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Abstract

Purpose: To predict overall survival of patients receiving stereotactic body radiation therapy 

(SBRT) for early-stage non-small cell lung cancer (ES-NSCLC), we developed a radiomic model 

that integrates risk of death estimates and changes based on pre- and post-treatment CT scans. We 

hypothesize this innovation will improve our ability to stratify patients into various oncologic 

outcomes with greater accuracy.

Experimental design: Two cohorts of ES-NSCLC patients uniformly treated with SBRT (a 

median dose of 50Gy in 4–5 fractions) were studied. Prediction models were built on a discovery 

cohort of 100 patients with treatment planning CT scans, and then were applied to a separate 

validation cohort of 60 patients with pre- and posttreatment CT scans for evaluating their 

performance.

Results: Prediction models achieved a c-index up to 0.734 in predicting survival outcomes of the 

validation cohort. The integration of the pre-treatment risk of survival measures (Risk-High vs. 
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Risk-Low) and changes (Risk-Increase vs. Risk-Decrease) in risk of survival measures between 

the pre-treatment and post-treatment scans further stratified the patients into 4 subgroups (Risk: 

high, increase; Risk: high, decrease; Risk: low, increase; Risk: low, decrease) with significant 

difference (χ2 = 18.549, p=3.4e-04, log-rank test). There was also significant difference between 

risk increase and risk decrease group (χ2= 6.80, p=0.0091, log-rank test). In addition, significant 

difference (χ2= 7.493, p=0.0062, log-rank test) was observed between the high-risk and low-risk 

groups obtained based on the pre-treatment risk of survival measures.

Conclusion: The integration of risk of survival measures estimated from pre- and post-treatment 

CT scans can help differentiate patients with good expected survival from those who will do more 

poorly following SBRT. The analysis of these radiomics-based longitudinal risk measures may 

help identify early stage NSCLC patients who will benefit from adjuvant treatment after lung 

SBRT, such as immunotherapy.

Introduction

Lung cancer causes the greatest number of cancer-related deaths in the United States, and 

non-small cell lung cancer (NSCLC) accounts for the overall majority (approximately 87 

percent), with poor treatment outcomes and a low 5-year survival rate (1–3).The advance in 

lung cancer screening technologies has facilitated detection of more tumors in early cancer 

stage (4,5). Those diagnosed with early stage (ES)-NSCLC are now more likely to receive 

definitive treatment with the increased utilization of convenient and effective 

hypofractionated radiotherapy such as stereotactic body radiation therapy (SBRT) that is 

also referred to as stereotactic ablative radiotherapy (6–8). Consistently encouraging 

outcomes with SBRT have led to several large-scale efforts to compare SBRT with surgery, 

the latter considered the existing standard of care (9,10). Several recent reports have not only 

indicated that oncologic outcomes between SBRT and surgery are similar, but also that 

SBRT may be safer for at least some patients (11).

However, despite excellent initial local control, up to half of patients with ES-NSCLC will 

fail regionally and/or distantly within five years after SBRT (8,12,13). In order to improve 

the outcome of patients with ES-NSCLC, there is an opportunity to add treatment after 

SBRT. Consequently, optimized methods to guide subsequent treatment throughout each 

patient’s clinical course is critically needed (14–16).

Radiomics provides promising novel biomarkers towards predicting clinical outcomes (17–

21). There has been phenomenal growth of published radiomic studies of lung cancer for the 

prediction of treatment responses, patient stratification, and prognosis based on radiological 

imaging data (22–30). Particularly, radiomic features extracted from CT images have 

demonstrated promising performance for the prediction of overall survival and disease-free 

survival in patients with NSCLC (31–35). Moreover, changes in radiomic features, often 

referred to as delta-radiomics features, computed from images during therapy are stable (36) 

and have also demonstrated prognostic potential specifically in lung cancer (37–39). 

