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Abstract

Purpose—Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for 

the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, 

and in-human imaging studies of new and established imaging agents containing aromatic C-18F 

bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, 

although key developments that have enabled or improved upon the syntheses of fluorine-18 

imaging agents are discussed.

Methods—A comprehensive literature search from April 2014 onwards of the Web of Science 

and PubMed library databases was performed to find reports that utilize CMRF for the synthesis 

of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in 

this minireview. Select conference proceedings, previous reports describing alternative methods 

for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been 

included for discussion.

Conclusions—CMRF has significantly expanded the chemical space that is accessible to 

fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for 

use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of 

radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of 
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CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the 

development of new radiofluorination methodologies.
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Radiofluorination

1.1 Introduction

Positron emission tomography (PET) is a functional nuclear medicine imaging technique[1] 

that is routinely used to: i) study, diagnose, and stage diseases in a health care setting[2] ii) 

predict and monitor patient response to (experimental) therapies [3, 4]; iii) enrich clinical 

trials[5]; and iv) support drug discovery programs in the pharmaceutical industry [6,7]. In 

PET imaging studies, an animal or clinical subject is injected with a bioactive molecule that 

has been tagged with a positron-emitting radionuclide (radiopharmaceutical). The PET 

image is generated via the detection of coincident pairs of 511 keV gamma rays resulting 

from positron annihilation events, and provides a 3-dimensional image of 

radiopharmaceutical concentration throughout the body for use by radiologists and scientists 

in clinical care and research studies.

Fluorine-18 is one of several positron-emitting radionuclides that is used to radiolabel 

biomolecules for PET imaging because of its excellent imaging properties (97% β+ decay), 

ready availability in TBq (multi-Curie) amounts from small medical cyclotrons, prevalence 

of fluorine in bioactive molecules [8], and a convenient half-life (109.8 min) that allows for 

commercial distribution to satellite imaging centers without a cyclotron.[9] In the production 

of [18F]fluoride, a proton beam generated by the cyclotron is directed at an [18O]H2O target, 

which induces a 18O(p,n)18F nuclear reaction. Typically, the obtained aqueous [18F]fluoride 

is loaded onto a preconditioned ion exchange resin (e.g. a quaternary methyl ammonium 

cartridge, QMA), eluted under basic conditions (e.g. K2CO3) in the presence of additives 

(e.g. metal chelators) and azeotropically dried for use in a radiofluorination reaction. 

Procedures that follow these or closely related steps are generally required in order to 

facilitate the handling and reactivity of [18F]fluoride, although modern elution procedures 

with greater applicability to CMRF have been described, and some of these are discussed in 

this minireview.

Since the introduction of PET in the 1960s and 1970s, extensive work has been undertaken 

to develop fluorine-18 radiochemistry, with a particular focus on the manufacture of 

[18F]fluorodeoxyglucose ([18F]FDG), the most widely used PET radiopharmaceutical 

(Figure 1). However, the generation and translation of new radiofluorination methodologies 

suitable for labeling some substrate classes in high radiochemical conversion (RCC) and 

radiochemical yield (RCY) via high molar activity (Am) [18F]fluoride remains a challenge to 

radiochemists, particularly electronic-rich aromatic rings. To address these long-standing 

challenges, the last few years have seen extensive research aimed at developing new 

fluorine-18 radiochemistry methodology (for recent reviews see: [10–17]). Transition metal-

mediated methods have been particularly effective for installing fluorine-18, and many 
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exciting new developments have been realized since 2014.[18–24] In particular, Cu-

mediated radiofluorination (CMRF) has emerged as a powerful technique for construting 

C-18F bonds. Developments in CMRF have benefited from the availability of synthetic 

methods that enable the installation of non-radioactive [19F]fluoride into aromatic systems.

[25–30] This minireview focuses dicussion on the key applications of fluorine-18 

radiofluorination methods, including the Cu-mediated 18F-fluorination of pinacol boronate 

(Bpin) esters reported by Gouverneur[31], and independent discloures by our laboratories on 

the Cu-mediated radiofluorination of iodonium salts,[32] aryl halides,[33] boronic acids and 

Bpin esters,[34] stannanes,[35] and aromatic C-H bonds [36,37]. Since these primary 

publications, we have further optimized these approaches for use with automated 

radiochemistry synthesis modules[38] and variants have subsequently been reported by other 

laboratories that are discussed throughout this review.

