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Seasonal overturn and stratification changes drive
deep-water warming in one of Earth’s largest lakes
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Most of Earth’s fresh surface water is consolidated in just a few of its largest lakes, and
because of their unique response to environmental conditions, lakes have been identified as
climate change sentinels. While the response of lake surface water temperatures to climate
change is well documented from satellite and summer in situ measurements, our under-
standing of how water temperatures in large lakes are responding at depth is limited, as few
large lakes have detailed long-term subsurface observations. We present an analysis of three
decades of high frequency (3-hourly and hourly) subsurface water temperature data from
Lake Michigan. This unique data set reveals that deep water temperatures are rising in the
winter and provides precise measurements of the timing of fall overturn, the point of mini-
mum temperature, and the duration of the winter cooling period. Relationships from the data
show a shortened winter season results in higher subsurface temperatures and earlier onset
of summer stratification. Shifts in the thermal regimes of large lakes will have profound
impacts on the ecosystems of the world's surface freshwater.
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ighty-four percent of Earth’s non-frozen, surface freshwater

is found in the 10 largest lakes!. Because of the sensitivity to

changing conditions, along with the ability to integrate
climate conditions across the watershed and produce measurable
signals of climate-impacted parameters, lakes have been identified
as ideal climate change sentinels>~%. As air temperatures trend
upward, global lake surface water temperatures (LSWT) have
warmed by an average of 0.21 °C/decade®®. Several lakes appear
to be warming faster than ocean temperatures (0.12 °C/decade)
and regional air temperatures (0.25°C/decade), including
the world’s largest lakes®”>19-12, While an abundance of surface
measurements reveal surface warming in response to climate
change!3, subsurface observations are relatively sparse and may
tell a story that is more indicative of long-term climate change
impacts. Subsurface waters in deep lakes can provide an impor-
tant signal because they integrate conditions across years, pro-
viding a climate memory'4, and can help identify the potential for
ecological and thermal shifts, e.g. from dimictic to monomictic
mixing conditions>315.

Subsurface conditions in the largest lakes, hereby referred to as
large lakes, are a missing piece in the global climate change
narrative. Most of our understanding of large lake warming
trends comes from observations of summer LSWT due to data
availability restrictions in satellite measurements, buoy deploy-
ment schedules, and seasonal ice conditions®716-19. There has
been an improved understanding of year-round or seasonal sur-
face trends from satellite remote sensing in recent years that
demonstrates the physical drivers of surface warming and the
spatial and temporal variation of LSWT warming and overturn in
the Laurentian Great Lakes?0-22. However, these trends in surface
temperatures are not easily translated into the more complex
deep subsurface conditions, where stratification, thermocline
depth, and density gradient influence subsurface mixing. There-
fore, direct observations of subsurface thermal structure are
imperative to the interpretation of climate impacts on the
majority of Barth’s freshwater?.

Measurements of hypolimnetic water temperatures suitable for
long-term trend analysis are limited to a few studies in deep
lakes!0:12:1423-28 ' a]though, projected connections between cli-
mate change induced thermal structure changes and mixing
regime shift have been demonstrated through numerical
modeling!>2°. Therefore, our understanding of how our largest
lakes are responding to climate change at depth has been formed
either by translating what has been observed at the lake surface or
by subsurface observations that are limited in vertical resolution
(depth), temporal frequency (e.g. weekly, monthly, etc.), or of
insufficient duration for long-term analysis.

Here we show how seasonal changes in the timing of overturn
and stratification link surface warming trends to deep water
temperatures in a large dimictic lake using three decades of nearly
continuous subsurface water temperature observations in Lake
Michigan. High-frequency measurements reveal otherwise
undetectable deep water dynamics during a noted period of
warming in the world’s lakes. With this unique data set, we
address the following questions: How do the deep waters of
Earth’s largest lakes respond to climate trends? As surface tem-
peratures rise and summer periods are extended, what winter
subsurface characteristics are altered? What can high-resolution
and high-frequency observations tell us that is obscured by other
long-term freshwater data sets? We find the long-term data set
not only confirms that deep waters are warming, but also shows
how surface trends manifest into a cascade of thermal changes
during the winter period. Subdaily observations detail the rela-
tionships between fall overturn, winter cooling period duration,
and subsurface temperatures. Through this lens, we can see the
potential for a thermal regime shift!> and extend the current

understanding of summer LSWT trends!3 to observed changes in
other seasons and to the deep waters of Lake Michigan.

