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Abstract

Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in 

Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have 

been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of 

reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the 

hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely 

controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both 

intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we 

outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking 

pathways and the discoveries of novel factors regulating prothoracic gland function.
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Introduction

Steroid hormones, a group of systemic signaling molecules that are produced from 

cholesterol and thus share the steroid backbone, comprise an important class of messengers 

and exert a myriad of physiological functions in metazoans. A well-known example is to 

promote sexual maturation of animals. In mammals, sex hormones such as estradiol and 

testosterone circulate and act in multiple organs to promote the transition of a juvenile 

individual to a sexually reproductive adult, a process known as puberty [1]. Another well-

characterized example exists in insects, where ecdysteroids control metamorphic transitions. 

In both mammals and holometabolous insects, the sexual maturation process is controlled by 
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a neuroendocrine pathway in which a steroid hormone functions as the final output signal. In 

mammals, the pathway operates within the hypothalamic-pituitary-gonadal (HPG) axis [1] 

and utilizes a cascade of neuropeptide signals that begin with Kisspeptin stimulating 

hypothalamic release of gonadotropin-releasing hormone (GnRH) which in turn promotes 

systemic release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from 

the pituitary gland to increase gonadal production of the sex steroids [1,2]. These steroids 

bind to nuclear hormone receptors to form various types of transcriptional regulatory 

complexes that execute the developmental programs associated with sexual maturation and 

fertility.

In insects, a pair of neurons in each brain lobe produce prothoracicotropic hormone (PTTH), 

which stimulates ecdysone production in the prothoracic gland (PG), a major endocrine 

organ of the larva. A recent study in the fruit fly Drosophila melanogaster demonstrated that 

the PTTH producing neurons can be activated by a presynaptic Allastatin A (AstA) signal [3 

**]. Surprisingly, AstA and the AstA receptor exhibit high levels of homology to the 

mammalian Kisspeptin and cognate receptor GPR54 which activate the HPG axis to initiate 

puberty [2]. Ecdysone also binds to a related nuclear hormone receptor (EcR/Usp) further 

highlighting the conserved aspects of the mechanism that underlies the juvenile to adult 

transition in both insects and man.

In insects, the effect of ecdysteroid on metamorphosis control has been studied in a plethora 

of species [4*]. In the pre-genomic/genetic era, Lepidopteran species such as tobacco 

hornworm Manduca sexta and silkworm Bombyx mori were commonly used as model 

organisms due to their large size and rapid life cycle which facilitated physiological and 

biochemical studies. More recently, Drosophila has become a predominant model system for 

these inquiries because of its unparalleled genetic toolkit [5]. This review will briefly 

summarize the current understanding of ecdysteroid synthesis and its regulation. First, we 

will outline the ecdysteroid biosynthetic pathway. Then, we will discuss recent progress on 

the signal inputs and intracellular regulatory mechanisms controlling ecdysone synthesis. 

Finally, we will highlight newly emerging evidence for vesicle mediated ecdysone secretion.

The ecdysteroid biosynthetic pathway: glimmer in the Black Box

Insects utilize dietary sterols as precursors for ecdysteroid biosynthesis [6]. Dietary 

cholesterol, found in laboratory food, is converted to ecdysone (E) through a series of 

oxygen additions to the steroid ring. Plant and yeast sterols are likewise converted to 

makisterone A and 24(28)-dehydromakisterone A, respectively, which differ from E at 

carbon 24. While all three ecdysteroids can support development, cholesterol is the 

preferential ecdysteroid precursor [6,7].

Despite some variations across insect species, the core ecdysteroid biosynthetic pathway 

appears to be very similar, as demonstrated by conservation of the principle biosynthetic 

enzymes and reaction intermediates (Fig. 1) [8]. Briefly, dehydrogenation of cholesterol at 

carbons 7 and 8 by the Reiske oxygenase Neverland forms 7-dehydrocholesterol (7dC) 

[9,10]. Subsequently, 7dC is modified by the “Black box” reactions, so named because the 

intermediates and enzymes responsible remain unclear. The output from the black box is the 
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intermediate 5β-ketodiol which is then subject to sequential hydroxylation on carbons 25, 22 

and 2 to produce ecdysone [11–14]. After secretion from the PG and import into peripheral 

tissues, E is hydroxylated on carbon 20 by Shade to produce the active ecdysteroid 20-

hydroxyecdysone (20E) [15]. In some species, such as Manduca, the pathway is slightly 

different in that the first post-Black Box compound is a 5β-diketol and the major PG-

secreted ecdysteroid is 3-dehydroecdysone (3dE). 3dE is then processed into E in 

hemolymph [8].

