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ABSTRACT

BACKGROUND AND PURPOSE: Diffusion tensor metrics are potential in vivo quantitative neuroimaging biomarkers for the character-
ization of brain tumor subtype. This meta-analysis analyzes the ability of mean diffusivity and fractional anisotropy to distinguish low-
grade from high-grade gliomas in the identifiable tumor core and the region of peripheral edema.

MATERIALS AND METHODS: A meta-analysis of articles with mean diffusivity and fractional anisotropy data for World Health Organi-
zation low-grade (I, II) and high-grade (III, IV) gliomas, between 2000 and 2013, was performed. Pooled data were analyzed by using the odds
ratio and mean difference. Receiver operating characteristic analysis was performed for patient-level data.

RESULTS: The minimum mean diffusivity of high-grade gliomas was decreased compared with low-grade gliomas. High-grade gliomas had
decreased average mean diffusivity values compared with low-grade gliomas in the tumor core and increased average mean diffusivity
values in the peripheral region. High-grade gliomas had increased FA values compared with low-grade gliomas in the tumor core, decreased
values in the peripheral region, and a decreased fractional anisotropy difference between the tumor core and peripheral region.

CONCLUSIONS: The minimum mean diffusivity differs significantly with respect to the World Health Organization grade of gliomas.
Statistically significant effects of tumor grade on average mean diffusivity and fractional anisotropy were observed, supporting the
concept that high-grade tumors are more destructive and infiltrative than low-grade tumors. Considerable heterogeneity within the
literature may be due to systematic factors in addition to underlying lesion heterogeneity.

ABBREVIATIONS: �FA� fractional anisotropy difference; FA � fractional anisotropy; MD � mean diffusivity; minMD � minimum mean diffusivity or minimum
ADC; ROC � receiver operator characteristic; WHO � World Health Organization

Diffusion tensor imaging is an MR imaging technique that can

quantify diffusion of water in the brain and characterize the

structural integrity of white matter tracts.1-3 Multiple studies have

examined the ability of basic diffusion tensor metrics such as

mean diffusivity (MD) or the apparent diffusion coefficient and

fractional anisotropy (FA) to discriminate the tumor grade of

gliomas. Disruption of normal white matter structural integrity

by primary glial neoplasms should theoretically reduce fractional

anisotropy and increase mean diffusivity.

Mean diffusivity is positively correlated with decreased tumor

cellular density and increased patient survival, and significant ef-

fects are reported in several studies with respect to discriminating

tumor grade specifically by using minimum mean diffusivity

(minMD).4-9 In contradistinction, there is no definitive consen-

sus on the ability of fractional anisotropy to assess tumor grade,

cellular density, and parenchymal infiltration or to prognosticate

patient survival.7,10-21 We performed a quantitative meta-analysis of

the existing literature to determine the statistical consensus of mean

diffusivity and fractional anisotropy in distinguishing tumor grade of

gliomas, separately examining the identifiable tumor core and region

of peripheral signal abnormality.

MATERIALS AND METHODS
Articles were identified via PubMed and Science Citation Index

query using the terms “diffusion” and “brain tumor.” This search

produced 1657 articles from PubMed and 2158 articles from the

Science Citation Index. Citations were imported into the End-

Note citation manager (Thomson Reuters, New York, New York),

which was used to remove duplicates, yielding 3128 citations. Ar-

ticles were then restricted to those with publication dates between

2000 and 2013 and containing the word “glioma,” which yielded
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377 articles. An additional restriction to articles containing the

phrase “fractional anisotropy” resulted in 242 articles. All studies

(377 for mean diffusivity, 242 for fractional anisotropy) were read

for relevance. Only studies that reported data for adult patients

with histologic confirmation of treatment-naı̈ve lesions were in-

cluded. We could not control for sampling error associated with

histologic sampling; with the exception of a few studies that per-

formed stereotactic biopsies, it is possible that some lesions were

inappropriately classified.22 Case reports were excluded.