Results and discussion

Subsurface response to warming. To analyze water temperature
trends in Lake Michigan (the 4th largest lake on Earth), we use 30
years of nearly continuous hourly and 3-hourly measurements from
a high vertical-resolution thermistor string in 150 m of water (Fig. 1,
and Supplementary Information). To place subsurface measure-
ments in context with surface warming trends, these data were
supplemented with satellite-derived surface temperature from the
same location using the Great Lakes Surface Environmental Analysis
(GLSEA)30. Previous reports of warming rates in Lake Michigan
were based on summer (July-August-September) observations at
the surface, via satellite and in situ buoy measurements, and esti-
mate lake-averaged trends between 0.20 and 0.70 °C/decade®!”. As
context for this analysis, we first updated the lake-averaged trend
using satellite-derived temperatures for 1995-20193 and three sta-
tistical approaches. Linear estimates of warming trends yielded year-
round lake-averaged surface warming rates of 0.34 and 0.31°C/
decade, using simple linear regression and the Theil-Sen estimator,
respectively. A seasonal trend decomposition (STL) method esti-
mated an overall long-term warming trend slightly higher than the
linear models, with a trend of 0.40 °C/decade (Table 1).

Applying the same approach at the mooring location in
southern Lake Michigan (Fig. 1), the year-round surface warming
rate ranges from 0.40 and 0.49 °C/decade for estimates from
simple linear regression, the Theil-Sen estimator, and the STL
(Table 1, Figs. 2a and 3a, b). These values suggest that the
mooring location is not thermally distinct from the long-term
trend of the lake. Although the different statistical approaches
were consistent regarding the long-term trend, the STL reveals an
interannual variability that coincides with recognized warm and
cool years (Fig. 3b)31:32. Broken down into monthly trends, linear
analysis shows the greatest surface warming rate occurs in
October, though warming trends are found from January through
April as well (Fig. 4). Monthly trends from the STL confirm a
surface warming trend in September and October with upticks
occurring after 2010, though winter trends at the surface are
relatively flat (Fig. 5a).

Subsurface observations detail the translation of surface
warming trends through the water column. The time series of
subsurface temperature resembles a heartbeat pattern (Fig. 1b);
the annual rise and peak in temperature coincides with the fall
overturn, where the warm water from above is mixed down and
arrives at depth. The subsequent temperature dips reveal the
annual winter cooling periods, and thus unlike the surface,
subsurface temperatures only fluctuate between fall overturn and
the onset of summer stratification. Long-term warming trends
exist below the thermocline at the 60, 75, 100, and 110 m
transects (Table 1). At the 60-100 m depths, the warming trends
are less than the surface but relatively consistent across depths
and among statistical approaches. At the 110 m transect, which
includes the cool period in 2014 and 2015, trends are roughly half
of the shallower subsurface trends (Table 1). Linear estimates
suggest warming rates of 0.05 and 0.04 °C/decade for simple
linear regression and Theil-Sen methods, respectively (Table 1,
Fig. 3e). 95% confidence bounds for both estimates include zero
slope, suggesting a possible nonlinear long-term trend at this
depth. The STL analysis arrives at a slightly higher overall
warming rate, 0.06 °C/decade, but clearly shows a high degree of
interannual variability and reinforces the nonlinearity of the
temperature trends at 110 m (Table 1, Fig. 3f). Below this depth,
at the 140 m transect, no trends are found among the linear and
STL methods.
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Fig. 1 Location of the long-term temperature mooring in Lake Michigan. Three decades of high-frequency subsurface temperature measurements
(1990—present) are recorded by a thermistor string at the southern Lake Michigan mooring site. Observations of atmospheric conditions are recorded at
several coastal meteorological stations (gray circles) archived by NOAA. Long-term downward shortwave radiation is measured by the NOAA Surface

Radiation (SURFRAD) Network (white circle) in Bondville, IL, USA.