To date, the Black Box reactions have not been fully elucidated. However, recent 

observations have provided important insights. Key intermediates such as 3-oxo-steroids and 

Δ4-diketol have been confirmed in the Black Box [16–18]. The results unambiguously show 

that 7dC is first oxidized at carbon 3 to form 3-oxo-7dC, and the unstable 3-oxo-7dC is then 

isomerized into the more stable 3-oxo-Δ4,7C. Feeding Δ4-diketol rescues neverland mutants, 

suggesting 3-oxo-Δ4,7C is converted to Δ4-diketol by hydroxylation of carbon 14 and 

oxidation of carbon 6, though the intermediates remain a mystery [17,18]. The Δ4-diketol is 

in turn reduced at carbon 5 and carbon 3. Rescue experiments suggest the order of these 

reactions may be flexible [17,18]. In Drosophila, the resulting 5β-ketodiol is the final Black 

Box product. In Manduca, the carbon 3 reduction is initially skipped, and 5β-diketol is 

subjected to the terminal hydroxylations to form 3dE.

Several enzymes have been identified and associated with the Black Box reactions including 

Non-molting glossy/Shroud [19], Spooky/Spookier/Spookiest [20–22], Cyp6t3 [23] and 

Cyp6u1 [24] although the exact reactions catalyzed by each remain to be determined. 

Downstream of 5β ketodiol, the enzymes encoded by phantom [11,12], disembodied [13] 

shadow [14] and shade [15], all cytochrome P450 monooxygenases, act sequentially to add 

OH groups to the 25, 22, 2 and 20 carbons, respectively, to produce the final active 20-E 

hormone. These genes have been historically classified as “Halloween genes” due to the 

characteristically “empty, and ghost-like” embryonic cuticles formed by zygotic loss-of-

function mutants [25]. As in mammals, steroids are also important for fertility, and follicle 

cell produced 20E has been shown to be required for both oogenesis and ovulation [26]. 

Curiously. the putative Black box enzyme Spookier substitutes for Spook during 20E 

production in the follicle cells [21].

Extracellular signals: A network of ever-increasing complexity

As the major endocrine organ that produces ecdysone, the PG functions as a central node to 

integrate diverse physiological and environmental signals and converts them into E pulses 

that trigger molting and the metamorphic transition (Fig. 2). In this section we focus on the 

extracellular input signals that regulate ecdysteroidogenesis in the PG.

Prothoracicotropic hormone (PTTH)

The existence of a brain-derived ecdysteroidogenic factor was proposed almost a century 

ago [27]. The first neuropeptide identified in the brain was prothoraciotropic hormone 

(PTTH), whose activity has been demonstrated in many insect species [28]. PTTH is 

produced by specific neuroendocrine cells and reaches the PG either via the hemolymph 

(Manduca) [29] or through direct neural innervation (Drosophila) [30]. Once at the PG, 
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PTTH binds with the receptor tyrosine kinase (RTK) Torso and activates the Ras/Raf/Erk 

pathway [31]. How Ras/Raf/Erk regulates ecdysone biosynthesis is not fully understood, but 

several transcription factors including hormone receptor 4 (Hr4) and Pointed (Ptn) are 

involved in the pathway [23,32**].

Despite the demonstration that purified PTTH can stimulate PG glands to make ecdysone 

[33], recent studies using ptth mutants indicate that it is not strictly required for 

metamorphosis. In Bombyx, many ptth null mutant larvae manage to metamorphose at either 

the L4 or L5 stages [34*]. In Drosophila, ablation of PTTH producing neurons severely 

delays metamorphosis [30], but does not eliminate it, and ptth null mutants cause only a 

modest change in metamorphic timing [35*]. Recent studies have found three additional 

RTK receptors including epidermal growth factor receptor (Egfr), anaplastic lymphoma 

kinase (Alk), and PDGF- and VEGF-receptor related (Pvr) to be expressed in the PG and 

able to regulate E synthesis via the Ras/Raf/Erk pathway [32**,36]. Interestingly, the Alk 

ligand Jelly belly and the Pvr ligand Pvf3 are expressed in the PTTH producing neurons 

[36]. This may explain some of the phenotypic differences between the ptth null mutant and 

neuron ablation. In contrast, the EGFR ligands Spitz and Vein are expressed in the PG itself 

and act in an autocrine manner, which may explain why even PTTH neuron-ablated larvae 

are still able to undergo metamorphosis (see below) [32**].