However, most studies to date have only assessed imaging scans at baseline or from 

radiation treatment planning before or during therapy, hampering the applicability of delta-

radiomics.
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In order to evaluate whether integration of standard radiomics and delta-radiomics help 

predict overall survival of ES-NSCLC patients treated with SBRT, we developed a radiomic 

model to integrate risk of death estimates based on pre- and post-treatment CT scans in 

patients receiving stereotactic body radiation therapy (SBRT). We hypothesize that our 

radiomic-based longitudinal risk analysis will allow us to stratify patients with various 

overall survival outcomes with greater accuracy.

Materials and methods:

1. Patients and clinical characteristics

This study was carried out with the approval of our institutional review board. Two cohorts 

of ES-NSCLC patients treated with SBRT were included in this study. The first cohort 

contained 100 patients who were treated from July 2009 to June 2013, allowing time for 

adequate follow-up, and who had pre-treatment CT scans for treatment planning. The second 

cohort included other 60 patients who were treated from November 2012 to February 2019 

and who had both pre-treatment and post-treatment CT scans (Pre-treatment period: 

November 2012 to March 2017; Post-treatment period: April 2013 to February 2019). The 

time interval between SBRT and post-treatment CT was 6.2 ± 4.8 months (mean ± standard 

deviation). These patients were examined on CT scanners of Phillips Gemini TF TOF 16 

(Phillips Medical Systems, Amsterdam, Netherlands) at our institute. All patients underwent 

a free breathing scan and 4D scan using an 8-bin approach, no motion mitigation was 

performed during the time frame of patients treated on this study. Axial images were 

obtained using a 3 mm slice thickness encompassing the entire thorax with matrix size of 

512 * 512 with spacing of 1.1719 * 1.1719 mm2. Both the pre- and post-treatment CT scans 

were collected using the same imaging protocol.

Each patient has a predominant solid component of their NSCLC that was delineated as 

gross tumor target volume (GTV) in CT scans (pre-treatment CT for cohort 1, pre- and post-

treatment CT for cohort 2) by board certified thoracic radiation oncologists. Following 

existing studies (30,40–42), we used GTV as a region of interest to compute radiomic 

features in our study.

Although all patients in the involved cohorts were treated uniformly with SBRT, they had 

different primary tumor appearances and treatment outcomes. Particularly, the median of 

prescription dose was 50 Gy with a range of 50–60 Gy), and the median range of fractions 

was 4 or 5 fractions with a range of 4–20 fractions. Prescription isodose line was 80–100% 

as a range with 85–90% median. BED10 was 100 Gy if 5 fractions and 112.5 Gy if 4 

fractions, and the range was 78–112.5 Gy. The vast majority of patents received 4 or 5 

fraction regimens (92%), whereas a handful of additional patients received 8, 15 or 20 

fraction regimens, due to the tumors being ultracentrally located and dose constraints with 5 

fractions being exceeded. Following treatment, patients were monitored for disease control 

via computed tomography (CT) or positron emission tomography (PET)/CT imaging every 3 

months in accordance with institutional practice. Date of death was determined by death 

certificates or institutional medical records. The patients had a median follow-up of 2.0 

years.
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Descriptive statistics were used to evaluate demographic characteristics and disease details. 

Chi-square for categorical variables, t-test for continuous variables, and log-rank test for 

time-to-event variables were carried out to examine differences in clinicopathologic details 

between patients in these two cohorts.

2. Radiomics features and prediction modeling

The construction and application of a radiomic survival prediction model is illustrated in 

Figure 1. Particularly, we computed 680 radiomics features from the GTV of each CT scan 

using pyradiomics (43). These quantitative features characterize tumor shape and texture, 

including (I) first-order tumor image intensity features, (II) shape features of tumor, (III) 

high-order texture representation, and (IV) multiscale wavelet features. Details of these 

features are summarized in Supplementary Table 1. The radiomics analysis was carried out 

following a standard setting (25,44). Specifically, CT images and GTV annotations were 

resampled to have isotropic voxels of unit dimension (1 mm3) using linear and nearest 

neighbor interpolations, respectively; CT image intensities were discretized using equally 

spaced bins with a bin-width of 25 Hounsfield Units. This discretization step not only 

reduces image noise, but also normalizes intensities across all patients, allowing for a direct 

comparison of all calculated textural features between patients. Finally, radiomic features 

were computed. We did not register the pre- and post-treatment scans since tumors were 

manually contoured in both the pre- and post-treatment scans.

