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Objectives: Candida auris is an emerging, often MDR, yeast pathogen. Efficient animal models are needed to
study its pathogenicity and treatment. Therefore, we developed a C. auris fruit fly infection model.

Methods: TollI-RXA/Tollr632 female flies were infected with 10 different C. auris strains from the CDC Antimicrobial
Resistance bank panel. We used three clinical Candida albicans strains as controls. For drug protection assays,
fly survival was assessed along with measurement of fungal burden (cfu/g tissue) and histopathology in C. auris-
infected flies fed with fluconazole- or posaconazole-containing food.

Results: Despite slower in vitro growth, all 10 C. auris isolates caused significantly greater mortality than
C. albicans in infected flies, with .80% of C. auris-infected flies dying by day 7 post-infection (versus 67% with
C. albicans, P,0.001–0.005). Comparison of C. auris isolates from different geographical clades revealed more
rapid in vitro growth of South American isolates and greater virulence in infected flies, whereas the aggregative
capacity of C. auris strains had minimal impact on their growth and pathogenicity. Survival protection and
decreased fungal burden of fluconazole- or posaconazole-fed flies infected with two C. auris strains were in line
with the isolates’ disparate in vitro azole susceptibility. High reproducibility of survival curves for both non-
treated and antifungal-treated infected flies was seen, with coefficients of variation of 0.00–0.31 for 7 day
mortality.

Conclusions: Toll-deficient flies could provide a fast, reliable and inexpensive model to study pathogenesis and
drug activity in C. auris candidiasis.

Introduction

Candida auris is an emerging ascomycete yeast pathogen first
described in 2009.1–4 Since then its prevalence has been rapidly
growing, with cases of invasive disease and outbreaks in several
parts of the globe. At least four distinct geographic clades have
been identified by genotypic analyses.4 C. auris represents a unique
threat owing to its frequent MDR, invasive potential in critically ill
patients and difficult eradication from hospital environments.2–4

The reasons for the simultaneous and independent emergence of
C. auris on several continents and the frequent resistance to anti-
fungals have not been fully investigated yet.2–6

Though the understanding of C. auris pathogenicity is in its early
stages, a number of virulence factors have been reported including
strain-dependent phospholipase activity, proteinase secretion and
biofilm formation, enhanced tolerance to oxidative and heat stress

compared with Candida albicans and strong persistence on plastic
surfaces.6–9 Importantly, considerable genetic variability and
phenotypic plasticity were described among isolates from different
geographic regions.1,5 Experimental in vivo data on the virulence of
C. auris are based on a very limited selection of isolates,10–12 and
comparative pathogenicity screens of the geographical clades are
lacking. Studies of drug efficacy against C. auris relied on conven-
tional animal models that are laborious and costly.13

To that end, we evaluated C. auris infection and treatment in a
Toll-deficient Drosophila melanogaster fly model, previously
described to be of value for the dissection of C. albicans pathogen-
icity and extensively validated for a range of medically relevant
mould and yeast pathogens.14,15 We demonstrate significantly
enhanced virulence of 10 disparate clinical C. auris isolates com-
pared with C. albicans, and provide proof-of-principle experiments
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for azole treatment of C. auris-infected Toll-deficient D. mela-
nogaster flies.

Materials and methods

Isolates

The C. auris panel (AR381–AR390) was obtained from the FDA-CDC
Antimicrobial Resistance (AR) Isolate Bank (kind gift of S. Lockhart and T.
Chiller). Information on azole MICs was provided by the CDC AR bank online
portal (https://wwwn.cdc.gov/ARIsolateBank/Panel/PanelDetail? ID"2).
The aggregation phenotypes and geographical clades of these strains have
been previously described, and are summarized in Table S1 (available as
Supplementary data at JAC Online).7,16 Clinical C. albicans strains (internal
numbers 2516, 7892 and 8910) isolated from patients at the University of
Texas MD Anderson Cancer Center were used for comparison. We used iso-
lates with different storage periods. Two out of the three C. albicans isolates
(7892 and 8910) were sourced in 2018; the third (2516) had been cryopre-
served in 2003. All Candida strains were grown and maintained on yeast–
peptone–dextrose (YPD) agar.