Insulin/insulin-like growth factors

Another RTK mediated signal is produced by the insulin/insulin-like (IIS) growth factor 

ligand family. Systemically, the IIS pathway functions in various organs to couple nutrition 

with the overall growth and development of the animal [37]. In the PG, the insulin receptor 

(InR) and its downstream signal transduction components PI3K/Akt and target of rapamycin 

(TOR) are indispensable for PG tissue growth and ecdysone synthesis in both Drosophila 
and Bombyx [38–42]. However, the observations in Manduca appear controversial. Feeding 

TOR inhibitor Rapamycin to Manduca compromises PG growth, reduces ecdysone synthesis 

and delays metamorphosis [43,44]. However, treatment with PI3K inhibitors LY294002 and 

wortmannin does not attenuate E production [45]. Species differences are also evident upon 

injection of the insulin-like peptide Bombyxin [46], which triggers ecdysone synthesis and 

secretion in Bombyx [39,47] but not in Manduca [45,48]. Further investigation is needed to 

elucidate the differences in mechanisms that underlie these observations.

Neuropeptides and serotonin

Other than RTKs, G-protein coupled receptors (GPCRs) have also been proposed to mediate 

ecdysteroidogenic signals, since typical second messengers such as Ca2+ and cAMP are 

crucial factors regulating ecdysteroid synthesis in Lepidoptera [28]. In Bombyx, a series of 

neuropeptides have been shown to exert either prothoracicostatic or prothoracicotropic 

effects through GPCR receptors in the PG. The prothoracicostatic factors include 

prothoracicostatic peptides (PTSPs), Bommo-myosuppressin (BMS) and FMRFamide-

related peptide (BRFa) , while the prothoracicotropic molecules include FXPRL-amide 

peptide, Orcokinin and pigment dispersing factor (PDF) [49,50]. Some of these 

neuropeptides are released into hemolymph, while others such as BRFa and Orcokinin are 

delivered to the PG by direct neural innervation [49]. Despite the intense study of 
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Drosophila neuropeptides [51], neuropeptide F is the only confirmed factor (other than 

PTTH and Ilps) shown to regulate ecdysteroidogenesis in the Drosophila PG [52]. Besides 

peptidergic neurons, a subset of serotoninergic neurons also regulate PG function in 

Drosophila [53].

Juvenile hormone and ecdysone

Juvenile hormone (JH) and ecdysone are the two key hormones that together coordinate 

molting and metamorphic activities. The systemic regulation of ecdysone synthesis by these 

two hormones involves multiple organs and complicated inter-organ communication, which 

cannot be fully discussed here (for review, see [54]). Instead, we will briefly introduce how 

the PG directly responds to each hormone.

JH is the best-known anti-metamorphic hormone which prevents larvae/nymphs from 

undergoing precocious metamorphosis. Accordingly, it is often referred to as the status quo 
hormone (for review, see [55] and this issue of Curr Opin). Although early evidence reported 

that JH suppressed ecdysteroidogenesis in Bombyx PGs [56], the direct regulation of PG 

cell function by JH was not verified until the JH receptors Methoprene-tolerant (Met)/Germ 

cell-expressed (Gce) were identified in Drosophila and subsequently in other insect models 

[55,57]. In Drosophila, PG specific knockdown of Met/gce causes precocious ecdysone 

production and accelerated pupariation, clearly demonstrating that the JH signal directly 

antagonizes ecdysteroid synthesis in the PG [58].

20E itself is also thought to exhibit both positive and negative feedback on its own 

production. Such a mechanism helps create a hormone pulse wherein a small amount of 20E 

stimulates its own synthesis through an EcR/Usp mediated positive feedback loop. At a 

certain hormone level, a negative feedback loop kicks in to bring the ecdysone level back to 

baseline thereby helping create a pulse. Additional mechanisms such as steroid hormone 

inactivation [59] also contribute to hormone removal and pulse control. Positive and negative 

feedback control in steroid hormone level modulation has been noted in both Lepidoptera 

and Drosophila [54,60] , and Drosophila genetic analysis has implicated both the ecdysone 

receptor (EcR) and the early responsive transcription factor Broad (Br) [60] in feedback 

control. Moreover, it appears that two isoforms of Br, Br-Z1 and Br-Z4, differentially 

mediate positive and negative feedback, respectively [60].

