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BACKGROUND AND PURPOSE: Brain MR imaging is routinely performed in the work-up of suspected
PD, yet its role is essentially limited to the exclusion of other pathologies. We performed a pattern-
recognition analysis based on DTI data to detect subjects with PD at the individual level.

MATERIALS AND METHODS: We included 40 consecutive patients with Parkinsonism suggestive of PD
who had DTI at 3T, brain 123I ioflupane SPECT (DaTSCAN), and extensive neurologic testing including
follow-up (17 PD: age range, 67.8 � 6.7 years; 9 women; 23 Other: consisting of atypical forms of
Parkinsonism; age range, 67.2 � 9.7 years; 7 women). Data analysis included group-level TBSS and
individual-level SVM classification.

RESULTS: At the group level, patients with PD versus Other had spatially consistent increase in FA and
decrease in RD and MD in a bilateral network, predominantly in the right frontal white matter. At the
individual level, SVM correctly classified patients with PD at the individual level with accuracies up to
97%.

CONCLUSIONS: Support vector machine–based pattern recognition of DTI data provides highly accu-
rate detection of patients with PD among those with suspected PD at an individual level, which is
potentially clinically applicable. Because most suspected subjects with PD undergo brain MR imaging,
already existing MR imaging data may be reused; this practice is very cost-efficient.

ABBREVIATIONS: FA � fractional anisotropy; 123I � iodine 123; LD � longitudinal diffusivity; MD �
mean diffusivity; MSA � multisystem atrophy; PD � Parkinson disease; PSP � progressive
supranuclear palsy; RD � radial diffusivity; SVM � support vector machine; TBSS � tract-based
spatial statistics; VBM � voxel-based morphometry

PD is the most common degenerative movement disorder
in the general population, named after the English doctor

James Parkinson, who published its first detailed description
in 1817. Brain MR imaging is routinely performed in the di-
agnostic work-up, yet its role is essentially limited to the ex-
clusion of other pathologies such as normal-pressure hydro-
cephalus or chronic subdural hematoma, among others. One
of the rare reported alterations visible on conventional MR
imaging is narrowing or disappearance of the pars compacta
of the substantia nigra on T2-weighted imaging,1 yet this sign
has low sensitivity and specificity and does not contribute to
the diagnosis of PD, in particular at an early stage.

On the basis of the assumption that PD is associated with
systematic changes in brain MR imaging, which are too subtle
to be detected by visual analysis, we analyzed brain MR imag-
ing of subjects with suspected PD by using an advanced com-
puter-based method aiming to contribute to the diagnosis of

PD at an individual level. There are 2 fundamental approaches
of advanced MR imaging data analysis. The first and more
frequently implemented type of group-level studies typically
compares �1 group of patients with healthy controls with the
aim of detecting disease-related structural alterations, for ex-
ample.2-6 Although fascinating from a research perspective,
the disadvantage of these group-level studies is that the results
cannot be applied to the diagnosis of individual patients in
clinical neuroradiology. The second type of analysis aims to
detect or classify individual patients. Because the composition
of the included subjects may bias the classification accuracy,
the study groups should ideally consist of unselected and con-
secutive patients with suspicion of a given disease (see “Dis-
cussion”). The individual classification is potentially clinically ap-
plicable. The disadvantage is the difficulty or even impossibility of
interpreting the results from a neuropathologic perspective.

To achieve a potentially clinically applicable individual di-
agnosis, we performed a study of the second type, implement-
ing a pattern-recognition approach. This pattern recognition
can be illustrated in short in the example of face recognition.
Individual faces are not detected on the basis of single features
such as the tip of the nose, ears, eyes, and so forth, but by the
combination of multiple features— even though each individ-
ual feature may be not significantly different between groups.
In the present study, the entire brain is included in the pattern-
recognition analysis to obtain 1 individual predictive value per
subject. More technically, classification analyses can be ex-
plained best for a simple example of only 2 features, which can
be represented by an x-y plot. If one assumes that all subjects of
group A are in the upper left part and all subjects of group B are
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in the lower right part of the plot, the 2 groups can be discrim-
inated by an oblique ascending line. Of all possible lines to
discriminate between groups, the SVM7 identifies the line that
best discriminates between groups. For a more detailed discus-
sion, see a recent review of SVM classification in neurodegen-
erative diseases by Haller et al.8