In vitro growth assay
A single colony of each Candida isolate was grown overnight at 35�C and
200 rpm in YPD liquid. A total of 106 yeast cells were inoculated in 5 mL of
YPD medium and incubated for another 4 h at 35�C and 200 rpm to mid log
phase. Subsequently, yeast cells were washed twice in sterile saline, thor-
oughly vortexed at high speed, counted with a haemocytometer and sus-
pended in yeast nitrogen base (YNB) medium at a concentration of 1%104

cells/mL. A 100lL aliquot of each yeast suspension was dispensed in
96-well plates; plain YNB medium was used for control wells. The plates
were placed in a plate reader (Powerwave HT, Bio-Tek Instruments) at 37�C
for 48 h and agitated before each measurement. Turbidity was measured
at 690 nm every 6 h in triplicate. In parallel, 5 mL of each yeast cell solution
(5%104 yeast cells) were kept in 50 mL tubes at 37�C and cell concentra-
tions were determined microscopically after 24 and 48 h using a
haemocytometer.

Infection of Tl-deficient D. melanogaster flies
Tlr632/TlI-RXA Drosophila mutant flies were generated by crossing flies carry-
ing a thermosensitive allele of Toll (Tlr632) with null allele of Toll (TlI-RXA) flies.
We used standard procedures for the manipulation, housing and feeding of
Drosophila flies as previously described.14 The dorsal side of the thorax of
CO2-anaesthetized female flies (7–14 days old) was pricked with a thin nee-
dle dipped in 1%108/mL Candida solutions.14 Flies were kept at 29�C and
transferred into fresh vials every 2 days. Survival was assessed daily until
day 7 after infection. Three independent experiments were performed on
different days. To decrease the influence of circadian rhythm, all experi-
ments were performed in the afternoon.

Antifungal treatment of flies
Tl-deficient flies were starved for 8 h and subsequently transferred to vials
containing regular fly food or fly food supplemented with 1 mg/mL flucon-
azole or posaconazole as previously described.14 Flies were allowed to feed
for 24 h before being inoculated with C. auris as described above.

Determination of fungal burden
Dead flies were collected daily and stored at #80�C. On day 7 post-
infection, the remaining flies were euthanized and combined with the previ-
ously dead (frozen) flies. All samples (23–27 flies in total per cohort) were
weighed, suspended in 1 mL of PBS and homogenized using a bead beater
(Biospec Products). A 10lL aliquot of the homogenate was added to 990 lL

of PBS. The mixture was thoroughly vortexed and 100 lL was plated on YPD
agar plates. Colonies were counted after 24 h. The following formula was
used to determine the amount of cfu per gram of tissue: (number of colo-
nies/mL plated% dilution factor)/[tissue (g)/mL original homogenate].

Histopathology
Dead flies were fixed in 10% formaldehyde and embedded in paraffin.
Tissue sections of representative flies were stained with Grocott–Gomori
methenamine-silver nitrate (GMS), examined for visible fungal burden
under a light microscope and photo-documented using a ScanScope slide
scanner (Aperio, Leica Biosystems).

Statistical analysis
Statistical analyses were performed using GraphPad Prism 7.03. Survival
curves were compared using the log rank test. In vitro growth rates and fun-
gal burden were compared using the paired or unpaired two-sided t-test or
one-way ANOVA with Tukey’s post-hoc test, depending on the experiment
setup. Significant P values are indicated by asterisks in the figures: *P,0.05,
**P,0.01, ***P,0.001.

Results

First, we compared in vitro growth of the 10 C. auris CDC AR bank
isolates with 3 clinical C. albicans strains using a turbidity-based
assay. All tested C. auris isolates exhibited considerably
slower in vitro growth, with an OD690 of 0.22–1.44 (C. auris) versus
1.67–1.78 (C. albicans, P,0.001) after 24 h, and 0.89–2.04 (C. auris)
versus 2.60–3.92 (C. albicans, P,0.001) after 48 h (Figure 1a). The
turbidity assay was validated by manual (microscopic) determin-
ation of yeast cell concentrations, confirming significantly lower
yeast cell concentrations for C. auris after 24 h (0.50–1.63%108/mL
versus 2.50–3.13%108/mL, P,0.001) and 48 h (1.25–3.25%108/mL
versus 3.50–6.25%108/mL, P"0.002), respectively (Figure S1a).
High correlation between both readouts was seen, with Pearson
coefficients of 0.93 and 0.94 (24 h/48 h) considering all isolates,
and 0.84/0.81 for the 10 C. auris isolates only. Isolates from the
same geographic clades showed comparable turbidity and yeast
cell concentrations, with significantly more rapid in vitro growth of
the two strains of South American origin (AR-0385 and AR-0386,
Figure 1b and Figure S1b). No significant difference in turbidity or
yeast cell concentrations was observed between aggregative and
non-aggregative C. auris isolates (Figure 1c and Figure S1c).