In these methodology papers, direct introduction of nucleophilic [18F]fluoride into a variety 

of (hetero)arenes bearing electron-rich, -neutral, and -withdrawing groups was 

demonstrated, typically in proof-of-concept studies using small amounts of [18F]fluoride 

(typically ≤185 MBq or ≤5 mCi). Scalability has also been demonstrated using clinical 

production levels of [18F]fluoride (typically 74 GBq or ≤ 2 Ci) and automated synthesis 

modules compatible with current Good Manufacturing Practice (cGMP). However, the true 

test of a method’s utility lies in its ability to both enable the synthesis of previously difficult 

(or not yet possible) to access PET radiopharmaceuticals and meet routine pre-clinical / 

clinical production demands.

What is apparent since its introduction in 2014 is that CMRF has been brought online at 

PET Centers worldwide for the labeling of a wide variety of complex bioactive molecules. It 

is an attractive approach to radiochemical facilities because, unlike some transition metal-

mediated processes, CMRF can generally be conducted without the stringent exclusion of air 

and/or moisture. Furthermore, late-stage CMRF can offer efficiency and practicality 

advantages over other labeling methods, such as “prosthetic group” strategies.[39–42] In 

addition to being widely adopted by the PET radiochemistry community for the synthesis of 

new PET radiopharmaceuticals for pre-clinical research, CMRF has also been validated for 

production of clinical PET radiopharmaceutical doses. Products manufactured using CMRF 

have been translated into clinical trials following regulatory approval by both Health Canada 

and the Food and Drug Administration (FDA). Herein, we discuss the current state of pre-

clinical and clinical radiopharmaceutical synthesis using CMRF. The impact of CMRF on 

the synthesis of 18F-labeled radiopharmaceuticals in the years since it was introduced is also 

considered. Chemistry aspects of the new methods have been covered extensively in prior 

reviews and are therefore discussed only when they pertain to the synthesis of clinically or 

pharmaceutically relevant imaging agents. Copper-mediated transformations for the 

installation of 18F[43–49] and other radionuclides such as 11C,[50–57] 76/77Br,[54,55] 
123/125/131I,[60–62] and 211At[62] into a range of other scaffolds is also possible, although a 

discussion of these is beyond the scope of this review.
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1.2 Copper-Mediated Radiofluorination of Carbon-Halogen Bonds

1.2.1 Iodonium Salts

Aryliodonium salts undergo nucleophilic fluorination in the absence of copper with 

selectivity for the more sterically congested carbon fragment.[63] However, Sanford and co-

workers reported a non-radioactive [19F]fluorination of diaryliodoniums with selectivity for 

the smaller substituent in the presence of Cu(OTf)2 and KF.[25] Density Functional Theory 

(DFT) calculations support a mechanism in which Cu(OTf)2 is reduced (either by solvent or 

by Cu disproportionation) to produce [Cu(OTf)2]− (i.e. (Cu(I)), which then undergoes ligand 

exchange with fluoride). Subsequent oxidative addition of the iodonium salt produces a 

copper(III) fluoride, which undergoes C-F reductive elimination, furnishing the product and 

completing the catalytic cycle. A new method describing a copper-catalyzed 

[18F]fluorination of (mesityl)(aryl)iodonium salts (mesityl = mes = 2,4,6-trimethylphenyl) 

was reported by our laboratories thereafter.[32] In this radiofluorination, [18F]KF 2 in the 

presence of (CH3CN)4CuOTf was employed in order to access 18F-labeled aryl fluorides. 

This method was applied to the synthesis of protected 4-[18F]L-fluorophenylalanine 3 
(4-[18F]L-FPhA, Scheme 1a), a radiopharmaceutical originally developed in the 1970s as a 

probe for pancreatic and cerebral protein synthesis [64], and protected 6-[18F]fluoro-L-

DOPA ([18F]FDOPA, 5), used for PET imaging in neuro-oncology,[46,47] Parkinson’s 

disease,[67] and focal hyperinsulinism of infancy.[68]

Modifications to this method have broadened its utility. For example, Neumaier and co-

workers applied “minimalist” and “low-base” protocols[69] for the [18F]fluorination of 

(mesityl)(aryl)iodonium salts. In these methods, [18F]fluoride is eluted using reduced 

quantities of K2CO3 from an ion exchange resin with the molecule to be functionalized 

(precursor) dissolved in MeOH. It was shown that conventional elution techniques, such as 

the use of metal chelator additives and azeotropic drying, could be omitted, and only 

addition of the remaining reagents following the removal of MeOH was required for the 

subsequent radiofluorination. This protocol was showcased with the synthesis of imaging 

agents in good radiochemical yields, including [18F]fluorophenylalanines, such as 4-[18F]L-