Transforming growth factor β

The TGFβ family is comprised of two branches of factors, the bone morphogenetic proteins 

(BMPs) and the Activins. Both pathways have been studied in Drosophila PGs and function 

in opposite ways. Loss of dSmad2/Smox, the primary transcriptional transducer of the 

Activin pathway, compromises E synthesis and causes a severe metamorphic delay. 

Although the identity and the source of the ligand that activates the pathway is not yet clear 

[61], Activin signaling appears to act as a competence pathway since it is required for 

normal expression of Torso and InR [61]. In contrast, BMP signaling functions as a 

gatekeeper to suppress precocious metamorphosis. The BMP ligand Decapentaplegic (Dpp) 

is released from imaginal discs during early L3 stage, which results in phosphorylation of 

Mad by the Thickvein (Tkv)-Punt/Wishful thinking (Wit) receptors in the PG to suppresses 
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ecdysone synthesis. When larvae grow beyond a certain size, Dpp “leakage/release” from 

imaginal discs terminates, allowing resumption of hormone synthesis by the PG [62**].

Hedgehog

Hedgehog (Hh) signaling is a highly conserved pathway that controls embryonic patterning 

and adult tissue homeostasis from Drosophila to mammals [63]. As a canonical morphogen 

and paracrine factor, secreted Hh diffuses within tissues such as imaginal discs to regulate 

differentiation and patterning. However, recent studies also identified Hh circulating in the 

hemolymph of Drosophila larvae, which it acts in an endocrine manner to regulate larval 

body growth and developmental timing [64]. The source of the circulating Hh is the midgut, 

and it signals to both the PG and fat body. The expression and secretion of Hh in the midgut 

is upregulated during starvation. Activation of Hh signaling in the PG suppresses expression 

of Halloween genes and ecdysone biosynthesis, while in fat body it promotes neutral lipid 

mobilization during starvation. These activities enable Hh to play an important role during 

starvation by delaying pupariation and mobilizing nutrient stores to support the survival of 

animals. Under fed conditions, however, the combinatory effects of Hh on slowing down 

both body growth and developmental timing results in normal sized pupae irrespective of 

gain or loss of circulating Hh [64].

Autocrine factors

The existence of uncharacterized autocrine factor(s) regulating ecdysteroid synthesis was 

first observed in Bombyx [65,66]. Recently, several autocrine factors have been identified in 

Drosophila, including β3-octopamine [67], the Egfr ligands Vein, and Spitz [32] and the Pvr 

ligands Pvf2, Pvf3 [36]. The β3-octopamine-induced pathway functions upstream of both 

IIS and PTTH signaling [67], while the Egfr and Pvr ligands activate Ras/Raf/Erk directly 

[32**,36]. Intriguingly, the expression of Vein and Spitz in the PG are induced by E feeding 

[32**], indicating a role of Egfr signaling as part of the ecdysone synthesis positive 

feedback loop described above.

Cell-autonomous factors: power of the -omics

In response to input signals, the PG cells undergo many intracellular modifications that help 

stimulate ecdysteroid production. Recent studies have uncovered an increasing number of 

intracellular factors that are essential to PG function, including transcription factors 

controlling Halloween gene expression [68,69*], iron metabolism regulators required for 

production of biosynthetic enzyme cofactors such as heme [70], cholesterol trafficking 

regulators [71,72], circadian cycle factors [73], glutathione [72,74], and nitric oxide (NO) 

[75] production. Among these factors, most were identified in Drosophila by PG-specific 

gene knockdown experiments. At the genome-wide level, PG-knockdown of an astonishing 

1,906 genes (out of 12,504 total) cause various levels of developmental defects [71]. 

Although many of these “ecdysteroidogenic” genes have known or speculated functions 

relevant to hormone production, or are required for maintenance of basic cell functions, 

there are many whose potential role(s) in ecdysone synthesis and trafficking remain to be 

investigated.
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In addition to traditional genetic screening, advancements in transcriptome and proteome 

profiling techniques and bioinformatics also provide powerful insights into the biological 

activities of the PG. To date, at least four RNA-seq [24,76–78], one microarray [76] and one 

proteomic dataset [78] have been obtained using the Drosophila ring gland or Bombyx PG 

tissues. Moreover, the samples have been prepared from tissues subject to different sorts of 

manipulations (e.g. early vs. late stage larvae [76], pre- vs. post-PTTH treatment [76,78], 

providing a better coverage of different biological scenarios. Analyses of these datasets have 

uncovered membrane receptor distributions [78], cholesterol trafficking components [71,79] 

and cytochrome P450 enzyme profiles [24,76] in the PG. Further mining of these data may 

lead to additional discoveries concerning regulation of E synthesis in the PG.