Next, we tested the in vivo virulence of the AR bank panel
C. auris strains versus C. albicans 2516 in Tl-deficient D. mela-
nogaster flies. Animals infected with C. albicans 2516 exhibited a
median survival time (MST) of 5 days and a 33% 7 day survival rate
(Figure 2a). For C. auris-infected flies, the MST was significantly
shortened (3–3.5 days) and 7 day post-infection mortality
was higher (�84%) for all AR bank strains tested (hazard ratio
1.56–2.38, P,0.001–0.005). Along with more rapid in vitro growth,
both South American C. auris isolates tested caused greater 3 day
mortality in the fly model than isolates from other geographic
clades (survival rates 23%–24% versus 35%–50%, P,0.001,
Figure 2b). The aggregative phenotype of the isolates did not sig-
nificantly influence the survival rates of infected flies (Figure 2c).
Considering all 10 C. auris isolates studied, 24 h in vitro growth rates
(yeast cell counts) significantly correlated with 3 day mortality in
flies (r"0.91, P,0.001) and to a lesser extent with 7 day mortality
(r"0.55, P"0.10).
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To confirm increased mortality of C. auris- versus C. albicans-
infected flies, we performed an independent experiment
comparing C. auris strain AR-0381, the rather slow-growing and
less virulent South Asian strain, with three clinical C. albicans iso-
lates (Figure S2). Infection with all three C. albicans strains was
associated with a longer MST (5–6 days versus 4 days) and higher
7 day survival rates (24%–46% versus 11%, P,0.001–0.01), cor-
roborating our previous findings. Importantly, we verified that the
greater virulence of C. auris is not due to differences in the inocu-
lum delivered by needle pricking (Figure S3).

We next evaluated the suitability and reproducibility of the
D. melanogaster model to study antifungal treatment of C. auris.
For this, C. auris strains AR-0381 and AR-0386 were selected owing

to their disparate in vitro azole susceptibility (MIC of fluconazole,
AR-0381 4 mg/L, AR-0386 .256 mg/L; MIC of posaconazole, AR-
0381 0.06 mg/L, AR-0386 0.5 mg/L). AR-0386 caused a more rapid
decline in survival rates in untreated infected flies than AR-0381
(Figure 3a). Although fluconazole treatment decreased the fungal
burden in AR-0381-infected flies by approximately half (P"0.004,
Figure 3b) and prolonged the MST from 4 to 5 days, the overall sur-
vival benefit did not reach statistical significance (P"0.06). In line
with in vitro resistance, neither fungal burden nor 7 day mortality
was significantly reduced by fluconazole treatment of AR-0386-
infected flies and the MST remained unaltered (3 days). For both
C. auris strains tested, posaconazole treatment led to prolonged
MST (6 days for AR-0381 and 5 days for AR-0386) and significantly
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improved overall survival (P,0.001). Similarly, fungal burden,
assessed by cfu quantification (Figure 3b) and GMS staining of
histopathological sections (Figure 3c), was reduced in
posaconazole-treated flies.

Analysing the technical reproducibility of survival curves, coeffi-
cients of variation (CVs) ranged from 0.11 to 0.55 and from 0.00 to
0.31 for 3 and 7 day survival rates for non-treated and antifungal-
treated flies, respectively (data not shown). Even lower CVs were
achieved for cfu quantification (0.03–0.19, Figure 3b), indicating
high reproducibility of C. auris infection and antifungal treatment
response in the D. melanogaster fly model.

Discussion

Candida auris is an emerging, often MDR pathogen causing signifi-
cant mortality and incremental cost burden in critically ill patients.
Efficient animal models are warranted to obtain a better under-
standing of its pathogenicity and screen for new antifungal treat-
ment options. Tl-deficient flies have been successfully employed

as an efficient invertebrate model for yeast infections.14 As differ-
ent virulence patterns compared with other medically important
yeasts including C. albicans were reported,10–12 we assessed the
feasibility and reproducibility of C. auris infection in the Drosophila
model.