We built an overall survival prediction model using random survival forest (RSF) model, 

which is a variation of random forest method capable of modeling right-censored survival/

recurrence data (45). As a meta estimator model, RSF can fit a number of survival trees on 

various sub-samples of a training dataset and uses averaging across all the survival trees to 

improve the predictive accuracy and to control over-fitting (45). The model was optimized 

by assigning higher risks to patient with worse survival outcomes according to the input 

feature vectors. We used the 100-patient cohort with pre-treatment CT scans as our training 

dataset and optimized parameters of the RSF model using three-fold cross-validation to 

maximizing survival prediction performance measured with concordance-index (c-index) 

(46). Particularly, the RSF model has four parameters, including (1) n_estimators: number of 

trees in the forest; (2) max_depth: maximum depth of the tree; (3) min_samples_split: 
minimum number of samples required to split an internal node; and (4) min_samples_leaf: 
minimum number of samples required to be at a leaf node. Values of all these parameters 

were optimized by a three-fold cross-validation procedure of RSF models on the 100-patient 

cohort. Search ranges of the parameters were: (1) n_estimators: [10, 500]; (2) max_depth: 

[1, 5]; (3) min_samples_split: [1, 10]; (4) min_samples_leaf: [1, 10]. Optimal parameters are 

presented in Supplementary Table 2. The RSF model was built using scikit-learn (47).

To improve the prediction performance, we adopted four feature selection(ranking) methods 

(48) to rank the radiomic features based on the training data, including Wilcoxon test based 

feature selection (WLCX), Mutual information based feature selection (MIFS), Minimum 

redundancy maximum relevance (MRMR), and T-test score based feature selection (TSCR). 

Supplementary Figure 2 shows prediction performance of RSF models built upon radiomics 

Jiao et al. Page 4

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



features ranked by these methods. Based on these results, we chose the MRMR method to 

select top 70% radiomics features and built a RFS model on the training cohort.

We also built overall survival prediction models on: 1) demographic/clinical features, 

including Age, Sex, Smoker status, and body mass index (BMI); 2) size of tumor; and 3) 

their combinations, using RSF. The same training procedure as aforementioned was used.

We combined the radiomic prediction model and the prediction model built on demographic/

clinical features and tumor size, and then applied the combined model to the 60-patient 

cohort to estimate risk scores. Particularly, we applied the prediction models to radiomics 

features extracted from the pre-treatment and the post-treatment CT scans so that each 

patient had a pre-treatment risk score and a post-treatment risk score. The RSF model 

prediction performance was evaluated based on the predicted pre-treatment risk scores in 

terms of c-index.

Finally, we stratified the 60-patient cohort into two groups based on individual patients’ pre-

treatment risk scores and changes in risk scores before and after the SBRT. Particularly, k-

means clustering with two classes was applied to the pre-treatment survival risk scores of the 

60 testing patients to discover high-risk and low-risk groups (27 patients were categorized 

into Risk-High group, while 33 patients were evaluated as Risk-Low ones), and the changes 

of risk scores (predicted post-treatment risk score minus pre-treatment risk score) was used 

to obtain the risk change groups (positive values equal to increased risk while negative 

values stand for decreased risk). According to the prediction results of our RSF model, risks 

scores of 29 patients increased after receiving the SBRT and the other 31 patients had 

decreased risk scores.

In order to identify the most important radiomics features for the survival prediction task, we 

calculated the Breiman-Cutler permutation variable importance (VIMP) (49) as described in 

(50). The feature importance value of each feature was defined as the mean decrease of c-

index resulting from the 100-time random permutation of this feature. A correlation analysis 

between changes of these features and risk scores of the patients before and after treatment 

was carried out to investigate how the features change with the predicted risk scores.