FPhA 7 (Scheme 2a), 6-[18F]fluorodopamine (6-[18F]FDA) 9 (Scheme 2b), and 

[18F]DAA1106 11 (Scheme 2c). [18F]DAA1106 was preclinically evaluated in a rat stroke 

model, demonstrating excellent visualization of translocator protein 18 kDa (TSPO) 

overexpression associated with neuroinflammation following ischemic stroke.[70] This 

approach is particularly attractive for use in conjunction with late-stage CMRF since it 

ameliorates side-reactions of copper with bases (e.g. formation of copper carbonates). An 

automated radiosynthesis on a Scintomics hotboxthree (HB3) synthesis module of 7 and 11 
was subsequently reported under minimalist conditions by the same group.[71]

Other imaging agents have been synthesized using further modifications to this protocol. 

Neumaier and co-workers developed a new minimalist approach that does not require 

evaporation of the alcohol used in the elution of [18F]fluoride, and applied it to the 

radiosynthesis of several isomeric L-phenylalanine ([18F]L-Phe) derivatives using manual and 

semi-automated conditions (Scheme 3a). The authors proposed that reduced base 

concentration mitigated the deprotonation and subsequent racemization of iodonium 
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precursors, affording labeled imaging agents in high enantiomeric excess (ee). Notably, 

clinical doses of 2-[18F]fluorophenylalanine (2-[18F]Phe) 12b could be prepared in high 

RCY, and preliminary PET imaging experiments in mice displayed a higher uptake of this 

imaging agent in a number of tumor cell lines than [18F]fluoroethyltyrosine ([18F]FET). In 

addition, a greater metabolic stability of 12b toward radiodefluorination over isomer 14b 
was measured (Scheme 3b).[72]

Despite the availability of modern aryl iodonium syntheses that are applicable to 

radiochemistry, the synthesis, handling, and storage of the requisite I(III) precursor can in 

some instances be cumbersome.[73] To simplify precursor synthesis, we developed a 

method for generating the (mesityl)(aryl)iodonium salts in situ.[37] This involves an initial 

C(sp2)–H functionalization of an arene with MesI(OH)OTs to form a (mesityl)

(aryl)iodonium salt. The applications of this method are discussed in Section 1.6.

Since these initial reports, CMRF of iodonium precursors has been adopted by others for the 

synthesis of imaging agents. For example, Tsushima and co-workers utilized (mesityl)

(aryl)iodonium 19 salt in a CMRF reaction to synthesize [18F]4-fluoro-3-

iodobenzyl)guanidine ([18F]FIBG) 20 (Scheme 4a), a potential theranostic agent for the 

diagnosis and treatment of neuroblastomas and pheochromocytomas.[74] Furthermore, Elie 

and co-workers developed a radiolabeled indazole 22 for the imaging of inducible isozyme 

cyclooxygenase-2 (COX-2) inhibitor (Scheme 4b). This enzyme metabolizes arachidonic 

acid and is overexpressed in a number of cancers. Despite the efficient COX inhibition 

recorded for the corresponding non-radioactive fluorine-19 analog, it was concluded from 

PET imaging that this imaging agent possesses low in vivo blood-brain barrier (BBB) 

permeability and low specific binding.[75]

1.2.2 Organohalides

Our laboratories recently described a novel CMRF of (hetero)aryl chlorides, bromides, and 

iodides using ortho-substituted pyridine, oxazoline, and imine DGs.[33] Building on Cu-

mediated [19F]fluorination methodology reported by Liu and co-workers,[30] this newly 

optimized radiofluorination was shown to carry a wider substrate scope and could be 

conducted using [18F]KF instead of precious metal fluoride [19F]AgF. The use of an N-

heterocyclic carbene 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidine (IPr) in this process 

was critical, and this could be due to rate enhancements that this ligand confers to C-Br 

oxidative addition at Cu as well as stabilizing effects that reduces Cu dimerization and 

disproportionation. This method was applied to the synthesis of radiofluorinated analogs 

vismodegib 23b (anti-cancer) and PH089 24b (MK-2 inhibitor) (Scheme 5).