Table 1 Long-term water temperature trends at the lake surface and subsurface transects.

Linear regression Theil-Sen STL
Lake-average year-round surface trend 0.34+0.21 0.31£0.18 0.40 +0.05
Mooring year-round surface trend 0.40+0.26 0.41+0.20 0.49+£0.07
Mooring year-round 30 m trend 0.07+0.18* 0.11+0.13* —0.02+0.05*
Mooring year-round 60 m trend 0.11+£0.09 0.11+£0.07 0.09+0.03
Mooring year-round 75 m trend 0.12+0.07 0.11+£0.06 0.11+0.02
Mooring year-round 100 m trend 0.11+£0.06 0.08+0.04 0.11+0.02
Mooring year-round 110 m trend 0.05+0.06* 0.04+0.04* 0.06+0.01
Mooring year-round 140 m trend 0.00+0.08" —0.04£0.05" 0.00+0.01*

intervals that include zero are indicated with “*".

Estimates are given for three statistical approaches, simple linear regression, a Theil-Sen line, and a linear fit to the STL long-term component with 95% confidence intervals in °C/decade. Confidence

Similar to surface trends, subsurface temperatures reveal strong
seasonal trends. As the summer stratified period is extended,
indicated by fall warming trends at the surface, the fall turnover
date is delayed, meaning the receipt of warmer waters at depth is
delayed. This is noted by relative cooling trends below the
thermocline in September at 30m, and consequently in
November for 60 and 75 m depths (Figs. 4, 5b-d). Below 60 m,
peak warming occurs in the winter from January through April
(Figs. 4, 5¢-f). During this period, the water column has mixed
and deep subsurface temperatures respond to winter atmospheric
conditions. At 75 and 100 m, linear estimates suggest warming
trends from January through August, however at 110 m, this is

reduced to January and October (Fig. 4). Using a nonlinear
approach, the STL confirms the relative cooling trends (extended
stratification) in the fall at 30, 60, and 75m (Fig. 5b-d), and
winter warming trends at 30, 60, 75, 100, and 110 m (Fig. 5b-f).
However, where linear estimates find no trend, the STL provides a
more detailed picture by revealing which trends were essentially
flat and which were highly nonlinear. For instance, at the 110 m
depth, the period from February through April reveals significant
short-term trends that occurred in the late 1990s (Fig. 5e).

The long-term warming trends in water temperature are
consistent with observed changes in atmospheric conditions that
occurred in the mid-1990s compared to their long-term means
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Fig. 2 Surface and subsurface water temperature observations in Lake Michigan. a Daily lake surface temperature from the GLSEA at the thermistor
location. b Water temperature time-series at the 110 m depth transect. ¢, d A zoomed surface and subsurface temperature record for 2008-2009,
equivalent to the period highlighted in gray in a and b, indicating the 110 m overturn date, “O”, minimum temperature/date, “M", and stratification

temperature/date, “S".
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Fig. 3 Long-term and decomposed trends in water temperature. a Lake surface water temperature trends based on annual GLSEA data at the thermistor
location computed using two methods: simple linear regression (0.40 + 0.26 °C/decade trend and 95% confidence interval) and a Theil-Sen line (0.41+0.20 °C/
decade trend and 95% confidence interval). b The decomposed long-term trend component of the seasonal trend decomposition (STL) method for the GLSEA lake
surface temperature, a non-linear counterpart to the linear regression methods (trend from linear fit is given in Table 1). € Seasonal trend component from the STL
for the GLSEA lake surface temperature. d Residual component from the STL for the GLSEA lake surface temperature. e Subsurface water temperature trends at
110 m depth based on a linear regression (0.05 = 0.06 °C/decade trend and 95% confidence interval) and Theil-Sen line (0.04 + 0.04 °C/decade trend and 95%
confidence interval). f Long-term trend computed from the STL for the 110 m depth (trend from linear fit is given in Table 1). g Seasonal trend component from the
STL for the 110 m depth. h Residual component from the STL for the 110 m depth.
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Fig. 4 Monthly long-term water temperature trends in Lake Michigan.
Monthly warming or cooling trends from the 1990-2019 record as a
function of depth in the water column. For a given depth, monthly trends
are normalized by the maximum of the trend magnitudes at that depth.
Therefore, the darkest red and darkest blue colors represent the greatest
warming and cooling rates, respectively, for a given depth. Dots indicate
confidence intervals on the trend that do not include zero for 1.96 (gold
circle), 1.645 (half-gold circle), and 1 (white circle) standard deviations.