Results

Characteristics of the training and testing patient cohorts

Demographic information and clinical characteristics of these two cohorts are summarized 

in Table 1. No significant differences between the two cohorts were observed in terms of 

age, sex, smoking history, BMI, tumor size, as well as local, nodal, and distant failure. 

However, they were different in survival and follow-up length.

Prediction performance

The radiomic model obtained a c-index of 0.691 for predicting overall survival of patients of 

the validation cohort based on their pre-treatment scans, while the radiomic model obtained 

a c-index of 0.693 on the training cohort. The prediction models built upon demographic/

clinical measures, size of tumor, and their combination obtained c-index values of 0.647, 
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0.638, and 0.671 respectively on the validation cohort, and c-index values of 0.656, 0.621 

and 0.664 respectively on the training cohort. Then, we added the predicted risk scores of 

the radiomic model and demographic/clinical model to act as a combined prediction model. 

The combined prediction model obtained the best performance with a c-index of 0.734 on 

the validation cohort and a c-index of 0.744 on the training cohort.

Patient group and subgroup stratification

The 60-patient cohort was stratified into two groups with significant differences in their 

overall survival based on pre-treatment risk scores of individual patients estimated by the 

combined prediction model, as illustrated by the Kaplan-Meier plot in Figure 2(A). A 

significant difference (χ2= 7.493, p=0.0062, log-rank test) was observed in overall survival 

between the high-risk and low-risk groups of patients. Overall survival for patients with risk-

increased and risk-decreased risk scores were significantly different (χ2= 6.80, p=0.0091, 

log-rank test), as illustrated in Figure 2(B). The integration of the pre-treatment risk (Risk-

High vs. Risk-Low) and risk change (Risk-Increase vs. Risk-Decrease) stratified patients 

into 4 groups (Risk: high, increase; Risk: high, decrease; Risk: low, increase; Risk: low, 

decrease) with significant difference (χ2 = 18.549, p=3.4e-04, log-rank test), as illustrated 

by the Kaplan-Meier plot in Figure 2(C). Pairwise differences of the 4 stratified subgroups 

are summarized in Table 2.

Important radiomics features for survival prediction

Figure 3 shows the top 10 most important radiomics features and their corresponding 

importance measures for survival prediction. The most important features for survival 

prediction included textural features of Inverse Difference Normalized (IDN), Inverse 

Difference Moment Normalized (IDMN), Informational Measure of Correlation 1 (IMC1), 

and Zone Percentage (ZP), and shape feature of Maximum 2D Diameter and Minor Axis 

Length. Most of these features concentrate on describing the region homogeneity and 

complexity of the textures in tumor areas.

As illustrated in Figure 4 (A), changes of these features were correlated with risk scores 

before and after treatment. Particularly, 1) the increase of tumor size showed strong 

correlation (original_shape_Maximum2DDiameterColumn: r = 0.697, p < 0.001; 

original_shape_MinorAxisLength: r = 0.609, p < 0.001) with the increase of risk scores of 

patients; 2) the change of Idn and Idmn values were also positively correlated with the 

increased risks (wavelet-LLH_glcm_Idn: r = 0.709, p < 0.001; original_glcm_Idn: r = 0.689, 

p < 0.001; wavelet-LLL_glcm_Idn: r = 0.661, p < 0.001; wavelet-LHL_glcm_Idn: r = 0.62, 

p < 0.001; wavelet-LLH_glcm_Idmn: r = 0.652, p < 0.001; original_glcm_Idmn: r = 0.642, 

p < 0.001); (3) the change of Imc feature also had positive correlation with the variation of 

increased risks (wavelet-LLL_glcm_Imc1: r = 0.654, p < 0.001); while change of the 

original_glszm_ZonePercentage was negatively correlated with the increased risks (r = 

−0.657, p < 0.001).

Pre- and post-treatment CT scans of representative patients are shown in Figure 4(B). These 

scans show that patients with increased risk had increased tumor size 

(original_shape_Maximum2DDiameterColumn, original_shape_MinorAxisLength ) and 
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homogeneity (represented by the Idn and Idmn features), consistent with the quantitative 

correlation analysis results shown in Figure 4(A).

