
BACTERIAL FUNGAL AND VIRUS MOLECULAR BIOLOGY - SHORT COMMUNICATION

Complete genome sequence of the biocontrol agent Serratia
marcescens strain N4–5 uncovers an assembly artefact

Larissa Carvalho Ferreira1,2 & Jude E. Maul3 & Marcus Vinicius Canário Viana4 & Thiago Jesus de Sousa4 &

Vasco Ariston de Carvalho Azevedo4
& Daniel P. Roberts3 & Jorge Teodoro de Souza2

Received: 28 April 2020 /Accepted: 15 September 2020
# Sociedade Brasileira de Microbiologia 2020

Abstract
Serratia marcescens are gram-negative bacteria found in several environmental niches, including the plant rhizosphere and
patients in hospitals. Here, we present the genome of Serratia marcescens strain N4–5 (=NRRL B-65519), which has a size
of 5,074,473 bp (664-fold coverage) and contains 4840 protein coding genes, 21 RNA genes, and an average G + C content of
59.7%. N4–5 harbours a plasmid of 11,089 bp and 43.5% G + C content that encodes six unique CDS repeated 2.5× times
totalling 13 CDS. Our genome assembly and manual curation uncovered the insertion of two extra copies of the 5S rRNA gene in
the assembled sequence, which was confirmed by PCR and Sanger sequencing to be a misassembly. This artefact was subse-
quently removed from the final assembly. The occurrence of extra copies of the 5S rRNA gene was also observed in most
complete genomes of Serratia spp. deposited in public databases in our comparative analysis. These elements, which also occur
naturally, can easily be confused with true genetic variation. Efforts to discover and correct assembly artefacts should be made in
order to generate genome sequences that represent the biological truth underlying the studied organism. We present the genome
of N4–5 and discuss genes potentially involved in biological control activity against plant pathogens and also the possible
mechanisms responsible for the artefact we observed in our initial assembly. This report raises awareness about the extra copies
of the 5S rRNA gene in sequenced bacterial genomes as they may represent misassemblies and therefore should be verified
experimentally.
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Introduction

Soil-borne plant pathogens cause diseases that result in major
reductions in crop yields [1]. These diseases are typically con-
trolled in conventional crop production systems with strate-
gies that include chemical pesticides [2]. Biologically based
methods, such as the use of microbial biological control
agents, are being developed to control these soil-borne patho-
gens due to problems associated with the availability and ef-
fectiveness of chemical pesticides and concerns regarding the
impact of these chemicals on the environment and human
health [3]. Microbes control plant diseases via several mech-
anisms, including predation, where the biological control
agent produces an assortment of enzymes such as chitinases,
proteases, and glucanases that degrade pathogen cell wall and
other cellular components [4, 5]. Biological control agents can
also produce antibiotics and other inhibitory molecules that
kill or slow growth of the pathogen and can compete with
the pathogen for resources such as nutrients and space.

Data deposition: Trimmed sequence data and assembly are deposited in
GenBank (accession numbers: NZ_CP031316.1 and NZ_CP031315.1).

Responsible Editor: Rodrigo Galhardo.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s42770-020-00382-2) contains supplementary
material, which is available to authorized users.

* Jorge Teodoro de Souza
jorge.souza@ufla.br

1 Plant Pathology Department, Federal University of Lavras,
Lavras, MG 37200-000, Brazil

2 Institute of Biological, Environmental and Rural Sciences,
Aberystwyth University, Aberystwyth SY23 3DA, UK

3 Sustainable Agricultural Systems Laboratory, USDA-Agricultural
Research Service, Beltsville, MD 20705, USA

4 Institute of Biological Sciences, Federal University of Minas Gerais,
Belo Horizonte, MG 31270-901, Brazil

https://doi.org/10.1007/s42770-020-00382-2

/ Published online: 23 September 2020

Brazilian Journal of Microbiology (2021) 52:245–250

http://crossmark.crossref.org/dialog/?doi=10.1007/s42770-020-00382-2&domain=pdf
http://orcid.org/0000-0002-2970-4525
https://doi.org/10.1007/s42770-020-00382-2
mailto:jorge.souza@ufla.br


Finally, certain biological control agents have been shown to
associate with plants and induce defence responses that pro-
tect the plant from diseases [1].

The bacterium Serratia marcescens is ubiquitous in the
environment and has been detected in association with plants
[6] and animals [7] including humans in hospital settings [8],
soil [9], water [10], and air [11]. Live cells and cell-free ex-
tracts of S. marcescens strains isolated from the environment
have been shown to be effective in controlling certain soil-
borne plant pathogens [12–14].

