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2002–2018
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This paper describes benthic coral reef community composition point-based field data sets derived from 
georeferenced photoquadrats using machine learning. Annually over a 17 year period (2002–2018), 
data were collected using downward-looking photoquadrats that capture an approximately 1 m2 
footprint along 100 m–1500 m transect surveys distributed along the reef slope and across the reef 
flat of Heron Reef (28 km2), Southern Great Barrier Reef, Australia. Benthic community composition 
for the photoquadrats was automatically interpreted through deep learning, following initial manual 
calibration of the algorithm. The resulting data sets support understanding of coral reef biology, 
ecology, mapping and dynamics. Similar methods to derive the benthic data have been published for 
seagrass habitats, however here we have adapted the methods for application to coral reef habitats, 
with the integration of automatic photoquadrat analysis. The approach presented is globally applicable 
for various submerged and benthic community ecological applications, and provides the basis for 
further studies at this site, regional to global comparative studies, and for the design of similar 
monitoring programs elsewhere.

Background & Summary
This study describes a unique point-based data set for coral reef environments, collected using a photoquadrat 
survey method published for seagrass environments1. The data set describes the spatial and temporal distribution 
of benthic community abundance and composition for Heron Reef, a 28 km2 shallow platform reef located in 
the Capricorn Bunker Group, Southern Great Barrier Reef (GBR), Australia. On average, 3,600 coral reef data 
points were collected annually over the period 2002 to 2018. Annual data sets were acquired for independent 
research projects, but the collection methods were consistent. The initial field data collection design was planned 
to acquire detailed field data to describe the spatial distribution and variability of benthic composition across the 
study site to assist with calibration and validation of earth observation-based mapping products.

To create a map based on earth observation imagery, it is common to use training or calibration data to 
transform the imagery into a map of surface properties using a supervised algorithm (e.g. multivariate statistical 
clustering, random forest)2. To report on the accuracy measures of the maps, reference or validation data are con-
trasted with the output maps3. Hence for calibration and validation purposes, georeferenced field data must be 
representative of all the features to be mapped and collection should ideally coincide with satellite image acquisi-
tion. Many earth observation approaches have been implemented for mapping the benthic communities of Heron 
Reef4–12 and several of these maps are now accessible online6,13,14.
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Several studies have utilised time series benthic data to analyse changes in benthic community and coral type 
trends, supporting broad ecological knowledge of coral reef ecosystems such as the Caribbean reef degradation15 
and coral cover decline on the GBR16. Similarly, benthic community and coral cover data sets have been identified 
as important indicators of coral reef health providing the backbone for monitoring and management initiatives 
around the world17,18.

Articles and data sets have been published that describe the benthic community properties of Heron Reef, 
however, their spatial coverage, number of georeferenced data points, and revisit times are limited19. The time 
series photoquadrat data sets presented in this paper could be used for further understanding of benthic com-
munity distribution, including statistical analysis of trends in coral cover, analysis of changes in benthic com-
munity and coral type, or used for testing of other earth observation-based mapping and modelling approaches. 
Additionally, as our methodology describes machine annotation of the field photoquadrats, it would be possible 
to reanalyse the photoquadrats with new categories not previously considered important from a biological per-
spective (e.g. unknown disease or impact, or a specific benthic community type), or for other features (e.g. the 
counting of sea cucumbers (Holothuroidea sp.)).

Detailed analyses of our complete data set may permit a greater understanding of the persistence and/or 
dynamics of the benthic community at Heron Reef. As such, our ongoing analyses include evaluation of changes 
in community composition following major impacts such as cyclones, coral bleaching, crown of thorns preda-
tion, etc., and additionally, statistical analyses of coral recovery after such impacts. To this degree, these benthic 
community data sets are invaluable.

Methods
The photoquadrat-based data in this study was collected for Heron Reef, Southern Great Barrier Reef, Australia 
(Fig. 1). Here we provide a short overview of the collection methods, however a detailed description can be found in11.  
These methods are applicable to any habitat. Photoquadrats were analysed for substrate and/or benthic commu-
nity types known to be present on the reef (Fig. 1). The benthic community classes included in the analysis are 
shown in Table 1.