Discussion

The present study has demonstrated that a prediction model built upon quantitative 

radiomics features extracted from pre-treatment planning CT scans using random survival 

forest obtained promising performance for predicting overall survival of ES-NSCLC patients 

treated by SBRT in an independent evaluation cohort. When combined with demographic/

clinical features-based prediction, the survival prediction performance of our model could be 

further improved. The predicted pre-treatment risk scores clearly stratified the patients into 

high-risk and low-risk groups with significant difference in their overall survival outcomes. 

Patients with increased risk scores had significantly worse overall survival than those with 

decreased risk scores that were estimated based on both pre- and post-treatment CT scans by 

the prediction model. Moreover, the integration of pre-treatment risk scores and changes in 

risk scores stratified the patients into 4 subgroups that had significant differences in overall 

survival, and patients with high pre-treatment risk scores and increased risk scores after the 

treatment had significantly worse overall survival than those with low pre-treatment risk 

scores and decreased risk scores after the treatment, indicating that the longitudinal risk 

analysis helps better predict overall survival.

Different from delta-radiomics prediction models that require to have imaging data at 

multiple time points for both training and testing datasets, our novel study built a prediction 

model based on a training dataset with only pre-treatment scans and applied the prediction 

model to new patients with scans at multiple time points (2 time points in the present study), 

providing a new means to integrate imaging data collected at multiple time points in 

radiomics studies. The relatively larger differences in subgroups identified by the integrated 

pre-treatment risk scores and changes in risk scores compared with differences in subgroups 

identified by the pre-treatment risk scores or changes in risk scores alone further indicated 

that the proposed method could improve the prediction of clinical outcomes of ES-NSCLC 

patients treated by SBRT. This finding was also supported by the fact that some patients with 

low pre-treatment risk scores may have increased risk scores. For example, 2 patients in the 

subgroup of Low-increased died with tumor progression at 10 and 15 months, respectively, 

and 2 patients in the subgroup of High-decreased died of disease both at 13 months.

The feature importance analysis revealed informative radiomic features that contributed 

more to the prediction modeling, including both shape and texture features. Particularly, the 

increase of tumor size was scientifically correlated with changes in predicted risk scores. 

The majority of top ranked informative radiomic features were texture features, such as 

wavelet-LLH_glcm_Idn and wavelet-LLH_glcm_Idmn, indicating that increase of tumor 

homogeneity may be associated with worse prognosis, consistent with findings in recent 

radiomics based lung cancer survival study (35). Moreover, the change of number/ratio of 

small zones shows negative correlation with the variation of increased risks, such as 

original_glszm_ZonePercentage, indicating that smaller size of tumor zone and more fine 

textures tend to show better therapeutic effects of SBRT. Such observations are also 

supported by visual inspection of tumor images, such as those shown in Figure 4 (b).
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The findings of this analysis demonstrate the ability to achieve individual patient risk and 

outcome stratification that supports the use of radiomics to guide clinical decision-making. 

This is particularly important for ES-NSCLC due to the high rates of regional and distant 

failures, even among patients who achieved local control. As such, future investigation 

validating these findings may identify which ES-NSCLC patients are most likely to benefit 

from systemic therapy in conjunction with SBRT. This is clinically meaningful, as large 

reports have suggested that adding chemotherapy to SBRT may improve survival in higher 

risk ES-NSCLC patients (51). Additionally, with increasing recognition of a potential 

synergy between immunotherapy and radiotherapy, and particularly SBRT, strategies such as 

this analysis that identify higher risk patients may optimally identify ES-NSCLC patients 

that may benefit from adding immunotherapy to SBRT, which is the subject of the ongoing 

SWOG/NRG Oncology intergroup S1914 trial and RTOG Foundation PACIFIC-4 trial (52).