(Fig. 6). Over the duration of the water temperature record,
increasing trends are found in overlake air temperature (0.52 +
0.22°C/decade), wind speed (0.23 +0.04 ms—1/decade), and
shortwave radiation (4.66 + 1.79 W m~2/decade), which is con-
current with a decrease in cloud cover (—4.55 * 1.17%/decade).
These trends are also consistent with increases in air temperature

4

and the duration of summer stratification that have been reported
in other lakes”%10-33-35 and a shift in several climate indices
associated with the 1997-1998 El Nifio3%3>. Long-term means
before (1948-1997) and after (1998-2018) the El Nino changed
from 7.45 to 8.55°C for air temperature, 6.10-6.54 ms~! for
wind speed, and 59.1-50.1% for cloud cover over the lake. As
surface water temperatures respond directly to the increases in air
temperature and solar radiation, these changes explain the
extended summer-stratified period (warming trends in the fall)
and the milder winter months indicated in Fig. 4. However, as
deep water temperatures undergo warming and cooling phases
between fall overturn and the onset of summer stratification,
subsurface conditions are dependent on the intensity of winter
atmospheric conditions and the duration of this period. There-
fore, increased air temperatures and more incoming shortwave
radiation (Fig. 6) that lead to less intense and shorter winters
(Fig. 7a, b) will result in less overall subsurface cooling and
consequently lead to the peak warming trends found from
January through the spring (Fig. 4).

Deep water cascade. In dimictic lakes, which collectively repre-
sent more than half of the world’s surface freshwater!, the water
column undergoes two surface to bottom mixing events each
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Fig. 5 Seasonal component of decomposed water temperature. Monthly water temperature trends from the STL seasonal component as a function of
depth for a surface, b30m, ¢ 60 m, d 75m, e 100 m, f 110 m, and g 140 m. For each month (abbreviated by first initial), the x-axis represents the range

1990-20179.

year, one in the fall and one in the spring. As a dimictic lake, in
Lake Michigan the surface cools in the fall (Fig. 2¢), the overturn
causes a sharp rise in subsurface water temperatures (“O”,
Fig. 2d), establishing a mixed water column. From this point, the
bottom waters enter a cooling phase over the winter, as the water
column becomes inversely stratified, until a point of minimum
temperature is reached (“M”, Fig. 2d). As spring conditions bring
increased surface heat flux into the lake, the water column
becomes fully mixed again and bottom waters warm until sum-
mer stratification is reached (“S”, Fig. 2d). The time between the
date of fall overturn and minimum temperature is the only
cooling period experienced by deep waters.

In 30 years of subsurface observations in Lake Michigan, the
overturn date at 110 m depth ranges from mid-November to early
January (Fig. 7a). The duration of the annual cooling period and the
stratification period can be calculated on the timing from O to M
and S to O, respectively (Fig. 7b). Cooling period duration ranges
from 53 to 134 days and summer stratification varies between 162
and 263 days. In all three time-series, a notable shift occurred in
1997-1998 (Fig. 7a, b). The overturn date slid from early to late
December, while the subsequent cooling period shortened to below
100 days and summer stratification extended beyond 200 days.
Consistent with shifts in overlake meteorological conditions (Fig. 6),
this shift appears to extend throughout the remainder of the water
temperature record, although there is high interannual variability,
particularly in the duration of summer stratification in recent years.
Corroborating these findings, recent studies have identified shifts in

several physical indices in the Great Lakes region associated with
the 1997-1998 El Niiio, including changes in incident radiation, ice
cover, and teleconnections patterns such as the Pacific Decadal
Oscillation (PDO)3132, Although this subsurface record only
extends back to 1990, a modeling investigation of Lake Michigan
heat content that extended back to 1950 supports the notion that
the lake underwent a jump in heat content in the late 1990s3! tied
to the noted changes in atmospheric conditions (Fig. 6). A similar
jump in surface temperature and increase in the duration of the
summer-stratified period has also been reported in Lake Superior3>.