1.3 Copper-Mediated Radiofluorination of Organoborons

1.3.1 Introduction

With respect to the other strategies discussed in this review, the radiofluorination of 

organoborons has emerged as the most popular CMRF reaction. Two related methods for the 

radiofluorodeborylation of (hetero)aromatic boronic acids and Bpin esters have been 

described by both our laboratories [34] and Gouverneur.[31] Both employ CuII ligated with 
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pyridine, either as the preformed [Cu(OTf)2(py)4] complex (Gouverneur) or an in situ 
variant prepared from Cu(OTf)2 and pyridine (our laboratories), along with [18F]fluoride in 

DMF with varying substrate and reagent stoichiometries. Gouverneur’s system requires a 

high quantity (60 μmol) of precursor and 5.3 μmol Cu, while a significantly reduced quantity 

of precursor (4 μmol) can be used in our system with 20 μmol Cu. The seminal publications 

described the direct, automated syntheses of imaging agents scaffolds, including mGluR5 

inhibitor [18F]FPEB 26 (Scott and Sanford, Scheme 5a), TSPO agonist [18F]DAA1106 11, 

protected 6-[18F]fluoro-L-tyrosine (6-[18F]FMT) 27b, and 6-[18F]fluoro-L-DOPA 28b 
(Gouverneur, Scheme 5b). These methods were translated from the non-radioactive 19F 

fluorination of aryl organoboron compounds using Cu(OTf)2 and KF previously developed 

by Sanford.[26] In this report, it was proposed that Cu(OTf)2 first undergoes ligand 

exchange with fluoride to form [Cu(OTf)(F)], which undergoes transmetalation with the 

precursor to form [Cu(F)(Ar)] (Ar = aryl). This complex subsequently undergoes 

disproportionation with one equivalent of Cu(OTf)2 to form [Cu(F)(Ar)(OTf)], which then 

reductively eliminates the labeled product.

Organoboron precursors are attractive because their synthesis has been well-studied in 

different contexts. In particular, C-B bonds can be installed into aromatic systems from the 

corresponding C-X (X = F, Cl, Br, I) or C-H bonds with representative (e.g. alkyllithiums) or 

transition metal-based (e.g. nickel, copper, palladium, iridium) organometallic reagents.[76–

82] For example, the synthesis of aryl boronates from fluoroarenes under a dual Ni/Cu 

catalytic system has recently been reported.[83] Notably, this method has been used in 

conjunction with CMRF to synthesize fluvastatin (structure not shown) analog 31. The 

parent pharmaceutical is an FDA approved antilipemic which treats cardiovascular disease 

by inhibiting HMG-CoA reductase, reducing plasma cholesterol levels (Scheme 7).

Furthermore, the presence of boronic acids/boronates in organic molecules generally does 

not pose significant toxicity concerns, simplifying purification in routine production and 

facilitating compliance with cGMP and Q3D guidance from the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use.[84] The 

radiofluorinations exhibit excellent functional group compatibility and are particularly 

efficient for the labeling of electron-rich arenes, offering complementary electronic 

selectivity to nucleophilic aromatic substitution (SNAr) radiofluorinations of electron-

deficient aromatics. These attributes have established CMRF of organoborons as state-of-

the-art for late-stage radiofluorination, although the approach is not without limitations. For 

example, despite the reaction tolerating ortho alkyl substituents, conversions can be low for 

heteroatomic ortho substituted precursors, including alkoxy, amino, and fluoro groups. 

Furthermore, the labeling of densely functionalized scaffolds, (such as those prevalent in 

many drugs and imaging agents) can exhibit poor conversions, and it can be challenging to 

discern the offending functionality(s). In order to address this, Gouverneur described a study 

with the aim to “derisk” CMRF of organoborons that investigated reaction efficiency in the 

presence of different heterocyclic substrates and additives.[85] This further explored the 

detrimental effect of acidic N-H protons observed in previous reports, and identified 

heterocycles with comparable or greater performance than pyridine in some cases, including 

imidazo[1,2-b]pyridazine (impy) and isoquinoline (structures not shown), using a model 
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substrate. Furthermore, it was found that challenging substrates (usually containing multiple 

basic nitrogen atoms) could be radiolabeled by increasing the ratio of Cu to substrate. Using 

various direct and multi-step synthesis procedures, seven heterocycle-containing drug 

scaffolds 32–38a were successfully radiolabeled by applying these insights (Scheme 8).