Georeferenced photoquadrat data collection.  Detailed information on benthic community compo-
sition was gathered at Heron Reef on the reef flat (0–2 m depth) and at the 5 m contour on the reef slope using a 
repeatable and fine spatial scale (sampling every 2–4 m) technique for surveying benthic cover11. The technique 
required a snorkeler or diver manually capture georeferenced photoquadrats along defined transect surveys using 
a standard digital camera in a waterproof housing (e.g. Sony Cyber shot, Canon AA540, Lumix, or Olympus T4). 
A plumb-line attached to the camera, ensured that the footprint of each photoquadrat approximated 1 m2 of the 
benthos.

From 2002–2004, a 100 m transect tape was deployed at each defined survey start site at a maximum depth 
of 3 m, or on scuba at 5 m depth. From 2005 onwards, instead of deploying a tape, the surveyor towed a standard 
handheld GPS (e.g. Garmin eTrex, Garmin 72) at the surface in a waterproof bag for all surveys. This enabled 
accurate registration of the location of the acquisition of each photoquadrat, which was subsequently assigned via 
time synchronization, with the track log from the towed GPS. Once this method was established transect survey 
lengths were extended to distances of 500 m–1500 m. The start and end point of each transect was defined by GPS 
waypoints, permitting accurate revisits in subsequent years. The distance between successive photoquadrats was 
estimated by the surveyor’s kick cycle. However this was not considered a problem as the exact location of each 
photograph was known through the GPS synchronisation.

All surveys were performed during the day, and derivation of sunlight and sun angle can be ascertained 
through the timestamp of each photoquadrat and its corresponding GPS location. Reef Flat surveys were col-
lected at high tide to provide sufficient water depth for the snorkeler to safely traverse the reef. Reef Slope surveys 
were collected at low tide. No water quality information was recorded.

The locations of the transect surveys were chosen to ensure they traversed gradients or edge features to detect 
any change in benthic cover over these features. This was done initially through visual assessment of existing sat-
ellite imagery in combination with expert knowledge of the study area. The aim was to produce data that provided 
an adequate representation of the variation in benthic community cover across Heron Reef. Limited transect 
surveys were located within the deep lagoonal area of the reef, as this area is hard to access by boat due to tidal 
range restrictions permitting short working times in the lagoon. Transect surveys were revisited in subsequent 
years, and additional transect surveys were included on subsequent trips based on increased knowledge of the 
environment. The benthic data sets and photoquadrat images are available at20.

Automated photoquadrat analysis for benthic community composition.  Percentage cover of the 
benthic communities for each photoquadrat was determined through a machine-learning (ML) approach which 
assessed benthic community composition. A previously devised category scheme consisting of 63 class codes that 
differentiated all major GBR-specific coral morphologies and other bottom types was used21 which, following 
machine annotation, were collapsed first into broad groups and subsequently into six simplified groups for vali-
dation purposes (Table 1).

Initial training of the ML platform was achieved via manual annotation of approximately 5% of the total 
number of photoquadrats (equivalent to 108,700 annotated points; based on21), to achieve a machine annotation 
accuracy of >70% as determined by the classifier21. A unique source was created for each camera used. To give 
a default and uniform image annotation area, boundaries of 5% were used for the top and left sides of the pho-
toquadrat, whilst a boundary of 95% was used for the right and bottom sides of the photoquadrat. Annotation 
points (50) were generated randomly over the entire annotation area per photoquadrat. For manual annotation 
of photoquadrat sets, the level of confidence was set to 100%. A further approximately 2.5% of photoquadrats 
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were manually annotated in an identical manner to provide a validation data set to calculate the accuracy of 
the machine annotation. Automated annotation of the remaining 92.5% of the photoquadrats was achieved 
subsequently22.

Data Records
Detailed information regarding the output benthic cover percentages and the number of benthic photoquadrats 
acquired for each field campaign are documented in Table 2. The benthic data sets and photoquadrat images are 
available at20, with the photoquadrats and benthic cover analysis for individual survey years accessible online 
through the campaign specific DOIs listed in the table, from where the data can be downloaded directly.