The delay in fall overturn is the first step in a cascade of
subsurface dynamics that signifies the impacts of surface warming
on bottom waters. As the overturn date is delayed, we find a
shortening in the duration of the subsequent cooling period
(Fig. 7c). The shortened winter tends to result in higher
minimum bottom temperatures, with the exception of the four
coldest winters (Fig. 7d, e). These minimum winter temperatures,
which fall near or below 2 °C, occurred in 1996, 2003, 2014, and
2015 (Fig. 2b). Not surprisingly, such conditions suggest that in
addition to cooling period duration and turnover date, meteor-
ological forcing during the winter plays a critical role on the
minimum temperature at depth. Overall, the period of record
reveals a remarkable range of minimum temperatures from 1.2 to
4.4°Cat 110 m (Fig. 7d, e). As conditions warm in the spring, the
water column again becomes mixed and then summer stratifica-
tion is established. In the final stage of this cascade, increases in
bottom stratification temperature, above the temperature of
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Fig. 6 Time series of observed atmospheric conditions. Annual averages
of 2 m air temperature (TA), 10 m wind speed (WS), cloud cover (CC), and
downward shortwave radiation anomaly (SWR) show a change in the mid
to late 1990s to a period of increased air temperatures and wind speeds,
and decreased cloud cover (increase in shortwave radiation). For TA, WS,
and CC, colors represent values that are above (red) or below (blue) their
long-term annual mean. For the shorter time series record for SWR
anomaly, annual averages are plotted directly. Linear regressions over the
period of water temperature observations (1990-2018, except for SWR,
which starts in 1995) estimate trends in TA (0.52 + 0.22 °C/decade),

WS (0.23+0.04 m s 1/decade), CC (—4.55 +1.17%/decade), and SWR
(4.66 +1.79 W m—2/decade).

maximum density, and the onset of summer stratification
correlate with delays in the previous fall turnover (Fig. 7f, g).
This signals the impact of winter conditions on the subsequent
summer. However, with increasing time from the fall overturn
date, these relationships show weaker correlations (Fig. 7c, d, f, g),
wherein the cumulative impacts of the meteorological conditions
during this period, or short-term natural weather variability,
would become increasingly important. In all, these observations
detail the connectivity between different deep water dynamics
and the expected response to surface warming.

Whither leads the warming in lakes? The primary physical
response of lakes to climate change will manifest as changes in
water temperature, ice cover, water storage, and thermal
structure®36, Changes in subsurface temperatures can result in
changes to water column stability, mixing, and duration of
stratification?3437:38, However, long-term and high-resolution
measurements are difficult to acquire, particularly for year-round
sampling in Earth’s largest and deepest lakes. The unique long-
term data set presented here extends the conclusions of previous
studies!>!8 by investigating subsurface temperatures and trends
across seasons, confirming that surface warming is translated to
deep waters in a large lake. Using hourly measurements, the
impacts of delays in fall overturn and extension of stratification
become clear. In response to these timing changes, more so than
just surface warming itself3, the subsurface conditions are altered
in the winter and spring. These dynamics illustrate the pathway
for mixing regime shift in large lakes?.

Projections of climate-driven impacts on lakes show the
likelihood of mixing regime shifts by the end of this century!>.
Models reveal the potential decrease in ice cover and increase in
surface water temperatures. In large dimictic lakes, the delay in
fall overturn, loss of ice, and collapse of the cooling period can
push the regime to become warm monomictic. Not all lakes that
experience warming temperatures are projected to undergo a
mixing regime shift, as meteorological and other conditions can
mitigate the effects, but for those that do, many exhibit similar
traits!>40, For dimictic lakes, this includes those that currently
have seasonal ice cover but experience occasional ice-free winters.
Like many of Earth’s large lakes, Lake Michigan meets the criteria
for a dimictic to warm monomictic shift, with a decreasing long-
term trend in ice cover and several low-ice or nearly ice-free years
since 19904142, Here we present the deep water relationships that
may lead to this transition in response to climate change.