Because the most relevant clinical question is not the dis-
crimination of PD versus healthy controls but the detection of
idiopathic PD versus other atypical forms of Parkinsonism
including MSA and PSP, we included 40 consecutive subjects
with suspected PD rather than healthy control subjects. Inclu-
sion criteria were brain 123I ioflupane SPECT (DaTSCAN; GE
Healthcare, Buckinghamshire, United Kingdom) as a refer-
ence and extensive neurologic testing, including long-term
follow-up. We analyzed DTI data because a number of recent
investigations in various neurodegenerative disorders6,9-12

demonstrated that white matter DTI TBSS13 analysis is more
sensitive than gray matter VBM.14 A recent study implement-
ing an equivalent approach successfully discriminated be-
tween stable versus progressive mild cognitive impairment in
the domain of dementia.15

We show that the data analysis chain of TBSS preprocessing
of DTI data followed by SVM classification provides a highly
accurate individual detection of PD in consecutive subjects
with Parkinsonism, despite the absence of visually detectable
brain MR imaging differences.

Materials and Methods

Subjects
This retrospective study was approved by the local ethics committee.

We included all consecutive patients in our institution between 2006

and 2011 with suspected PD who met the following criteria: 1) DTI at

3T without motion artifacts, 2) brain 123I ioflupane SPECT

(DaTSCAN) as a reference, 3) extensive neurologic testing including

follow-up, and 4) the absence of morphologic findings on brain MR

imaging. All patients were evaluated by an experienced movement

disorders specialist.

MR Imaging
MR imaging was performed on a 3T clinical routine whole-body

scanner (Magnetom Trio; Siemens, Erlangen, Germany). We used a

standard DTI sequence: 30 diffusion directions, b � 1000 s/mm2 iso-

tropically distributed on a sphere, 1 reference b � 0 s/mm2 image with

no diffusion-weighting, 128 � 128 � 64 matrix, 2 � 2 � 2 mm voxel

size, TE � 92 ms, TR � 9000 ms, 1 average. Additional sequences

(axial spin-echo T1-weighted or gradient-echo 3D T1-weighted, axial

spin-echo T2-weighted, coronal FLAIR, axial gradient-echo T2*)

were acquired and analyzed to exclude brain pathology, such as isch-

emic stroke, subdural hematomas, or space-occupying lesions by an

experienced radiologist during clinical work-up. In particular, white

matter lesions were analyzed according to the score of Fazekas et al.16

Image Processing
Preprocessing of the DTI data was performed by using the standard

procedure of TBSS, as described in detail before,13,17 in the FSL soft-

ware package (http://www.fmrib.ox.ac.uk/fsl/).18 In principle, TBSS

projects all subjects’ FA data onto a mean FA tract skeleton by using

nonlinear registration. The tract skeleton is the basis for voxelwise

cross-subject statistics and reduces potential misregistrations as the

source for false-positive or -negative analysis results. The other DTI-

derived parameters, LD (also known as axial diffusivity, the first

eigenvalue), RD (the average of second and third eigenvalues), and

MD (the average of all 3 eigenvalues), were analyzed in the same way

by using spatial transformation parameters that were estimated in the

initial FA analysis.

Statistical Analysis
Analysis of Demographic and Clinical Data. The statistical anal-

yses of the demographic and clinical data were performed in Graph-

Pad Prism, Version 5 (GraphPad software, www.graphpad.com). Age

was analyzed by using parametric 2-sample 2-tailed t tests, while sex

and Fazekas score were analyzed by using the nonparametric 2-sam-

ple 2-tailed Mann-Whitney U tests.

Group-Level TBSS Analysis. Voxelwise statistical analyses were

corrected for multiple comparisons implementing threshold-free

cluster enhancement, considering fully corrected P values �.05 as

significant.19 Age and sex were used as nonexplanatory coregressors.

We used Johns Hopkins University DTI-based white matter atlases,

which are distributed in the FSL package, for anatomic labeling of the

suprathreshold voxels.