Technical Validation
To understand the validation technique applied to these data sets, it is important to reiterate the purpose of col-
lecting the data set itself, which was a fast field method to gather benthic community information over a large 
spatial extent, whilst accurately representing variability. Validation of the data set was conducted on various lev-
els, and included: standardisation of photoquadrat capture method and conditions, and a quantitative accuracy 
assessment.

Standardisation of photoquadrat image capture.  To standardise photoquadrat image capture, the 
camera and lens setup used was calibrated prior to annual survey, so as to capture a footprint that covered the 
same extent of the benthos. This was accomplished by attaching a plumb-line to the camera system such that when 
it touched the bottom, the captured photoquadrats represented ~1 m2 of the benthos. To do this standardisation, 

Fig. 1  Heron Reef, southern Great Barrier Reef, Australia. (a) Location of photoquadrat transect surveys on 
Heron Reef collected over a period of 17 years, (b) example of the individual photoquadrat locations along the 
transect survey where each individual point represents a photoquadrat, and (c) conceptualisation of snorkeler-
based georeferenced photoquadrat transect surveys.
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Class Code Description Group Simplified Group

ACR_BRA Acropora formosa, branching Montipera Branching Hard Coral

ACR_BRA_B_ Acropora formosa, branching Montipera - Bleached Branching Hard Coral

ACR_HIP Acroporidae Hispidoes; thick branches, predominantly hispidose Branching Hard Coral

ACR_HIP_B_ Acroporidae Hispidoes; thick branches, predominantly hispidose - Bleached Branching Hard Coral

ACR_OTH Acroporids with indeterminate shape, predominantly cuneiform Branching Hard Coral

ACR_OTH_B_ Acroporids with indeterminate shape, predominantly cuneiform - Bleached Branching Hard Coral

ACR_PE Encrusting Monipora Plate Hard Coral

ACR_PE_B_ Encrusting Monipora - Bleached Plate Hard Coral

BRA_TAB_Ac Acropora tabular/corymbose/plate Plate Hard Coral

BRA_TAB_B_ Acropora tabular/corymbose/plate - Bleached Plate Hard Coral

BRA_DIG_Ac Acropora digitate, branches resembling fingers Branching Hard Coral

BRA_DIG_B_ Acropora digitate, branches resembling fingers - Bleached Branching Hard Coral

FAV_MUS Favia, Favites, Platygyra, Goniastrea, Diploastrea, Lobophyllia Massive Hard Coral

FAV_MUS_B_ Favia, Favites, Platygyra, Goniastrea, Diploastrea, Lobophyllia - Bleached Massive Hard Coral

MASE_OTH Massive, submassive, encrusting colonies of undetermined taxonomic group Massive Hard Coral

MASEoth_B_ Massive, submassive, encrusting colonies of undetermined taxonomic group - 
Bleached Massive Hard Coral

TFP_RDG_Al Thin, foliose or plating colonies with visible relief structures on the plates Plate Hard Coral

TFP_RDG_B_ Thin, foliose or plating colonies with visible relief structures on the plates 
-Bleached Plate Hard Coral

TFP_RND_Al Thin, foliose or plating colonies with visible rounded corallites on the plates Plate Hard Coral

TFP_RND_B_ Thin, foliose or plating colonies with visible rounded corallites on the plates - 
Bleached Plate Hard Coral

BRA_OTH Branching other Branching Hard Coral

BRA_OTH_B_ Branching other - Bleached Branching Hard Coral

OTH_HC Other HC not assigned to any other category HC Other Hard Coral

OTH_HC_B_ Other HC not assigned to any other category - Bleached HC Other Hard Coral

POCI Pocilloporidae sp. (includes Seriatopora and Stylophora) Branching Hard Coral

POCI_B_ Pocilloporidae sp. (includes Seriatopora and Stylophora) - Bleached Branching Hard Coral

POR_BRA Porites cylindrica, Goniopora (Poritidae branching) Branching Hard Coral

POR_BRA_B_ Porites cylindrica, Goniopora (Poritidae branching) - Bleached Branching Hard Coral