The implications of mixing regime shifts in large lakes are well
documented. The extension of summer stratification can reduce
dissolved oxygen replenishment to deep waters and exacerbate
hypoxic conditions*>. Reorganization of food web structure and
shifts in dominant species, including the possible proliferation of
non-native invasive species, are possible effects of thermal
change?®#4. Already in Lake Tanganyika, increases in water
temperature are responsible for reductions in primary
productivity!»1423. Conversely, warming temperatures and
decreasing ice cover in Lake Superior are driving an increase in
primary productivity*>. In Lake Baikal, the world’s deepest large
lake, the changing thermal conditions are resulting in community
shifts among zooplankton!©. In all, the consequences of changes
in subsurface water temperatures will result in a profound shift in
lake ecology. Without high-frequency long-term monitoring of
subsurface waters, we will be blind to the impacts of climate
change on most of Earth’s fresh surface water.

Methods
Water temperature data. Detailed vertically distributed water temperature data
are used to analyze long-term trends and deep water dynamics in Lake Michigan®.
Subsurface observations began in 1990 at a 150 m deep location in the central
southern basin of the lake (42°40.493'N, 87°04.772'W; Fig. 1). The site was chosen
due to depth, proximity to the National Oceanic and Atmospheric Administration
(NOAA) National Data Buoy Center (NDBC) buoy 45007, and vessel access. The
deployment date, number of sensors, and sensor depths vary by year (Supple-
mentary Information). From 1990 to 1994, Aanderaa TR7 thermistor chains were
deployed with 3-hourly measurements, which have an accuracy of +0.03 °C. For
these years, the depths of each sensor were calculated from total water column
depth and the measured distances from the bottom of the chain. Sensor mal-
function between 1993 and 1994 led to a large data gap. From 1994 to 2012,
individual sensors were deployed in place of the TR7 chains to capture water
temperatures at hourly intervals (TR-1000 by Richard Brancker Research Ltd.
(RBR) with accuracy of +0.05 °C). For this period, a pressure sensor was added to
the uppermost sensor and depths were calculated based on measured distance from
this sensor. From 2012 to 2019, the sensors were changed to Sea-Bird Scientific
SBE56 (accuracy +0.002 °C). In 2013, a faulty mid-line subsurface float led to the
sinking of the thermistor string. However, the upper subsurface float allowed the
top nine sensors to be suspended over the bottom 40 m of the water column. Each
year the data were downloaded from the sensors using software provided by the
manufacturer and the data were manually corrected to remove inaccurate values.
When necessary due to primary sensor malfunction, the Tidbit sensor data was
used to fill data gaps.

Temperatures at the water surface were acquired from the Great Lakes
environmental surface analysis (GLSEA)3? for the period 1995-2018 (n = 8743),
a data set commonly used for long-term trends in Great Lakes surface
temperatures!®!7. The GLSEA is a 1.8 km resolution satellite-derived surface
temperature product that provides daily lake surface temperatures throughout the
year. The data set is based on the NOAA advanced very high-resolution radiometer
(AVHRR), a sensor aboard NOAA’s Polar Orbiting Environmental Satellites (POES).

Atmospheric data. Meteorological observations of air temperature, cloud cover,

and wind speed are used to examine the atmospheric drivers of water temperature
trends in Lake Michigan. Overlake conditions are acquired from the Great Lakes
Coastal Forecast System (GLCFS*”), which has hourly observations back to 1988.
To put recent changes in context with long-term trends, these data are

6 | (2021)12:1688 | https://doi.org/10.1038/s41467-021-21971-1 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21971-1

ARTICLE

Overturn
(days past Dec 1)

2of @ M..:
o-v ]

A AR
200} ,\_\/ / \/\/\_,»‘\\//\_

150

2t

250F b

Duration (days)

_

6 T T T T
d R?=0.36

Minimum temperature (°C)
w

0 . L L .
-20 0 20 40
Overturn (days past Dec 1)

6.0 T T T T
f R?=0.29

4.5F

401

35

Stratification temperature (°C)