Here, we present the genome of S. marcescens N4–5, a
strain isolated from soil and studied since 1996 [12] due to
its effectiveness against multiple plant pathogens, including
Magnaporthe poae, Pythium ultimum, and Rhizoctonia solani
and its antimicrobial properties [12–15]. Strain N4–5 and its
natural products, applied as seed treatments in biocontrol strat-
egies, control seed, and seedling disease of cucurbits caused
by the soil-borne plant pathogen P. ultimum [13, 15]. Among
all the S. marcescens complete genomes available, only a few
are from plant beneficial strains. Therefore, the addition of the
N4–5 complete genome sequence into public databases will
allow comparative analysis to better understand the mecha-
nisms by which S. marcescens associates with plants and con-
trols plant diseases, as well as the variety of lifestyles present-
ed by this genus. Furthermore, we uncovered an assembly
artefact in the genome of strain N4–5.

Material and methods

Genome sequencing and assembly

Strain N4–5 was obtained from New Jersey (USA) soil sam-
ples [12]. Genomic DNA was extracted with the QIAGEN
Blood & Tissue genomic DNA isolation kit, using the manu-
facturer’s protocol. The indexed library was constructed using
Nextera® XT Index Kit v2 Set A, and the sequence data was
generated in an Illumina NextSeq-500 using the run kit
Illumina NextSeq® 500/550 High Output Kit v2.
Sequencing resulted in 22,789,104 reads, with length varying
from 32 to 151 bases, with an average length of 148 bp, where
94% of the reads contained 148–151 bases. The sequenced
reads comprised a total of 3,369,822,757 bases and represent-
ed 664-fold genome coverage. The quality was checked with
the programme FastQC v0.11.5 [16]. The paired-end library
genome (2 × 149) was assembled using the SPAdes assembler
available in PATRIC (Pathosystems Resource Integration
Center) [17]. The 1634 contigs generated were united into
19 scaf folds us ing the CONTIGuator [18] wi th
S. marcescens strain B3R3 (accession number CP013046.2)
as the reference genome. Finally, gaps were closed with
FGAP [19], NCBI’s BLASTn [20], and read mapping in
CLC Genomics Workbench 7.

The plasmid was assembled with reads that did not map
against the final N4–5 complete nucleotide sequence using the
programme plasmidSPAdes. The plasmid contigs were
scaffolded using the S. marcescens strain A4Y201 plasmid
pG5A4Y201 (accession number KJ541069.1) as reference.
The plasmid sequence was finalized using the aforementioned
FGAP, NCBI’s BLASTn, and CLC Genomics Workbench.
The structural and functional annotation was conducted as
described above.

Genome annotation, manual curation, and analyses

The N4–5 genome was annotated using the RASTtk annota-
tion service in PATRIC [21]. Manual curation was conducted
through Artemis 16.0.0 software [22]. Translated protein se-
quences were confirmed with BLASTp against the UniProt
database [23]. Clusters of Orthologous Groups (COGs) were
inferred with the eggNOG v. 4.5.1 database [24]. Circular
maps were generated using GCView Comparison Tool [25].

Manual curation revealed three copies of the 5S rRNA
gene. To determine the veracity of this feature, PCR using
primers designed on the regions flanking the 5S genes,
MetA1F (5′- ACC GCA GGT AAC TCA TCA GG −3′) and
23S1R (5′- GACGTTGATAGGCTGGGTGT- 3′), follow-
ed by sequencing with the Sanger method were performed as
previously described [15]. The 100 bp DNA ladder (New
England BioLabs) was used to visualize the band in the gel.

Phylogenomics and chemotaxonomic classification

Digital DNA-DNA Hybridization (dDDH) and Average
Nucleotide/Amino Acid Identity (ANI/AAI) comparisons
were calculated using GGDC [26], JspeciesWS [27], and
Kostas Lab [28].

For FAME analyses, isolate N4–5 was grown for 24 h at
28 °C on trypticase soy broth agar (TSBA), and the composi-
tion of cellular fatty acid was determined by gas chromatog-
raphy. Extraction and analyses were performed according to
the recommendations of the MIDI (Microbial Identification)
system.