1.3.2 Further Developments

Like iodonium precursors, modified condition sets have been disclosed which offer 

reactivity improvements to some organoboron substrates. As discussed previously, carbonate 

can be inhibitory to CMRF due to basic sequestration of copper. We initially reduced the 

concentration of K2CO3 by eluting with a 73:1 molar ratio solution of KOTf:K2CO3 to 

mitigate this, and this additionally resulted in excellent 18F fluoride recovery.[34] Later, a 

modified elution protocol which reduced K2CO3 using K2C2O4 was adopted by Gouverneur 

and co-workers.[86] Their enhanced method was showcased with the synthesis of eight 

clinically relevant imaging agents from free and protected precursors on three different 

synthesis modules (Scheme 9).

Neumaier and co-workers recorded unexpectedly elevated RCC when trace levels of 

aliphatic alcohols were introduced into the CMRF following their usage as 18F elutants.[87] 

While the reasons for this accelerated reactivity are currently unclear, it is speculated that 

alcohols promote this process by esterifying boronic acids (introduced as precursors or 

generated in situ). Indeed, the most significant conversion enhancements are observed for 

boronic acid substrates. Alternatively, the authors have suggested that stabilization of the 

rate limiting B/Cu(III) transmetalation step by hydrogen bonding interactions between 

alcohol and the organoboron substrate could be responsible for this rate enhancement, 

rationalizing why other precursors, such as organostannanes, do not appear to benefit from 

this effect (see Section 1.4).

In contrast to organostannane precursors, most cross-coupling methods that employ 

organoboron precursors require a basic activator for transmetalation, and it is also possible 

that the alcoholic additives fulfil an analogous role in CMRF. This alcohol-additive protocol 

was employed for the synthesis of two tryptophan derivatives 44–45b, TSPO agonist [18F]F-

DPA 46b, and protected tumor imaging agents 6-[18F]FDA 47b and 6-[18F]fluoro-L-DOPA 

48b (Scheme 10a). Non-azeotropically dried [18F]fluoride was not required, although it 

should be noted that a higher substrate quantity (26.5 μmol precursor) is used in alcohol 

enhanced radiofluorination than in the preceding report by our laboratories (4 μmol 

precursor). This may contribute to the elevated reactivity of the former system. Later, 

Neumaier applied a modified alcohol-enhanced CMRF protocol, by replacing nBuOH with 

MeOH, to the synthesis of 7‑[18F]fluorotryptophan 50 (7-[18F]FTrp). The metabolic 

pathways of tryptophan can be distinctly altered by various diseases (Section 1.3.3), and a 

proof-of-concept study using xenografts in the chick chorioallantoic membrane model 

demonstrated a high avidity of 50 in tumor cells relative to free [18F]fluoride. Furthermore, 

7-[18F]FTrp displayed a superior resistance to metabolic defluorination over the 

corresponding 4-, 5-, and 6-radiofluorinated analogs, which was correlated with activity 

leakage into the bone of healthy rats (Scheme 10b).[88]
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We have described elution studies undertaken to improve the synthesis of [18F]4-

fluorophenacylbromide 53 ([18F]FPB), a potential PET imaging agent for targeting glycogen 

synthase kinase-3.[89] Of the organic bases investigated, the use of aqueous N,N-
dimethylpyridin-4-amine (DMAP) as a cartridge eluent and DMAP as a replacement ligand 

for copper was found to promote the manual and automated synthesis of intermediate 

[18F]fluoroacetophenone ([18F]FAP) 52. DMAP also facilitated the subsequent bromination 

of 52 to form [18F]4-fluorophenacylbromide 53 ([18F]FBP) in high RCC, which had 

previously been hampered by pyridine (Scheme 11a). This enabled a fully automated 

synthesis of 53 to be conducted for the first time. The imaging agent was obtained in 1.5% 

RCY, and used for preclinical PET imaging of glycogen synthase kinase 3 in rodents and 

nonhuman primates (NHPs). Other elution studies centered on the role of the ancillary Cu 

ligand have also been described. For example, Krasikova and co-workers found that extra 

pyridine improved the radiosynthesis of protected amino acid 4-[18F]L-FPhA 55, and an 

optimal pyridine:Cu ratio of 30:1 was established (Scheme 11b).[90]

In analogy to the DMAP elution protocol described by our laboratories, Krasikova and 

Swenson described the use of an organic solution of dimethylaminopyridinium 

trifluoromethanesulfonate (DMAPHOTf) in order to elute [18F]fluoride. The delivered 

DMAPH+ behaves as an [18F] counterion and a phase-transfer catalyst (PTC). This elutant 

was used for the synthesis of racemic 4-[18F]phenylalanine (4-[18F]FPhA) 14c, and for an 

improved synthesis of benzodiazepine receptor antagonist [18F]flumazenil 40b (Scheme 