POR_ENC Porites lichen (Poritidae encrusting) Massive Hard Coral

POR_ENC_B_ Porites lichen (Poritidae encrusting) - Bleached Massive Hard Coral

POR_MASS Porites lobata, P. lutea (Poritidae massive) Massive Hard Coral

POR_MASS_B_ Porites lobata, P. lutea (Poritidae massive) - Bleached Massive Hard Coral

GORG Sea Fans/Plumes; Gorgonia, Pseudopterogorgia Soft Other

GORG_B_ Sea Fans/Plumes; Gorgonia, Pseudopterogorgia - Bleached Soft Other

ALC_SF Common large fleshy Alcyoniidae representatives Soft Other

ALC_SF_B_ Common large fleshy Alcyoniidae representatives - Bleached Soft Other

OTH_SF Other soft coral (not sea fans) Soft Other

OTH_SF_B_ Other soft coral (not sea fans) - Bleached Soft Other

Other All other All other Other

MINV_COTS Crown of thorns sea star, Acanthaster planci Invertebrates Other

MOB_INV Mobile invertebrates 1 (sea cucumber, urchin) Invertebrates Other

OTH_SINV Other sessile invertebrates (zoanthids, anemones, corallimorphs, sponges, 
clams, etc) Invertebrates Other

Lobph Lobophora; fleshy algae Algae Algae

Turbin Turbinaria sp. Algae Algae

MAECBS Erect Course Branching Brown: Sargassum sp. Algae Algae

Pad Padina sp. (pencil shavings) Algae Algae

Dicsp Dictyota sp. Algae Algae

Chlor Chlorodesmis sp (turtle weed); green filamentous Algae Algae

MACR_Cal_H Calicifying algae: Halimeda Algae Algae

Caul Caulerpa sp., green algae Algae Algae

Cya_spe Cyanobacterium sp. Algae Algae

ALG_OTH Other algae Algae Algae

CAL_CCA_DC Crustose Coralline Algae on dead coral Rock Rock

CAL_CCA_RB Crustose Coralline Algae on rubble Rubble Rubble

EAM_DHC Epithelial algal matrix smothering dead hard coral (Turf on Rock) Rock Rock

Continued
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Class Code Description Group Simplified Group

EAM_RB Epithelial algal matrix smothering rubble (Turf on Rubble) Rubble Rubble

Sand Sand Sand Sand

BMA_sand Benthic microalgae on sand Sand Sand

Seagrass Seagrass, any type Other Other

TAPE Line or hardware Other Other

Unk Unknown, but represents something (annotator doesn’t know what it is) Other Other

Unc Unclear; point falls in a shadowy, blurry, dark area Other Other

WATE Blue background Other Other

Table 1.  Benthic community and coral type descriptions and their class codes used for photoquadrat 
annotation. Manual and automated (machine) annotation utilized the full labelset (63 class codes). Following 
machine annotation, these 63 class codes were aggregated via broad groups into six simplified groups for 
validation of the machine learning.

Year-Month Photoquadrats Length of survey (m) Benthic DOI (pangaea.de) Photoquadrat DOI (pangaea.de)

2002–11 1965 100 https://doi.org/10.1594/PANGAEA.907025 https://doi.org/10.1594/PANGAEA.895556

2004–03; 2004–05 1588 100 https://doi.org/10.1594/PANGAEA.903850 https://doi.org/10.1594/PANGAEA.895557

2005–05 1004 100 https://doi.org/10.1594/PANGAEA.903851 https://doi.org/10.1594/PANGAEA.894796

2006–06 1941 300–1500 https://doi.org/10.1594/PANGAEA.903847 https://doi.org/10.1594/PANGAEA.895558

2007–09 2923 300–1500 https://doi.org/10.1594/PANGAEA.903779 https://doi.org/10.1594/PANGAEA.895563

2008–10 3608 300–1500 https://doi.org/10.1594/PANGAEA.903788 https://doi.org/10.1594/PANGAEA.895569