Results and discussion

Genomic features

The S. marcescensN4–5 genome comprised a single chromo-
some of 5,074,473 bp, with 59.7% G + C content and a nat-
urally occurring plasmid (Fig. 1). The chromosome had 4884
protein-coding genes, of which 4020 genes were functionally
assigned, while the remaining genes were annotated as hypo-
thetical proteins (Table 1). The N4–5 genomic nucleotide se-
quence contained 2747 transcription units and 992 operons.
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From the 4884 genes, 3604 (73.8%) were classified in 22
functional COG categories. The most numerous COGs
contained genes with general prediction only (408 genes),
no function prediction (393 genes), and 401 genes involved
in amino acid transport and metabolism, whereas the COG
categories with the least number of genes contained one gene
for RNA processing and modification and one for chromatin
function and dynamics (Fig. 1b).

The circular plasmid comprised 11,089 bp and had 43.5%
G + C content. The size of the plasmid was confirmed by
digestion with restriction enzymes followed by electrophore-
sis. The plasmid sequence encoded six unique CDS that were
repeated 2.5× totalling 13 CDS. From the six unique CDS,
four were annotated as hypothetical proteins (Fig. 1c).

Biocontrol and plant-beneficial traits

Strain N4–5 is a known producer of the broad-spectrum anti-
microbial prodigiosin, which contributes to its biological control
activity [13, 15]. In accordance, the genome of N4–5 harboured
the 14 canonical genes for prodigiosin biosynthesis (pig cluster,
pigA-N) described by [29, 30]. As seen in other bacteria [30], the
N4–5 pig cluster was flanked by copA and cueR homologues;
however, differently from the other studied strains, N4–5 has a
putative membrane protein (41 amino acids) annotated between
pigA and cueR. Sixty-ninemultidrug resistance geneswere found
during functional annotation of the N4–5 genome, including
resistance to kasugamycin, biocyclomycin, fosmidomycin, and
fusaric acid, which are antibiotics produced by microorganisms.
Strain N4–5 also harbours chitinase genes (chiA, chiB, chiD, and
chiA1) in the genome.

Genome analysis revealed that N4–5 encodes the
siderophore enterobactin gene cluster containing entA, entB,
entC, entE, entF, and entH, but the vibriobactin genes were
absent. Furthermore, N4–5 carried 16 tonB-dependent

transporter genes, which are cellular receptors of
siderophores. The production of siderophore complexes by
bacteria contributes to enhance plant growth as they sequester
iron from the environment and make it available for plant
uptake [31]. The ability to utilize carbon sources provides a
fitness advantage during microbial competition. The N4–5
genome had 267 genes responsible for carbohydrate transport
and metabolism, comparable with Pseudomonas alcaliphila
JAB1, a degrader of organic pollutants that had 196 genes
with this functionality [32]. The surfactant serrawettin W1
was coded by one NRPS (non-ribosomal peptide synthase)
gene with 3936 bp. Serrawetin W1 has antimicrobial, antitu-
mor, and zoosporicidal activities and has potential uses in
agriculture, medicine, and industry [33]. Altogether, these ge-
nome features support N4–5 as a potential biocontrol agent as
well as a plant-beneficial strain.

Phylogenomics and chemotaxonomic data

Phylogenetic trees constructed with whole genome sequences
and with sequences of the 16S gene placed strain N4–5 within
the S. marcescens clade (Supplementary Fig. S1 and S2). The
identity of these seven copies of the 16S rRNA gene found in
the genome of strain N4–5 varied from 99.7 to 100%, indicat-
ing that strain N4–5 possesses low intragenomic variation in
the ribosomal genes. Further analyses, including Average
Nucleotide/Amino Acid Identity (ANI/AAI) and digital
DNA-DNA Hybridization (dDDH) confirmed the classifica-
tion of strain N4–5 as S. marcescens. The values for ANI,
AAI, and dDDH were above the cut off for species delinea-
tion, 95, 95, and 70%, respectively, when compared with oth-
er Serratia genomes (Table S1).

The major components of the S. marcescens N4–5 fatty
acid profile were C16:0 (22.4%), C17:0 cyclo (12.13%), C10:0
3OH (12.07%), and C12:0 3OH (5.15%). Minor fatty acid com-
ponents were identified at less than 5%, most of which being
common among previously identified species within the genus
Serratia: C12:0, C12:0 2OH, C14:0, C14:0, C18:0, and C19:0
cyclo w8c. Some fatty acids isolated from N4–5 co-occurred in
just a few other species. For example, C10:0 3OH was only
shared with S. plymuthica and S. rubidaea, whereas C12:1
3OH, C12:0 3OH, C14:0 2OH, and C17:0 were only identified
in other S. marcescens-GC subgroups.