11c&d). In each case, conventional azeotropic drying steps were obviated.[91, 92]

We have also identified order-of-addition as another important variable in CMRF. In 

particular, the use of pre-dissolved [18F]fluoride is critical for the automated synthesis of 

[18F]TRACK 58 ([18F]‑(±)‑IPMICF17).[38] [18F]TRACK targets tropomyosin receptor 

kinase TrkA/B/C, which is downregulated in neurological disorders such as Alzheimer’s 

disease (AD). Another automated synthesis of [18F]TRACK was reported in improved RCY 

with alcohol-enhanced radiofluorination (Scheme 12a).[93] Pre-clinical studies, including 

NHP PET imaging, established good BBB permeability, with the highest regional uptake 

occurring within TrKB/C-rich gray matter. Later, the first in-human PET study with was 

conducted, and [18F]TRACK exhibited high pan-Trk selectivity, good metabolic stability, 

and moderate brain uptake in vivo (Scheme 12b).[94] Combined, CMRF of organoborons 

and the developments discussed in this section have facilitated the radiosynthesis of new 

(and known) imaging agents that have been employed in preclinical PET imaging studies, 

and the following sections highlight examples of these.

1.3.3 Oncological Imaging

As previously discussed, fluorine-18 labeled tryptophans are promising agents for imaging 

the metabolic pathways connected with various diseases. For example, the upregulation of 

indole- and tryptophan-2,3-dioxygenase (IDO1, TDO2) in the tumor microenvironment is 

associated with decreased cancer recognition by the immune system. Therefore, these 

enzymes carry the potential to serve as biomarkers for the development of cancer therapies. 

Reflecting this, the independent syntheses and preclinical assessments of 5-[18F]L-fluoro-α-

methyltryptophan (5-[18F]AMT) 60 and L-5-[18F]fluorotryptophan (5-[18F]Trp) 62 (Scheme 
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13a&b) have been reported.[95] The association of IDO1 expression with the accumulation 

of 60 in tumor cell lines has been confirmed using PET, with tumor uptake observable in a 

B16F10 melanoma model, although it was noted that further confirmation of binding 

specificity is required. In contrast, the uptake of 62 could not be correlated with IDO1 or 

TDO2 activity in vivo, and this was attributed to competition with endogenous tryptophan 

and radiotracer metabolism.

Other tumor imaging agents have also been accessed using CMRF of organoborons, 

including cationic sulfonamide 61. The imaging agent has shown promising inhibitory 

activity in preclinical studies with carbonic anhydrase (CA-IX), a surrogate marker for 

tumor hypoxia. Despite only moderate uptake in HT-29 tumor xenografts, time-activity 

studies revealed that a lower accumulation occurred in non-target tissues in vivo, permitting 

tumor visualisation by PET (Scheme 14a).[96] Furthermore, [18F]CJ-042794 has been 

investigated as an antagonist of EP4, a prostanoid receptor that is overexpressed in several 

forms of cancer (Scheme 14b). PET imaging in mice afforded an acceptable tumor-to-

muscle contrast ratio (2.73 ± 0.22, 1 h, n = 5), although no difference between the imaged 

LNCaP human cell lines at baseline and blocked groups was found (against non-radioactive 

CJ-042794). This was indicative of non-specific binding that is not due to EP4.[97]

As previously discussed, COX-2 is overexpressed in tumors and may be targeted for cancer 

imaging. Indazole 22 has been synthesized using CMRF of the corresponding organoboron, 

in addition to an iodonium salt precursor (Scheme 4) but, as noted in Section 1.2, has limited 

utility because of low BBB permeability [75]. Triacoxib is a structural relative of the NSAID 

celecoxib and the labeled analog [18F]triacoxib 68 has been reported by Wuest, and assessed 

for uptake in colorectal tumor cells (Scheme 15). Notably, CMRF of 67 superseded other 

synthetic approaches, including SNAr and a prosthetic group strategy. Despite pronounced 

off-target binding of [18F]triacoxib in vitro and in vivo, PET imaging in HCA-7 tumor-

bearing mice revealed a reduction of uptake when celecoxib was employed as a blocking 

agent, suggesting specific binding to COX-2.[98]

A fluorine-18 labeled analog of the cancer therapeutic olaparib has been investigated by 

Gouverneur and co-workers . This drug inhibits poly(ADP-ribose) polymerases (PARP), a 

family of enzymes with various functions including DNA repair. A correlation between 