FA and MD values were tabulated as mean values and SDs. The

SDs and number of patients were used for weighting in the pooled

analysis. Two articles displayed data in chart rather than numeric

format; the chart images were analyzed by superimposing a finely

decimated grid, which intersected the chart axis in the Power-

Point image manager (Microsoft, Redmond, Washington) to ex-

tract numeric values.

The World Health Organization (WHO) tumor grade and the

range of histologic tumor types included were tabulated. Infor-

mation on whether each study was prospective and/or retrospec-

tive, the number of patients, and the mean patient age, if pro-

vided, were recorded. The technical specifications for the

diffusion acquisition, including main magnetic field strength,

number of noncollinear gradient directions, number of b-values,

and maximum b-value, were recorded. The MR imaging vendor

and software used for analysis were noted.

We only included studies that separated diffusion metrics in

the tumor core and tumor periphery, with the exception of 2

studies that reported the minimum mean diffusivity and included

the entire region of signal abnormality.7,23 Studies that reported

central necrotic regions for either tumor grade were excluded.

Some studies separated tumor core values for enhancing and non-

enhancing components, and these were recorded. Studies that

reported values for the region of signal abnormality peripheral to

the tumor core as either “edematous” or “infiltrated” were

grouped into the peripheral region category; this was equated to

the region of T2-prolongation on long-TR images, such as T2-

weighted or FLAIR images. Critically, the peripheral region was

distinguished from the “intermediary” or “boundary” region be-

tween the tumor core and the peripheral region, reported in some

studies in the neighborhood of 1–2 mm from the tumor core. Also

relevant for low-grade lesions, data from studies that only re-

ported the white matter adjacent to the region of signal abnormal-

ity were not included.24,25 Summary statistics for the studies are

provided in the Table.

Equations relating MD, equivalent to the apparent diffusion

coefficient, and FA are provided below in terms of the 3 principal

eigenvalues (�1, �2, �3).26 However, 3 noncollinear diffusion gra-

dient directions suffice to calculate the mean diffusivity, without

calculation of the individual eigenvalues. Adjustments were made

if studies reported the trace instead of MD (trace � 3 MD).

1) MD �
�1 � �2 � �3

3

2) FA � �3

2

��1 � MD�2 � ��2 � MD�2 � ��3 � MD�2

��1�
2 � ��2�

2 � ��3�
2

Statistical analysis was performed with R, Version 3.0.1 (http://

www.r-project.org).27 The metafor package (http://cran.r-

project.org/web/packages/metafor/index.html) was used to im-

plement a random-effects model, calculate I2 as a measure of het-

erogeneity, perform meta-regression, and generate forest plots.28

Standardized mean differences of mean diffusivity and fractional

anisotropy between high-grade and low-grade gliomas were con-

verted to odds ratios to simplify interpretation.29 The mean dif-

ference was used to calculate the difference in fractional anisot-

ropy (�FA) between the tumor core and peripheral region. The

funnel plot asymmetry regression test was used to evaluate study

sample size bias.30 Approximate permutation tests for P values

used 1000 iterations.31 The pROC package (http://cran.r-project.

org/web/packages/pROC/index.html) was used to generate re-

ceiver operating characteristic (ROC) curves and calculate area

under the curve via bootstrapping (10,000 replicates) for patient-

level data.32 The binormal method was used for ROC curve

smoothing. Confidence intervals were calculated at the 95% sig-

nificance level.

RESULTS
Minimum MD
Pooled analysis of minimum mean diffusivity (minMD) with re-

spect to tumor grade was performed in 17 unique studies (772

patients) (Fig 1A). There was a significant effect of tumor grade

(WHO I and II, III and IV) on minMD, with the higher tumor

grade resulting in decreased minMD values (P � .001). Funnel

plot asymmetry was not significant (P � .96). Considerable het-

erogeneity was present (I2 � 93%). Meta-regression models

showed no significant effects for patient age, year of publication,

MR imaging vendor, and main magnetic field strength (P � .05).