While this study was of a large, homogenous dataset assessing numerous tumor 

characteristics assessed using robust analyses methods, the present study has several 

limitations. First, the prediction model was validated on an independent dataset from the 

same institute. Validation studies based on large, external datasets are needed to evaluate the 

proposed method more rigorously and will be the subject of future analyses. Second, the 

training data only had pre-treatment CT scans and, therefore, we were not able to build 

delta-radiomics prediction models for a direct comparison. Third, our study had moderate 

sample size and included a small number of demographic and clinical measures, especially 

compared with several recent large scale studies which investigated several hundreds of 

patients and included a rich set of clinical measures (53,54). It is expected that an effective 

integration of radiomic features and rich clinical information will further improve the 

prediction performance. Fourth, all the tumors were manually contoured by experienced 

radiation oncologists. However, we did not evaluate inter-observer variability. A high inter-

observer variability may degrade the reproducibility of the extracted radiomic features.

In conclusion, we presented a new and effective means to integrate pre- and post-treatment 

imaging data for predicting clinical outcomes of ES-NSCLC patients treated with SBRT. 

This method may help identify early stage NSCLC patients treated with SBRT who may 

benefit from adjuvant treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of the prediction modeling method. (A) Construction of a prediction model based 

on the 100-patient cohort; (B) Application of the prediction model to the 60-patient cohort; 

(C) Stratification of patients based on predicted risk scores.
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Figure 2. 
Kaplan-Meier plots of stratified risk subgroups. (A) Risk-High vs. Risk-Low. (B) Risk-

Increase vs. Risk-Decreased. (C) 4 combined subgroups. In all the plots, the x-axis 

represents survival time in months and the y-axis represents the survival probability. Lines in 

different colors represent different risk groups and subgroups, and “+” in these lines are 

censored instances. The Risk-High and Risk-Low subgroups were identified based on a cut-

off point of risk scores of individual patients, and the Risk-increase and Risk-Decrease 

subgroups were defined based on changes of risk scores of pre- and posttreatment CT scans 

of individual patients.
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Figure 3. 
Radar plot of top 10 most important radiomics features for survival prediction.
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Figure 4. 
Quantitative correlation analysis of changes in radiomic features with change in risk scores 

and visual inspection of changes in tumor images before and after SBRT. (A) Relationships 

between trends of Top-10 feature values and changes of risk scores estimated from pre- and 

post-treatment CT scans. (B) pre-treatment (top row) and post-treatment (bottom row) tumor 

CT scans of representative patients with increased or decreased risk scores after SBRT 

treatment.
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Table 1.

Demographic data and clinical characteristics of ES-NSCLC patients.

Characters 100-patient cohort 60-patient cohort p value

Age (Years) 70.6±11.8 71.7±9.1 0.529

Sex (M/F) 48%/52% 38%/62% 0.236

Current or former smoker 96% 97% 0.831

BMI ± Standard Deviation 27.5±6.4 26.5±5.8 0.325

Deceased 39% 22% <0.001

Local Failure 7% 18% 0.304

Nodal Failure 17% 18% 0.323

Distant Failure 9% 17% 0.946

Mean tumor size ± Standard Deviation (cm3) 1.99±0.87 1.77±0.80 0.105

Mean, median follow-up time (Month) 19.0, 16.4 28.6, 25.0
<0.001

Range of follow-up time (Month) [2.1, 47.8] [7, 54.4]

Median of prescription dose (Gy) 50 50

BED10 (Gy) 100/112.5 (5/4 fractions) 100/112.5 (5/4 fractions)
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Table 2.

Overall survival differences between pairs of 4 subgroups of ES-NSCLC patients who were significantly 

different in overall survival (χ2 = 18.549.623, p=3.4e-04, log-rank test).

Pairs of subgroups χ2 p value

Risk: high+ increased vs. Risk: high + decreased 5.62 0.018

Risk: high+ increased vs. Risk: low + increased 5.84 0.016

Risk: high+ increased vs. Risk: low+ decreased 15.45 8.5e-5

Risk: high + decreased vs. Risk: low + increased 0.03 0.955

Risk: high + decreased vs. Risk: low + decreased 1.08 0.300

Risk: low + increased vs. Risk: low + decreased 0.84 0.360
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