Despite slower in vitro growth compared with C. albicans, con-
sistently greater mortality of C. auris-infected flies was observed
for all isolates tested, with considerable correlation of in vitro
growth and survival rates among the 10 C. auris isolates. From a
technical perspective, we found high reproducibility of survival
rates, MSTs and fungal burden in C. auris-infected flies. Moreover,
the magnitude of protection by azole treatment in our model cor-
related with the degree of in vitro susceptibility in two C. auris iso-
lates displaying divergent azole susceptibility.

We used the FDA-CDC AR bank panel that covers isolates from
all presently described geographic clades,16 thus facilitating an ex-
ploratory comparative virulence screen. Significant phylogenetic
diversity of C. auris isolates from different regions has been
reported.1,5,12 Each of the at least four geographically distinct
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clades was separated by tens of thousands of SNPs, whereas low
genetic diversity was found among isolates within each clade.5

Although different mutations were associated with azole resist-
ance in each geographic clade,5 it remains unclear whether these
clades exhibit distinct virulence patterns. Consistent throughout
three independent runs, the two isolates from the South American
clade appeared to exhibit greater virulence capacity in our fly
model, with a more pronounced early drop in survival rates.
Largely comparable in vitro growth rates of isolates from the South
Asian, East Asian and African clade were accompanied by similar
survival curves. Given the small amount of strains tested and the
under-representation of East Asian isolates in our panel, these ex-
ploratory results will require confirmation in a broader range of
strains. Studies directly comparing the clinical outcomes of the dif-
ferent clades are scarce. Reviewing 54 C. auris cases from three dif-
ferent continents, Lockhart et al.5 found no increased in-hospital
mortality in South American (Venezuelan) patients. A recent
study comparing the gene content of C. auris strains from all four
clades revealed largely identical gene numbers for key pathogen-
esis factors such as cell wall adhesins or secreted lipases and
proteases.17

Interestingly, we observed no significant difference in growth
and virulence of C. auris depending on its aggregative capacity.
Two earlier studies performed in Galleria mellonella revealed that
non-aggregating C. auris isolates elicit mortality comparable to10

or greater than11 C. albicans, whereas aggregate-forming C. auris
was less virulent. In contrast, distinct yeast cell aggregates were
detected in the kidneys of mice with lethal C. auris infection, sug-
gesting that aggregate formation may serve as an immune eva-
sion mechanism,12,18 e.g. by conferring protection against
phagocytic attack.10 As WT Drosophila flies exhibit limited suscepti-
bility to yeast infection,14 Tl-deficient flies with impaired antimicro-
bial peptide release and phagocytic response were utilized,19

possibly contributing to the observation of aggregation-
independent survival rates in the Drosophila model. As our findings
further affirm the heterogeneity of C. auris virulence capacity
in different hosts, exploring virulence differences between
different pathosystems could uncover key determinants of C. auris
pathogenesis.

There are limitations of our study. Temperature-dependent
growth and virulence features such as proteinase secretion20 need
to be considered and constitute an important limitation as fly in-
fection studies are performed at 29�C, compared with the higher
body temperature (37�C) in mice and humans. Furthermore, we
did not evaluate differences in the pathogenicity of each C. auris
isolate in the context of its ability to form biofilm, a factor impli-
cated in C. auris virulence.11 Although previous work employing
dyed fly food and a bioassay suggests the uptake of bioactive drug
concentrations in triazole-exposed flies,21 these methods are
cumbersome and provide rather imprecise estimates of drug
exposures.15,22 Therefore, pharmacokinetic studies in the
Drosophila model are not easily feasible, and drug efficacy data
obtained in flies require subsequent validation in mammalian
hosts.22

Despite these limitations, this study provides a pilot evaluation
of Tl-deficient fruit flies as a model to study C. auris candidiasis,
suggesting a potential impact of geographical clades on virulence
and documenting high reproducibility of survival rates and fungal
burden in a proof-of-concept experiment for azole treatment of

flies infected with C. auris isolates displaying different in vitro sus-
ceptibility to azoles. As molecular tools to produce loss-of-function
mutants in C. auris are being developed23 and investigational
drugs are being tested,24 flies could provide an inexpensive and re-
liable primary screening system to study pathogenesis and drug
activity in C. auris candidiasis.
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