Dichotomizing into high-grade (WHO III and IV) and low-grade

(WHO grade I and II) groups was significant (P � .001); the mean

minMD of low-grade gliomas was 1.19 � 0.06 mm2/s, and the

difference between the low-grade and high-grade groups was

0.37 � 0.07 mm2/s.

Patient-level data were available in 5 studies (105 patients)

(Fig 1C). ROC analysis resulted in an area under the curve of 0.84

(95% CI, 0.76 – 0.91). The optimal threshold to distinguish low-

grade and high-grade gliomas was minMD � 0.98 mm2/s, iden-

tified via the Youden Index. This threshold resulted in a specificity

of 78.3% (95% CI, 66.7%– 88.3%) and a sensitivity of 77.8% (95%

CI, 64.4%– 88.9%).

Average MD
Pooled analysis of average values of MD was also performed for

determination of tumor grade in the tumor core (26 studies, 996

patients) and the peripheral region of signal abnormality (10

studies, 207 patients) (Fig 2A, -B). The analysis was restricted to

Study characteristics and technical factorsa

Attribute MD FA
Average no. of patients per tumor grade

category
15.3 � 12.0 13.4 � 8.6

Average age of patients (yr) 49.3 � 8.6 50.0 � 7.6
Prospective design 79.1 % 69.4 %
Studies at 3T 34.5 % 41.7 %
Average maximum diffusion b-value 1103 � 454 1111 � 448
Average no. of noncollinear directions – 21 � 31

Note:— indicates not calculated.
a SDs are reported for average values.
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FIG 1. Effects of tumor grade on minimum mean diffusivity and � fractional anisotropy. Moderator analysis was performed (A and B) with
respect to tumor grade. In forest plots (A and B), the left column indexes each study by lead author and publication year, with the WHO
tumor grade of the lesions in parentheses. WHO grade category means are shown by diamonds, with relative width corresponding to the
standard error. The right column provides numeric mean values, with confidence intervals in brackets for each study. Pooled random-
effects values are provided at the bottom of each plot. A, The forest plot of minMD and effect of WHO tumor grade are shown. Open
diamonds indicate WHO II; light-gray diamonds with gray borders, WHO III; dark gray diamonds with black borders, WHO IV. B, The
forest plot of �FA is shown. Open diamonds indicate WHO I, II; light gray diamonds with gray borders, WHO III, IV. C, An ROC plot of
patient-level data for minMD is shown. Gray step curve indicates actual data; black curve, binormal smoothed curve; dashed gray line,
50:50 line.
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studies that provided data for both low-grade and high-grade

gliomas, to provide internal controls. The odds ratio for high-

grade versus low-grade lesions was 0.3 (95% CI, 0.14 – 0.63; per-

mutation P value � .001) in the tumor core and 4.32 (95% CI,

1.25–15.0; permutation P value �.044) in the peripheral region;

raw mean differences between high-grade and low-grade were,

however, small (	0.16 and 0.14, respectively). Considerable sig-

nificant heterogeneity was present for the tumor core, I2 � 87.2%

(95% CI, 80.3%–94.9%), less significantly in the peripheral re-

gion, I2 � 76.8% (95% CI, 48.3%–94.6%).

�FA
Pooled analysis of the difference in fractional anisotropy (�FA)

between the peripheral region of signal abnormality and the tu-

mor core was performed in 20 unique studies (391 patients) (Fig

1B). High-grade gliomas had a significantly decreased �FA com-

pared with low-grade gliomas (P �.007). The raw difference esti-

mate between the 2 groups was 0.08 � 0.03 (estimated �FA of

low-grade gliomas � 0.12 � 0.03). The permutation P value re-

mained significant (P � .02), and the funnel plot asymmetry was

not significant (P � .6). Considerable heterogeneity was present,

I2 � 91% (95% CI, 84.3%–95.1%). A meta-regression model in-

corporating MR imaging vendor type (GE Healthcare, Siemens,

Philips Healthcare, Toshiba) was not significant (P �.078); mod-

els incorporating patient age, year of publication, number of non-

collinear DTI directions, and main magnetic field strength were

also not significant.