Individual-Level SVM Analysis. The individual SVM classifica-

tion analysis is identical to that in a previous study.15 The TBSS pre-

processed DTI FA data were converted into a Waikato Environment

for Knowledge Analysis– compatible data format. The individual clas-

sification was analyzed in the freely available Waikato Environment

for Knowledge Analysis software package (http://www.cs.waikato.

ac.nz/ml/weka, Version 3.6.1). The analysis included 2 steps. In a first

step, we performed a RELIEFF20 feature selection (http://

rss.acs.unt.edu/Rdoc/library/dprep/html/relief.html). The rationale be-

hind this step is that not all voxels discriminate between groups. Both

the inclusion of nondiscriminative voxels and the exclusion of dis-

criminative voxels reduce the classification accuracy. We selected the

top 100, 250, 500, 750, and 1000 features implementing 10-fold cross-

validation. The second step consisted of the “actual” classification

analyses by using the SVM algorithm sequential minimal optimiza-

tion21 (distributed in the Waikato Environment for Knowledge Anal-

ysis package) with a radial basis function kernel.22 There are 2 param-

eters while using radial basis function kernels: C and �. � represents

the width of the radial basis function, and C represents the error/

trade-off parameter that adjusts the importance of the separation er-

ror in the creation of the separation surface. On the basis of our

previous experience, � was iteratively explored from 0.01 to 0.09 with

an increment of 0.01, while C was fixed to 1.00. We performed 10

repetitions of a 10-fold cross-validation technique.

Results

Clinical Data
The final sample included 17 PD subjects (age range, 67.8 �
6.7 years; 9 women) and 23 Other subjects (age range, 67.2 �
9.7 years; 7 women). Age, sex, and Fazekas score did not differ
significantly between the 2 groups (Table 1). For the PD
group, a diagnosis of PD was made in the presence of typical,
asymmetric, and levodopa-responsive Parkinsonism meeting
the UK Parkinson’s Disease Society Brain Bank criteria, in-
cluding at least 2 supportive criteria such as slow progression
or peak-dose dyskinesia. PD was moderately advanced (mean
Hoehn and Yahr stage23: 2.4 � 0.6), and none of these patients
had atypical features, even after at least 2.5 years of follow-up
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(mean follow-up duration, 6.3 � 3.1 years). In addition, all
had an asymmetrical decrease of 123I ioflupane uptake in the
posterior aspect of 1 or both putamina on the DaTSCAN. The
Other group was more heterogeneous, reflecting the preva-
lence of common PD-mimicking conditions in the daily activ-
ity of a movement disorders clinic. All of these patients exhib-
ited Parkinsonism, defined as the presence of bradykinesia
associated with resting tremor or rigidity. It included pathol-
ogies as varied as MSA (n � 5), PSP (n � 1), dementia with
Lewy bodies (n � 2), vascular Parkinsonism (n � 3), fronto-
temporal dementia with Parkinsonism (n � 1), drug-induced
Parkinsonism (n � 2), atypical tremor (n � 2), traumatic
brain injury (n � 1), and psychogenic Parkinsonism (n � 1).
Diagnoses were established according to widely accepted clin-
ical criteria, whenever available, including those by Gilman et
al for MSA,24 by Litvan et al for PSP,25 by McKeith et al for
dementia with Lewy bodies,26 and by Roman et al for vascular
dementia.27 In 5 cases, a firm clinical diagnosis could not be
established at last assessment and these patients were labeled
as having unspecified Parkinsonism.

TBSS Group Differences
The PD group compared with the Other group had a signifi-
cant increase in FA and a corresponding significant decrease in
RD and MD, in particular in the right frontal white matter (Fig
1 and On-line Table). The level of significance of FA was
slightly lower compared with RD and MD. LD had spatially
overlapping changes, which were just below threshold (not
illustrated).

The inverse comparisons yielded no suprathreshold
clusters.

SVM Individual Classification Analysis
SVM analysis of FA provided a correct classification between
PD versus Other with accuracies of up to 97.50 � 7.54%. The
spatial distribution of the most discriminative voxels (fea-
tures) overlapped substantially with the results of the group-
level TBSS analysis as illustrated in Fig 1 and Table 2.