Steroid trafficking: an old question yields a new perspective

In addition to the enzymology, steroid hormone biosynthesis also appears to utilize complex 

trafficking mechanisms to move steroid molecules into, out of, and within cells. As strict 

cholesterol auxotrophs, insects fully rely on dietary sterol for viability. Upon ingestion, 

cholesterol is transported to the PG in lipophorins (insect lipoprotein) [80,81] and imported 

into PG cells using scavenger [82] or lipophorin receptors [83]. Subsequently, cholesterol 

translocates into the ER through the endo-lysosome system, during which cholesterol 

binding proteins such as Neimann-Pick complex 1 (NPC1), NPC2 and Start1 play essential 

roles [84]. Additional cholesterol trafficking factors influencing hormone production have 

been described in recent reports, including the fatty acid elongase Sit, the glutathione S-

transferase Nopperabo [72,85], the deadenylase CCR4-NOT complex [86], and the 

autophagic machinery [87*,88*], but the mechanisms involved are not fully understood. 

During E biosynthesis the first step involving conversion of cholesterol to 7dC occurs in the 

ER. From there, the Black Box reactions continue to live up to their name with respect to the 

subcellular compartments in which they act. The microsomal localization of Spok indicates 

that they likely occur in the ER [21]. The Black Box product is further hydroxylated into 

2,22-dideoxyecdysone in the ER and then into ecdysone within mitochondria [8]. Thus, 

ecdysone biosynthesis appears to involve shuttling of steroid intermediates between ER and 

mitochondria perhaps at mitochondrial associated membrane contact sites (MAMs). 

However, the mechanism and potential steroid shuttling proteins involved in this process are 

still unknown as are inferred hemolymphatic steroid carrier proteins [89].

Until recently, the discussion of steroid trafficking pathways stopped at the secretion point. It 

was, and still is, widely assumed that steroid hormones can freely diffuse across the plasma 

membrane due to the molecules’ inherently lipophilic nature. Recently, this idea was 

challenged by the demonstration that in Drosophila, E exits PG cells via vesicle-mediated 

secretion [90]. In this scenario, in the presence of ATP, ecdysone is pumped into secretory 

vesicles by Atet, a specific member of the ABC transporter family. At the time of ecdysone 

secretion, the vesicles are released into the hemolymph in response to a Ca2+ signal [90]. 

Following this discovery, an ecdysone importer (EcI) was also identified, which is expressed 

in peripheral tissues and mediates the entry of E into responding cells from the hemolymph 

[91**]. These discoveries demonstrate that ecdysone secretion is distinct from its synthesis, 

and that both secretion and uptake could potentially serve as novel regulatory nodes. 
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Whether similar exporters and importers are employed by mammals for proper steroid 

trafficking and tissue response remains to be determined.

Future outlook

As efforts devoted to understanding the biology of ecdysteroids and their regulation during 

metamorphosis continue, many issues (re)emerge as the result of continuously accumulating 

knowledge. Old mysteries such as the chemistry and enzymatic steps of the Black Box 

remain to be fully elucidated, and new inquiries concerning the mechanisms of steroid 

trafficking, ecdysteroid secretion and its uptake are needed. As the number of signals 

regulating PG function rise, the cross talk between these signals and the mechanism(s) for 

integrating them into an appropriate temporal E production profile will require significant 

additional intellectual and experimental inquires. Studies utilizing other insect orders and 

species, besides Drosophila, are also essential to understand both the similarities and 

differences in how E production and release are regulated relative to the ecology of each 

species.
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Figure 1. 
The ecdysteroid biosynthetic pathway (see text for details). Light yellow circles mark the 

modification sites in each reaction. The Black Box reactions are marked by light grey 

background. Red question marks indicate the catalyzing enzymes are unknown. “A” and “B” 

presents the two alternative ways in which Δ4-diketol is transformed into 5β-ketodiol. The 

post-Black Box reactions in Drosophila and Manduca are marked by light green and light 

orange background, respectively.
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Figure 2. 
Extracellular signals regulating ecdysteroid synthesis in the PG (see text for details).
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Figure 3. 
Steroid trafficking during ecdysteroidogenesis in PG cells (see text for details). Dashed line 

indicates that the steroid trafficking process between the two cellular compartments are not 

fully understood.
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