Average FA
Pooled analysis of average values of FA was performed for deter-

mination of tumor grade in the tumor core (21 studies, 734 pa-

tients) and the peripheral region of signal abnormality (7 studies,

180 patients) (Fig 2C, -D). The analysis was restricted to studies

that provided data for both low-grade and high-grade gliomas, to

provide internal controls. The odds ratio for high-grade versus

low-grade lesions was 2.24 (95% CI, 1.23– 4.08, permutation P

value � .006) in the tumor core and 0.45 (95% CI, 0.26 – 0.81,

permutation P value � .032) in the peripheral region; raw mean

differences between high-grade and low-grade were, however,

small (0.02 and 	0.02, respectively). Modest heterogeneity was

FIG 2. Forest plots of mean diffusivity and fractional anisotropy in the tumor core and peripheral region of signal abnormality, comparing
differences between low-grade and high-grade categories (moderator analysis was not performed). The standardized mean difference between
high-grade and low-grade lesions was converted to odds ratios as a measure of effect size. Mean diffusivity in the tumor core (A) and peripheral
region (B) with fractional anisotropy in the tumor core (C) and peripheral region (D) are shown. For each forest plot, the left column indexes each
study by lead author and publication year. The right column provides odds ratios, with confidence intervals in brackets for each study. Pooled
random-effect odds ratios are provided at the bottom of each plot.
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present for the tumor core, I2 � 74.9% (95% CI, 56.2%– 88.2%),

without significant heterogeneity in the peripheral region, I2 �

0% (95% CI, 0%– 82.8%).

DISCUSSION
We performed a meta-analysis to explore the validity and consen-

sus in the utility of mean diffusivity and fractional anisotropy for

distinguishing tumor grade in gliomas. Pooled analysis was re-

stricted to studies that internally compared low-grade and high-

grade lesions, thus providing internal controls. Significant effects

were observed, adding support to generalizations regarding tu-

mor biology, though the raw effect sizes were small and significant

heterogeneity was present in some of the cohorts of studies. In the

identifiable tumor core, high-grade gliomas had decreased MD

and increased FA values compared with low-grade gliomas. In the

peripheral region of signal abnormality, high-grade gliomas had

increased MD and decreased FA values. These observations sug-

gest that high-grade gliomas have a more destructive effect on

white matter tracts than low-grade gliomas in the peripheral re-

gion. In the tumor core, high-grade gliomas are expected to have

increased extracellular-space volume and increased microvascu-

lar proliferation and are not expected to preserve white mater

architecture, to account for the relatively greater fractional anisot-

ropy.33,34 Theoretically, this effect may be a consequence of initial

growth along the scaffold of white matter tracts. Alternatively,

high-grade gliomas may have a less defined transition between the

tumor core and periphery than is suggested by structural imaging.

We further analyzed the FA difference between the tumor core

and peripheral region to provide additional insight into tumor

biology. High-grade gliomas have a �FA that is approximately

0.08 � 0.03 smaller than that in low-grade gliomas. The result

may suggest that high-grade gliomas are more infiltrative than

low-grade gliomas, as expected from mathematic modeling.35

The results parallel those of Ferda et al,15 who observed that grade

II gliomas have a sharper transition than grade III gliomas among

the tumor core, intermediary region, and the peripheral region.

We note, however, that their results also showed a sharp transi-

tion, presumably due to mass effect in grade IV gliomas, an ob-

servation that was not adequately testable in our meta-analysis.