Discussion
Despite the absence of visually evident alterations in brain MR
imaging, computer-based SVM analysis of DTI data provides
highly accurate individual detection of patients with PD and is
potentially applicable in clinical neuroradiology. Brain MR
imaging is routinely performed in the work-up of Parkinson-
ism, notably to exclude concomitant diseases. Available MR
imaging data are reused by using advanced data analysis, mak-
ing this a very cost-effective method, which is not intended to
replace but to complement existing methods to obtain an early
and specific diagnosis of PD.

Group-Level TBSS Analysis
The first part of the analysis was a group-level analysis of white
matter changes in subjects with suspected PD.

Most previous advanced MR neuroimaging studies in the
domain of PD compared subjects with PD with healthy con-
trols, with the objective of identifying disease-related altera-
tions in brain morphometry. For example, one of the rare DTI
studies in PD demonstrated a lower FA in the substantia nigra
in PD compared with healthy controls, which inversely corre-
lated with the clinical severity of PD.2 Two studies used man-
ually defined ROIs in the substantia nigra showing diminished
FA in PD versus healthy controls.2,28 Another study used mul-
tiple ROIs in 10 patients with PD without dementia and 10
healthy controls, showing decrease in FA and increase in MD
in the genu of the corpus callosum and in the superior longi-
tudinal fasciculus.5 Yet other studies found differences in DTI
FA in patients with PD with olfactory impairment,29 patients
with PD and depression,30 or between patients with PD and
familial essential tremor4 or corticobasal syndrome.31 An-
other recent study assessed different MR imaging parameters
including R2*-, R2-, and R1-mapping, magnetization trans-
fer, and DTI in 31 patients with various forms of Parkinsonism
and found that manually defined ROIs of DTI are most useful
for identifying PSP, yet less useful for PD.32 Most interesting, a
recent study assessed white matter in 36 subjects with PD and
23 controls on the basis of another technique, notably magne-
tization transfer imaging.33 PD-related changes in WM were
more sensitive than gray matter volume or attenuation de-
rived from T1-weighted images.

All of these studies have in common that they included very
selected control groups.

In contrast to these studies, the aim of the present investi-
gation was to use DTI as a marker to detect individual patients
with PD in a group of subjects with suspected PD. We, there-
fore, deliberately included consecutive nonselected patients
with various forms of Parkinsonism. We observed, in our sam-
ple, alterations in FA, a measure of axonal integrity,34 as well as
RD and MD in a bilateral right-dominant frontal network.
The observed increase in FA in our study is in agreement in
principle with the observed increase in FA in de novo patients
with PD versus healthy controls in a recent combined T1-
weighted and DTI study,3 while another study in 12 subjects
with nondemented PD and 13 controls demonstrated a de-
crease in FA bilaterally in the frontal lobes.6 Differences in
disease duration, severity, and characteristics might explain
this discrepancy. Moreover, the increase in FA in PD versus
Other subjects in our study is probably due to a decrease in FA
in the Other group, rather than due to an increase in FA in the
PD group. Due to the heterogeneous constitution of our con-
trol group, the results of our group-level comparison should
be interpreted with caution and are presented mainly to visu-
alize the presence of detectable DTI changes between subjects
with PD versus Other, as a basis for the later individual-level
pattern-recognition analysis.

Individual-Level SVM Classification Analysis
To obtain individual discrimination of subjects with PD, we
adopted a complex methodology including a chain of TBSS
preprocessing of DTI FA data, feature selection of the most
discriminative voxels, and subsequent SVM classification.15,35

Table 1: Demographic and clinical characteristicsa

Variables PD Other Statistics
Age (yr) 67.8 � 6.7 67.2 � 9.7 NS
Sex (f/m) 9/8 7/16 NS
Fazekas score 1.0 � 0.1 1.2 � 0.5 NS
Hoehn and Yahr stage 2.4 � 0.6
Disease duration (yr) 6.3 � 3.1 2.8 � 1.9

Note:—NS indicates nonsignificant (P � .05).
a Essential demographic and clinical characteristics of the 2 study groups, PD and Other.
Data are presented as mean � SD.
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The classification accuracy of approximately 97% across the
10 repetitions of the 10-fold cross-validation implies that on
average, only 1 subject was incorrectly classified.