Genome assembly artefact

Two extra copies of the rRNA 5S gene were found in the fifth
ribosomal cluster of strain N4–5 after the initial assembly
performed in SPAdes. These extra copies of the 5S rRNA
gene were also present in all the other four assemblies we
performed with data from different sequencing lanes with
coverage 160–167×. The combined assembly, with 664× cov-
erage was chosen due to the best metrics it returned, namely,

Table 1 Genome features of S. marcescens strain N4–5

Attribute Value

Chromosome size (bp) 5,074,473

N50 549,421

L50 4

GC (%) 59,69

Chromosomal genes 4884

Protein coding genes 4840

Plasmid (bp) 11,089

Genes in the plasmid 13

RNA genes 103

Pseudo genes 44

Genes with function prediction 4020

CRISPR repeats 2

Braz J Microbiol (2021) 52:245–250 247



highest N50 and N75, lowest L50 and L75, largest contig size,
and overall total length assembled. To verify whether it was an
artefact or a natural feature in strain N4–5, PCR amplification
and sequencing with the Sanger method of the rRNA 5S gene
region were performed. The primers were anchored in the gene
metA and in the 23S rRNA gene (Fig. 2). The 755 bp sequence
obtained was mapped to the 989 bp region in the assembly and
unequivocally showed that these extra copies of the 5S rRNA
gene were assembly artefacts. The genome sequence was
corrected accordingly, and therefore, strain N4–5 had regular
ribosomal operons, i.e. one copy of the 5S, 16S, and 23S genes
per cluster (Fig. 2). In strain N4–5, the assembly process was
responsible for generating the artefact, but we currently do not
know how the programme produces them. One possibility, al-
though we did not test this hypothesis, is the fact that we used a
genomewith an extra copy of the 5S rRNAgene as the reference.

Extra copies of the 5S gene were also found in 72
completely sequenced genomes of Serratia strains deposited
in public databases (Supplementary Table S2). The extra cop-
ies of the 5S gene were found in the complete genomes of
species in other genera, including Serratia, Proteus, Vibrio,
Yersinia (Supplementary Table S3), and possibly other bacte-
rial genera. There is limited information on the biological
implications of extra copies of the 5S gene, and it is certainly
a subject that deserves further investigation. Many of the ge-
nomes that contain extra copies of the 5S gene were se-
quenced by long reads technologies such as PacBio
(Supplementary Table 2), which is supposed to obtain reads
that encompass the whole ribosomal region. Nevertheless, the
occurrence of the extra copies of the 5S rRNA gene in these
genomes should be verified with sequencing technologies
with read lengths longer than 600 bp.

Fig. 1 Serratia marcescens strain N4–5 genome features. (a)
Chromosome of N4–5 showing from outer circle to the centre: CDS on
forward strand (coloured according to COG categories), all CDS and
RNA genes on forward strand, all CDS and RNA genes on reverse strand,

CDS on reverse strand (coloured according to COG categories), G + C
content and GC skew. (b) COG functional classification of strain N4–5
proteome. (c) Circular map of N4–5 plasmid showing the CDSs
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The number of copies of the 5S gene in bacterial genomes
is thought to be identical to the number of copies of the other
genes (23S and 16S) in the ribosomal operon. This assump-
tion is supported by the fact that ribosomal genes and
multigene families are homogenized by recombination
through concerted evolution [34]. However, an estimate by
rrnDB, a database that documents the number of rRNA and
tRNA genes in bacteria and archaea, revealed that 23.6% of
the bacterial genomes have unequal copies of the rRNAgenes,
due mainly to additional copies of the 5S rRNA gene [35]. In
the genus Serratia, this unequal number of 5S rRNA genes
occurs in 96% of the sequenced genomes (Supplementary
Table 2). It would be interesting to verify if these numbers
are real or are artefacts caused by the in silico assembly
programmes. The discovery and correction of assembly errors
in draft genomes is a crucial problem that persists in Eulerian
assemblies and genome assemblies in general [36].

Strain N4–5 is among the three S. marcescens with com-
plete genomes in public databases without extra copies of the
5S rRNA gene. This does not mean that genomes without
extra copies of the 5S rRNA genes are correctly assembled
and the other ones are misassemblies. With these results, we
want to emphasize the need to verify these in silico assemblies
with standard laboratory experimental procedures.
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