PARP expression and worse outcomes in some tumors has been drawn, suggesting that 

quantification of enzyme expression could provide a more accurate disease prognosis. To 

investigate the relationship between DNA damage response and tumor hypoxia, the uptake 

of [18F]olaparib 71 by PARP has been assessed in a preclinical study. A 70% increase in 

uptake into PARP-expressing cell lines was recorded following external irradiation of mice 

PSN-1 xenografts to simulate DNA damage incurred during radiotherapy. A Western Blot 

study confirmed PARP-1 expression was visibly increased following irradiation (Scheme 

16a), and the work showcased the potential of 71 to assess radiation damage and tumor 

burden.[99] An automated synthesis of 71 was recently described by the same group.[100]

[18F]ABF2 73 has been developed by Elsinga and co-workers in order to target arginase, an 

enzyme that is responsible for the metabolism of arginine. Upregulation of arginase is 

interrelated with a range of pathogenic processes, and PET imaging using 73 has been 

Wright et al. Page 9

Clin Transl Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conducted in order to study arginase expression in human prostate carcinoma cell lines. 

Preliminary PET studies in mice displayed tumor uptake in vivo which could be moderately 

suppressed by related inhibitors (Scheme 16b).[101]

1.3.4 Neuroimaging

CMRF of organoborons has also been implemented for the radiosynthesis of agents that 

image neurological and psychological disorders. For example, Ametamey and co-workers 

have reported studies on [18F]PF-NB1 75, a promising antagonist for GluN2B receptors. 

These are a subunit of glutamatergic N-methyl-D-aspartate receptors (NMDAR), which are 

promising targets for the treatment of disorders such as Parkinson’s disease (PD), cerebral 

ischemia, neuropathic pain, and depression, in which overexpression of glutamate can lead 

to neurotoxic effects. In vivo rodent imaging studies with 75 revealed a dose-dependent 

decrease in avidity with increasing doses of experimental GluN2B antagonist CP-101,606 

(Scheme 17a). Notably, this imaging agent was developed following a study by the same 

group on the structural analog (R)-18F-OF-Me-NB1 77, which was used to investigate off-

target binding of 11C labeled analogs via blockade studies with eliprodil (Scheme 17b). 

Combined, these reports showcased the potential of both imaging agents for GluN2B 

receptor occupancy monitoring.[102, 103]

PD may also be probed using [18F]-2-(4-fluoro-2-(p-tolyloxy)phenyl)-1,2-

dihydroisoquinolin-3(4H)-one ([18F]FTPQ, 79), a radioligand that can quantify TSPO 

overexpression by the microglia of afflicted subjects. In vivo pharmacokinetic data obtained 

from PET imaging of PD rat brains (induced with oxidopamine) displayed accumulation of 

79 in the striatum (Scheme 18a), and longitudinal imaging found that brain uptake of 

[18F]FTPQ may reflect the severity of PD.[104] TSPO may also be imaged with [18F]N,N-

diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide ([18F]-

DPA-713, 81). Preclinical [18F]-DPA-713 PET studies revealed an upregulation of TSPO in 

microglia/macrophages and astrocytes upon pro-inflammatory stimulation with TNF-

inducing adenovirus phenotypes, but no change in TSPO expression during anti-

inflammatory stimulation. This could provide insight into the role of pro-inflammatory 

pathways in neurological disorders (Scheme 18b).[105] The structural analog [18F]F-DPA 

may also be synthesized with CMRF from the corresponding organoboron [106] and 

organostannane [107] precursors (see Section 1.4).

Other neuroimaging agents have also been accessed using CMRF of organoborons. The 

radiolabeled chalcones [18F]4-dimethylamino-4’-fluorochalcone ([18F]DMFC) 83a and 

[18F]4-fluoro-4-methylaminochalcone ([18F]FMC) 83b have been investigated as β-amyloid 

plaque (Aβ) imaging probes; in vitro autoradiography (ARG) studies using postmortem AD 

human brain sections confirmed colocalization of both agents with Aβ plaques (Scheme 

19a).[108] ).