Note that SVM7 analyses for individual classification are
fundamentally different from the group-level voxelwise anal-
yses discussed above. Such voxelwise analyses are univariate
tests, which separately analyze each included voxel between 2
(or more) groups. Given the multiple tests, in our dataset of
approximately 150,000 voxels, it is necessary to implement, as
a second step, a correction for multiple comparisons. In con-
trast, individual-level SVM analyses are multivariate tools that
originate from a field called “machine learning” or multivoxel
pattern analysis, a branch of artificial intelligence. The aim is
to identify patterns that allow the discrimination of individual
subjects. There is only 1 resulting parameter per subject;
hence, there is no need for corrections for multiple compari-

sons. For a more detailed discussion of SVM classifiers, see a
recent review by Haller et al.8

There are only a few previous applications of SVM classifi-
cation in the domain of PD. Most of these studies applied SVM
classifiers to behavioral data of gait analysis,36 fine-motor
force tracking,37 and analysis of wearable accelerometer sen-
sors38 or joint movement,39 and even the recorded voice.40

The only previous SVM application to MR imaging data in
the domain of PD analyzed VBM-preprocessed gray matter in
21 patients with PD, 11 with progressive multisystem atrophy
and 10 with PSP, and 22 healthy controls.41 The best classifi-
cation accuracy up to 96.8% was obtained for PSP versus PD,
while the accuracy was 71.9% for MSA versus PD. However,
patients with PD could not be discriminated from controls.
These classification accuracies are consistent with the clinical
neuroradiologic experience because PSP has the most pro-
nounced visible alterations in brain MR imaging with atrophy
of the mesencephalon referred to as the “penguin” or “hum-
mingbird” sign,42 while changes in progressive multisystem
atrophy are already less pronounced and, as discussed above,
PD-associated changes are very subtle.

Neuroradiologic research has been dominated for decades
by group studies. The patient groups for such studies should
ideally be preselected to have homogeneous and matched
groups with typical disease. This is fundamentally different for
individual-level classification studies because the preselection
of cases might systematically confound the performance of a
classifier in a typical clinical setting consisting of unselected
and consecutive cases. The preselection of an “artificially” ho-
mogeneous atypical Parkinsonism group would train the clas-

Fig 1. TBSS analysis in PD. Patients with idiopathic PD versus Other had a spatially consistent increase in FA (red) and a decrease in RD (green) and MD (blue) in a bilateral network
predominantly in the right frontal white matter. The spatially consistent difference in LD was just below threshold (not illustrated). The inverse comparison yielded no suprathreshold clusters.
The most discriminative voxels (features) identified by using the RELIEFF feature-selection algorithm, which are the basis for the individual level SVM analysis, are illustrated for comparison
in pink. Note the good overlap despite the fundamentally different methodology. Axial and sagittal sections are at the indicated position in Montreal Neurological Institute standard space
coordinates (radiologic convention with the right hemisphere on the left-hand side). Gray indicates mean FA value; yellow, average skeleton. FA, RD, and MD clusters are TFCE corrected
for multiple comparisons at P � .05. Suprathreshold voxels are enlarged by using TBSS fill (part of FSL) for illustrative purposes.

Table 2: Individual SVM classification of PD based on DTI FA TBSS

17 PD, 23 Other: Chance Rate of Classification Accuracy,
57.5% (23/40)a

No. of
Features Accuracy TP Rate FP Rate TN Rate FN Rate
100 97.50 (7.54) 0.94 (0.19) 0.00 (0.00) 1.00 (0.00) 0.06 (0.19)
250 95.50 (10.29) 0.90 (0.25) 0.00 (0.00) 1.00 (0.00) 0.11 (0.25)
500 96.25 (9.65) 0.91 (0.24) 0.00 (0.00) 1.00 (0.00) 0.09 (0.24)
750 97.25 (7.86) 0.94 (0.20) 0.00 (0.00) 1.00 (0.00) 0.07 (0.20)
1000 96.25 (9.65) 0.92 (0.23) 0.00 (0.00) 1.00 (0.00) 0.09 (0.23)

Note:—TP indicates true-positive; FP, false-positive; TN, true-negative; FN, false-negative.
a Accuracy, TP, FP, TN, and FN rates for individual classifications using an SVM classifier
with the indicated number of selected features for the individual classification of PD versus
Other. Note that the accuracy is calculated as the average accuracy of 10 repetitions using
10-fold cross-validation (average and SD).
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sifier to detect regions that best discriminate idiopathic PD
versus the group of preselected atypical Parkinsonism, yet
these regions are not necessarily those that best discriminate
between idiopathic PD versus unselected and consecutive pa-
tients with suspected PD in a clinical setting. Note the preva-
lence of these diseases is very different. According to Medscape
(http://emedicine.medscape.com), the prevalence in the United
States of, for example, progressive multisystem atrophy is
1.9 – 4.9 cases per 100,000 population (http://emedicine.
medscape.com/article/1154583-overview#a0199), yet around
120 (range, 18–328) in PD (http://emedicine.medscape.com/
article/1154583-overview).

