systematic reviews in chronic obstructive pulmonary dis-
ease identified a similar number of prediction models with 
internal (n = 100) and external (n = 38) validation to the 
ones reported here.24 However, several of these models 
were externally validated between 5 and 17 times.24 The 
next generation of prediction modeling in psychiatry 
should, therefore, consider, along with the development 
of new prediction models, the replication of existing algo-
rithms across different scenarios. This would necessitate 
collaborative data-sharing efforts to reach critical mass 
(studies’ sample size ranged from 2955 to 2 960 92956 in-
dividuals) and the establishment of international clinical 
research infrastructures, as well as specific support from 
funders and stakeholders. The current study should also 
educate editors and reviewers who too often devalue repli-
cation studies because they feel that these studies have lim-
ited advancement of knowledge compared to the original 
publications. In reality, focusing on the reproducibility of 
existing prediction models and updating existing prog-
nostic models, as opposed to dropping these models and 
developing new ones from scratch, is the recommended 
procedure to maximize the efficiency of research.4

This study also provides relevant methodological ev-
idence. For example, to date, most models (69.5%) are 
based on clinical predictors and there is no evidence that 
more complex models encompassing biomarkers or a 
large number of predictors (which may be more prone 
to overfitting issues) or advanced analytical methods, 
such as machine learning, outperform other types of pre-
diction models. These findings align with recent studies 
indicating that complex machine learning models do not 
outperform more parsimonious clinically based models 
developed through standard statistical approaches.53,119 
The current study adds further methodological value by 
showing that, in psychiatry, for a given apparent accuracy 
(we found no difference across various accuracy meas-
ures), the expected external accuracy can be estimated 
with a correlating factor of .78 (95% CI: 0.39–0.95; 
figure 4). Editors and reviewers can use this factor to as-
sess the external accuracy of prediction models that have 
not been internally/externally validated. However, cur-
rent guidelines recommend performing at least internal 
validation,4 which, if  properly performed, can accurately 
index the true external generalizability of the model (as 
shown in our meta-regressions).

An associated problem is that 94.3% studies included 
in the current review—which adopted stringent inclusion 
criteria focusing on validated studies—were eventually 
classified at high risk of bias, mostly because of the high 
risk of bias in the outcomes and analysis domain. These 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa120#supplementary-data
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biases may potentially be even more substantial in the 
wider literature, limiting the implementation of precision 
psychiatry. Although the PROBAST threshold for this 
bias may be too strict, our findings are consistent with an 
independent review, which applied PROBAST and found 
that 98.3% of the prediction models were at high risk of 
bias.24 Facilitating the external validation of individual-
ized prediction models is also the most robust approach 
to address the currently largest barrier for precision psy-
chiatry: real-world implementation.

The current systematic review identified only one imple-
mentation study, corresponding to 0.2% of the total pool 
of models developed and published, which did not report 
data but only described the research protocol of an on-
going project120 (the full implementation results have been 
published upon completion of our literature review).121,122 
At the moment, precision psychiatry is severely limited 
by a translational gap. The implementation pathways 
of precision psychiatry is a perilous journey,123 compli-
cated by obstacles related to patients (eg, making their 
data available or accepting the outputs of the risk calcu-
lator), clinicians (eg, adherence to the recommendations 
made by prediction models and communicating risks), 
providers (eg, confidentiality and accessibility of data 
and interpretability and utility of outputs), and funders 
and organizations (implementing an infrastructure ena-
bling standard prediction procedures). Because of these 
challenges, most prediction models that are validated are 
then lost in the dearth of real-world implementation sci-
ence, even for psychosis research. Implementation science 
itself, although much needed, is contested and complex, 
with the unpredictable use of results from routine clinical 
practice.124,125 For example, the Consolidated Framework 
for Implementation Research (CFIR)30 is rather theo-
retical124 and does not offer specific pragmatic guidance 
to precision psychiatry. A recent systematic review con-
cluded that only 6% of studies acknowledging the CFIR 
used the CFIR in a meaningful way.126 Thus, the paucity 
of implementation studies of individualized prediction 
models in psychiatry can be secondary to the lack of a 
general implementation framework and practical guid-
ance. The next generation of empirical research in the 
field of prediction modeling in psychiatry and psychosis 
research should primarily aim at filling in the implemen-
tation gap by developing a coherent and practical imple-
mentation framework, methodological infrastructures, 
and international implementation infrastructures.

Conclusions

To date, several validated prediction models are available 
to support the diagnosis and prognosis of psychiatric con-
ditions, in particular, psychotic disorders, or to predict 
the response to treatments. Advancements of knowledge 
are mostly limited by the limited replication and lack of 
implementation research in real-world clinical practice. 

The next generation of precision psychiatry research is 
required to address this translational gap.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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