3.0 . . L .
-20 0 20 40
Overturn (days past Dec 1)

990 1995 2000 2005 2010 2015 2020

160 T T T T

140

120

100

80

60

Cooling period duration (days)

40 L L L L
-20 0 20 40
Overturn (days past Dec 1)

6 T T T T T
e R?=0.20

Minimum Temperature (°C)
w

o

40 60 80 100 120 140 160
Cooling period duration (days)

180F g R*=0.29
160f
140}

120

100 R

80 b

-20 0 20 40
Overturn (days past Dec 1)

Summer stratification onset (Julian Day)

Fig. 7 Relationships between overturn and deep water dynamics. a Overturn date at the 110 m transect, b cooling period duration (blue), and duration of
summer stratification (gold) reveal shifts after 1997 (vertical gray line). € As the overturn date occurs later in the year (shown on x-axis), the cooling period
duration decreases proportionally. With later overturn dates and shorter cooling periods, d, e the minimum temperature increases. Similarly, f the summer
stratification temperature (the temperature at the inflection point defined as “S" in Fig. 1d) increases and g the date of summer stratification occurs earlier

with delays in fall overturn.

supplemented with the Great Lakes Monthly Hydrometeorological Database
(GLM-HMD#3) for the period 1948-1987, which provides daily overlake condi-
tions for each of the Great Lakes. Both data sets use several over-water and coastal
meteorological stations that include NOAA Coastal-Marine Automated Network
(C-MAN) sites, National Weather Service buoys, the Automated Surface Observing
System (ASOS), and United States Coast Guard Stations®’. In this study, we use
sites in close proximity to Lake Michigan (Fig. 1), in which the GLCFS applies
atmospheric adjustments to a common measurement height and employs a
natural neighbor interpolation®® to create hourly overwater meteorological con-
ditions on a 2-km grid, which are then spatially averaged to provide lake-averaged
conditions for each variable. GLCFS data are averaged into daily conditions

and then both datasets (GLCFS and GLM-HMD) are averaged into annual values.
For comparison to overlake cloud cover conditions, downward shortwave radiation
is acquired from the NOAA Surface Radiation (SURFRAD) Network station
located at Bondville, Illinois (Fig. 1)°!. Monthly averages of shortwave radiation
from the SURFRAD station are averaged into annual values for the period
1995-2018. Long-term means are calculated for air temperature, cloud cover, and
wind speed, whereby annual averages are plotted in comparison to their long-term
means. Since the shortwave radiation data only extend back to 1995, a long-term
mean was not calculated. For each parameter, a linear regression and confidence
intervals (one standard deviation) are calculated for the period of the water tem-
perature record (1990-2018, except shortwave radiation which starts in 1995)

to highlight the atmospheric mechanisms behind the reported water temperature
trends.

Data analysis and seasonal trend decomposition. For data analysis purposes,
sensor depths were defined as constants for each year based on the mean depth of
the deployment period. Time series data was extracted and interpolated to specific
depths (30, 60, 75, 100, 110, 140 m with resulting sample sizes of 207,958, 204,914,
208,904, 207,619, 222,251, and 186,731, respectively), chosen to cover the full range
of the water column and for proximity to sensor locations. For these transects,
temperature data was linearly interpolated from the nearest upper and lower
sensors. In the case of the 110 m transect, an effort was made to include the early
years from 1990 to 1993 as well as the period 2013-2015 to produce the longest
possible data record at depth. For this depth, the bottom sensor in 1990-1993,
located at 108 m, and from the uppermost sensor in 2013-2015, located at 111 m,
were used to complete the record, where all other periods were interpolated as
noted above. To check for consistency, we conducted a sensitivity analysis to
ensure the trends and relationships results presented are not unique only to the
chosen transect depths. This analysis consisted of using additional interpolated
depths to assess subsurface long-term and monthly trends (at 25, 50, 120, and 125
m depths) for the results presented in Table 1 and Figs. 3-5, and Supplementary
Information. Similarly, for the deep-water relationships presented in Fig. 7, data
from the 100 m transect was employed to verify the shift noted after 1997 (Fig. 7a,
b) and the strength of the relationships (Fig. 7c-g). In all cases, the choice of
transect depth did not significantly deviate from the long-term and monthly trends
presented, nor did it impact the relationships presented in Fig. 7.