2009–11 4400 300–1500 https://doi.org/10.1594/PANGAEA.90378 https://doi.org/10.1594/PANGAEA.895570

2010–11 4701 300–1500 https://doi.org/10.1594/PANGAEA.903784 https://doi.org/10.1594/PANGAEA.894797

2011–11 3602 300–1500 https://doi.org/10.1594/PANGAEA.904704 https://doi.org/10.1594/PANGAEA.895157

2012–07 3903 300–1500 https://doi.org/10.1594/PANGAEA.904706 https://doi.org/10.1594/PANGAEA.895121

2013–11 3589 300–1500 https://doi.org/10.1594/PANGAEA.904710 https://doi.org/10.1594/PANGAEA.895160

2014–11 4194 300–1500 https://doi.org/10.1594/PANGAEA.904715 https://doi.org/10.1594/PANGAEA.895124

2015–11 4277 300–1500 https://doi.org/10.1594/PANGAEA.904716 https://doi.org/10.1594/PANGAEA.895147

2016–09 4197 300–1500 https://doi.org/10.1594/PANGAEA.907013 https://doi.org/10.1594/PANGAEA.894800

2017–11 6499 300–1500 https://doi.org/10.1594/PANGAEA.903766 https://doi.org/10.1594/PANGAEA.895154

2018–11 5545 300–1500 https://doi.org/10.1594/PANGAEA.903767 https://doi.org/10.1594/PANGAEA.899670

Table 2.  Overview of the data files that represent the 58,941 georeferenced photoquadrats captured during the 
field campaigns, in addition to links to the percentage benthic cover data sets generated via machine learning 
for each year. The complete data set is available at20.

Camera SONY Canon Lumix Olympus

Years 2002–2006 2007–2010 2011–2016 2017–2018

Overall Accuracy (%) 79.1 81.8 73.9 79.8

User’s Accuracy (%)

Hard Coral 79.9 83.6 83.2 88.2

Rock 77.2 79.3 71.2 74.4

Rubble 68.0 68.8 61.5 25.0

Sand 85.7 90.3 87.2 93.9

Algae 85.7 79.4 74.4 71.4

Other 52.4 33.3 57.3 61.7

Producer’s Accuracy (%)

Hard Coral 76.0 72.7 72.5 70.2

Rock 89.2 92.6 90.5 94.8

Rubble 5.3 15.6 4.7 10.2

Sand 92.1 94.5 89.8 91.8

Algae 6.8 42.8 19.4 24.2

Other 23.7 18.7 24.0 33.5

# Points 8,000 7,150 18,500 3,300

Table 3.  Quantitative assessment of the machine annotation stevia construction of a confusion matrix. For each 
camera used, machine annotation (modelled data) of 2.5% of all the photoquadrats captured was compared with 
manual annotation (reference data) of the same validation data set in a using standard confusion matrix3. From 
this, the overall accuracy and individual class accuracies were calculated following a well-documented approach3.
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the camera was moved vertically over a marked 1 m2 until the field of view enveloped the area, and the plumb-line 
was fixed. During the survey the operator used the plumb-line to determine the camera height above the ground. 
When held vertically with the weight touching the substrate this permitted reproducible capture of photoquadrats 
that covered the same area for all surveys. Light conditions were generally the same for each expedition, the data 
collected over a consecutive 4–5 day period, with stable weather, water clarity conditions and tidal range. Ideally 
light conditions would have been standardised using a strobe, however this would slow down the speed of the 
transect surveys.

Quantitative accuracy assessment.  To determine the accuracy of the machine annotation we con-
structed a confusion matrix that compared, for a select set of validation photoquadrats, the benthic composition 
output from the machine learning annotation (modelled data), with the equivalent manual annotations (refer-
ence data). Using the confusion matrix we calculated the overall accuracy and the individual benthic label user 
and producer accuracy following a well-documented method3. All cameras demonstrated an overall accuracy of 
between 74% and 82% (Table 3;3). To provide a validation data set, ~2.5% of photoquadrats were manually anno-
tated in an identical manner to the training data (36,950 annotated points; see Methods Section).
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