With respect to a potential clinical application of a classi-
fier, the study populations should ideally match the prevalence
of the diseases: A very high accuracy of detection of a very rare
disease may overestimate, while the incorrect classification of
a rare disease may underestimate, the classification accuracy in
“real-world” data. Moreover, preselection of patients typically
results in the inclusion of “classic” cases, which may have
stronger disease-related alterations, while “real-world” data
may contain fewer “classic” cases. In other words, the prese-
lection of patients with specific diseases might represent a sys-
tematic confound with respect to the performance of a classi-
fier in “real-world” data, and we consequently included
consecutive unselected patients from our institution.

Most previous applications of the SVM classification to
brain MR imaging data were performed on gray matter VBM
data in the domain of Alzheimer disease43 and mild cognitive
impairment,44-46 with classification accuracies between 75%
and 85%. One recent investigation also assessed DTI data in
the domain of mild cognitive impairment with accuracies over
95%,15 implementing equivalent methodology to that used in
the current investigation. This suggests that DTI might be a
very sensitive brain MR imaging parameter. Consistent with
this observation, several recent group-level investigations in
various neurodegenerative disorders demonstrated that white
matter DTI TBSS analysis is more sensitive than gray matter
VBM.6,9-12 This does not necessarily imply that WM pathol-
ogy is more pronounced at a histopathologic level; it might
simply be a methodologic difference in data acquisition and
preprocessing sensitivity favoring white matter DTI TBSS over
gray matter T1-weighted-based VBM. Note that FA is a di-
rectly assessed absolute parameter between 0 and 1. In con-
trast, VBM is based on relative 3D T1-weighted values. VBM
consequently requires preprocessing that segments the brain
into different compartments to provide an indirect probabi-
listic gray matter probability per voxel. Additionally, at least
the major tracts of the white matter skeleton (TBSS) are gen-
erally more linear and have less interindividual variation com-
pared with the much more complex superficial gyral and sulcal
folding pattern (VBM), which might imply a different quality
of the spatial normalization of the data.

Limitations
The major limitation of the present investigation is the rela-
tively small number of cases, which may affect the results of the
SVM analysis, and we propose the current investigation as
preliminary data. In fact, the very high accuracy rates of indi-
vidual classification exceeded our expectations. Both training
and testing were performed on the same dataset. A simple split

of the data into 2 halves, by using one-half for training and the
other half for testing is problematic in small sample sizes such
as in the current study because this decreases the number of
instances to train the classifier, and the classification accuracy
might depend on the division of cases. The reported values
were obtained by a well-established 10-fold cross-validation in
which 9 parts were used for training and the remaining part
was used for testing the classifier. This procedure was repeated
10 times, so that each dataset was used once for testing. This
approach increases the sample size for the training of the clas-
sifier and at the same time reduces variation of the classifica-
tion results due to division of cases.

Even though this cross-validation approach is a standard
method in the field of machine learning/multivoxel pattern
analysis and appropriate for the number of subjects involved
in our study, the present results are too optimistic, related to
some degree of overfitting of the data. Future validation of the
present findings is warranted in a larger and independent sam-
ple, which ideally should be acquired on different MR scan-
ners. The consecutive and unselected composition of the
Other group is another limitation, yet the rationale behind this
selection is discussed in detail above. Additionally, the nonlin-
ear (radial basis function-kernel) SVM does not provide an
easy-to-interpret weight vector to identify the most discrimi-
native brain areas. Another limitation is the retrospective na-
ture of the present study.

Conclusions
We propose the current study as the initial results that show
the feasibility of performing SVM individual classification of
DTI data in PD, which may merit future prospective and larger
scale follow-up studies.
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