The minMD was observed to be a significant diffusion imaging

metric for distinguishing tumor grade in gliomas. While the min-

imum mean diffusivity is inherently subject to statistical noise and

partial volume effects, it does not necessarily rely on precise lesion

segmentation, thus eliminating a source of heterogeneity between

studies. The ROC analysis of patient-level data suggested an opti-

mal cutoff in minMD of 0.98 mm2/s; minMD lower than this

value favors a high-grade glioma. This suggested cutoff is within

the range of previously published values.4-6 However, the lower

bounds of the 95% CI for both sensitivity and specificity from our

ROC analysis are approximately 65%, which limits clinical confi-

dence in using this metric alone.

Several limitations of our study are inherent in its methods.

First, more significant differences may not have been observed

simply because mean diffusivity and fractional anisotropy are in-

sufficient to discriminate tumor grade. Unfortunately, promising

metrics such as diffusional kurtosis, p:q diffusion tensor decom-

position, and maximum SD of FA were provided in too few stud-

ies to be accessible by meta-analysis.19,36,37

Considerable heterogeneity was observed in the cohort of

studies for some of the metrics we tested. One source of hetero-

geneity was sampling error in pathologic specimens used for his-

tologic grading. This error is expected to increase heterogeneity in

the dataset because high-grade lesions may be mistakenly classi-

fied as low-grade lesions; unfortunately because most studies did

not perform multiple biopsies, it is not possible to control for this

source of heterogeneity. Variations in measurement precision are

unavoidable, though in individual patients, measurements of the

fractional anisotropy and mean diffusivity showed good repro-

ducibility in at least 1 study.38 However, measurement accuracy is

difficult to account for among all studies. Nevertheless, technical

factors such as the main magnetic field strength, MR imaging

vendor, number of noncollinear diffusion gradient directions (in

the case of FA), and number of b-values used were not found to

significantly account for the heterogeneity among studies.

Nonquantitative aspects specifically related to segmentation

of brain tumor components on imaging could not be adequately

accounted for in our study. Discrimination of tumor components

primarily relies on the expert opinion of neuroradiologists. Spe-

cific challenges arise for lesions lacking well-defined tumor core

and peripheral region boundaries. Increased interest in semiau-

tomated computer segmentation in the analysis of brain tumors,

coupled with validation, may circumvent some subjectivity in de-

lineating the image-definable components of glial tumors.39 Stan-

dardization of segmentation techniques is expected to improve

the utility of quantitative measurements.

Furthermore, in most studies, a range of values was observed

among patients. Sources of this variation include different tumor

locations and underlying patient-specific background tissue dif-

ferences. However, there is likely additional heterogeneity within

the low-grade and high-grade glioma groups. Within glioblas-

toma, 4 separate subtypes can be distinguished by molecular pro-

filing, and these subtypes differ in the degree of infiltration.40-42

For example, O6-methylguanine DNA methyltransferase promoter

methylation has a significant effect on diffusion tensor metrics.43,44

WHO grade and single histologic designations are likely inadequate

as sole descriptors of the biologic behavior of tumors.

CONCLUSIONS
Minimum mean diffusivity is an easily calculated diffusion tensor

metric that differs significantly with respect to WHO tumor

grade, though specific clinical recommendations cannot be made

on the basis of this analysis. In the tumor core, high-grade gliomas

have decreased MD and increased FA, while in the peripheral

region high-grade gliomas have increased MD and decreased FA.

However, considerable heterogeneity exists in the published liter-

ature, which is likely due to both systematic factors and the un-

derlying biologic heterogeneity of gliomas. Standardization in

terminology and segmentation of the regions of signal abnormal-

ity identifiable on imaging and standardization of DTI method-

ology are needed. However, to approach the underlying biologic

heterogeneity of gliomas, future investigations may need to exam-

ine the correlation of diffusion tensor biomarkers with tumor

genomic or expression profiles. Thus, diffusion tensor metrics can
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be tested as quantitative biomarkers for tumor subtype and can be

potentially used to report subpopulations within a given tumor

subtype.
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