Analyses of long-term and monthly trends were performed using three
statistical approaches, simple linear regression, Theil-Sen estimators, and seasonal
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trend decomposition using loess (STL)%2. Linear regressions and Theil-Sen
estimators are common approaches for trend analysis, but as the inherent trends
are not linear, we have supplemented the analysis with the STL decomposition. The
combination of methods can confirm existing trends, unveil nonlinearities or
where trends are nonexistent, and differentiate long-term trends from seasonal and
residual components. Confidence intervals are provided using parametric and non-
parametric (bootstrapping by sampling with replacement) methods for the linear
regressions and Theil-Sen estimates, while linear regressions of the STL long-term
trend was employed to provide an overall trend and confidence interval. In
preparation for monthly analysis, the data were averaged for each day and then
over each month to obtain monthly averaged water temperatures at the surface and
chosen subsurface transects.

The STL method has been used for long-term trend analysis in large lake
tributary inflows and nutrient concentrations®>>4, With the STL approach,
monthly averaged water temperatures were decomposed into long-term, seasonal,
and residual components (Figs. 3 and 5). A single loess line was fitted to the long-
term component and similarly, 12 monthly loess lines were used in the seasonal
component. Iterations are performed until convergence is reached, meaning the
long-term and seasonal components no longer differ from the previous iteration.
Window widths are chosen to produce smoothed long-term patterns, reduce edge
effects, and reduce the residuals component.

For linear trend analysis of monthly data at depth (Supplementary
Information), slopes from simple linear regressions of monthly data are used to
illustrate monthly warming and cooling trends in the water column (Fig. 3). Each
month’s trend is normalized by the maximum absolute value of the monthly trends
for a given depth, such that the darkest red for a particular depth indicates the
month of greatest warming for that transect during the period 1990-2019. For
Fig. 3, confidence intervals on the linear trends are calculated at 1.96, 1.645, and
1.0 standard deviations and indicated by gold, half-gold, and white circles,
respectively.

For analysis of deep water dynamics, we chose the water temperature record at
the 110 m transect in an attempt to include longest possible record over the 30-year
period, though the results presented were verified at the 100 m as noted in the
sensitivity analysis described above. In each year, when possible, the overturn date
was defined as the point of maximum temperature on the spike in water
temperature at 110 m (Fig. 2d). Similarly, the minimum temperature for each year
was found for the period following the overturn date. The cooling period is defined
as the number of days from the overturn date to the date of minimum temperature.
The stratification temperature and date is found at the inflection point after the
point of minimum temperature, where the water temperature ceases to warm and
becomes relatively constant over the stratified season. The duration of the stratified
season is defined as the number of days from the stratification date to the following
fall overturn date. For clarity, the overturn dates were referenced relative to
December 1. Linear least-square fits were shown as a visual guide for the observed
relationships between deep water variables along with a calculated square of the
Pearson correlation coefficient, R%, and parametric 95% confidence intervals
(Fig. 7).

Data availability

The subsurface water temperature data used in the study are available in the NOAA
National Centers for Environmental Information Archives with the accession codes
0190726 and 0203568. Satellite-derived surface water temperature data is available from
the NOAA Coastwatch (https://coastwatch.glerl.noaa.gov/thredds/Satellite/glsea/
glsea_catalog.html). Meteorological observations are available from the NOAA,
CoastWatch Great Lakes Node (NOAAPORT Realtime Great Lakes Weather Data and
Marine Observations. Retrieved from https://coastwatch.glerl.noaa.gov/marobs/.
Accessed 10/23/2020). Shortwave radiation observations are available from the NOAA
Earth Systems Research Laboratory Global Radiation Surface Radiation Budget
(SURFRAD) Quality Control Radiation (QCRAD) Level 3 Measurements, Version 1.
(ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/averages/) Accessed: 10/23/2020.

Code availability

Data analysis was performed using R statistical language and figures were created using
IDL programming language (Harris Geospatial). Code used for STL analysis is available
at https://github.com/songsqian/GL_STL.
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