Synaptic vesicle glycoprotein 2A (SV2A) is an abundant synaptic protein found in the brains 

of vertebrates which regulates the release of neurotransmitters. SV2A has been targeted 

using [18F]SDM-8 85 in order to quantify in vivo synapse density (Scheme 19b). Since this 

imaging agent was most efficiently synthesized from an organostannane precursor, a 

discussion on its imaging properties is provided in Section 1.4.[109] The adenosine A2A 
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receptor (A2AR) receptor may also be targeted in order to provide insight into the diagnosis 

of neurodegenerative (and neurooncological) diseases. CMRF of organoborons 86a and 86b 
was described by Brust, and a preliminary assessment was conducted with in vitro ARG 

using mice brain slices. ortho-Fluorinated isomer 87b was efficiently blocked by its non-

radioactive analog and by known A2AR antagonist ZM241385, suggesting specific uptake in 

the striatum where receptor expression is localized (Scheme 20). Further studies are 

anticipated to explain the marked difference in brain uptake exhibited by these two isomeric 

imaging agents.[110]

CMRF can also be used to synthesize imaging agents for psychological disorders. For 

example, [18F]AZ10419096 89, a 5-hydroxytryptamine receptor 1B (5-HT1B) receptor 

antagonist, has been developed as this subtype of serotonin receptor has been linked with 

depression and anxiety. Baseline NHP PET studies displayed rapid uptake of 89 into brain 

regions corresponding to the distribution of 5-HT1B receptors. Pretreatment using AR-

A000002 (a 5-HT1B antagonist) led to an 80% decrease in avidity in all regions, suggesting 

binding of 89 is highly specific (Scheme 21a).[111] Lastly, azaindole 92 may be used as a 

radioligand for dopamine D4-receptor subtype, which is implicated in the development of 

disorders such as schizophrenia. A prosthetic group strategy for the radiosynthesis of this 

imaging agent was described by Ermert, involving initial synthesis of labeled intermediate 

91 (Scheme 21b). Unfortunately, in vitro ARG studies using mice brains displayed low 

specific binding, which was attributed in part to the low Am (<30 GBq/ μmol) of 92. This is 

a problem that can frequently challenge the use of indirect, multi-step labelling strategies.

[112]

1.3.5 Myocardial Imaging

CMRF of organoboron precursors has been used to synthesize a number of 

radiopharmaceuticals for imaging cardiovascular myocardial tissue and associated diseases. 

For instance, [18F]darapladib 94 has been investigated in order to image lipoprotein-

associated phospholipase A2 (Lp-PLA2), an enzyme associated with atherosclerotic plaques 

of arterial disease. Initially, an automated synthesis was conducted in a GE TRACERLab 

FXFN module under vacuum, affording poor (<1%) RCY. The injection of air into the 

reactor led to an improved RCY of 6%, demonstrating the essential role of O2 in certain 

situations and when less equivalents of copper are used. Ex vivo imaging showed aortic 

uptake of the PET imaging agent into apolipoprotein E-deficient (ApoE) or knockout mice 

(known to develop atherosclerotic plaques). Accumulation of [18F]darapladib was also 

observed ex vivo in the culprit and noncomplicated plaques of human atherosclerotic carotid 

samples with a ten-fold greater uptake in comparison to [18F]FDG (Scheme 22a).[113]

A direct synthesis of 4‑[18F]fluorobenzyltriphenylphosphonium cation ([18F]FBnTP) has 

been reported from boronate 95. The synthesis adopted the reaction stoichiometries (i.e. 4 

μmol precursor, 20 μmol Cu) described by Scott and Sanford [34], outperforming the related 

system described by Gouverneur [31], and improving on previous multi-step procedures. 

[18F]FBnTP is utilized for myocardial imaging and has been investigated in a preclinical 

mouse study. Dynamic PET imaging produced high contrast images displaying good and 
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sustained myocardium uptake in vivo, shown in the coronal slices centered at the heart apex 

(Scheme 22b), and corroborated previous findings.[114]

Imaging agents that can probe the pharmacokinetic profile of glycomimetics have also been 

synthesized with CMRF of organoboron precursors. These compounds resemble endogenous 

carbohydrates but are structurally altered in order to modulate different properties, such as 

metabolic stability. Glycomimetics including disaccharide 98 and monosaccharide 100 have 

been labeled via CMRF and imaged with PET in order to elucidate in vivo biodistribution 

and systemic efficacy. Rodent images displayed rapid excretion of 98 and good uptake of 

100 in the blood (characterized by accumulation in the heart) suggesting that the latter 

imaging agent may be useful in systemic studies (Scheme 23a&b).[115]

1.3.6 Endocrinology Imaging

Type-2 diabetes may be treated with agents such as FDA approved pharmaceutical 

canagliflozin, which reduces plasma glucose concentration by inhibiting sodium glucose co-

transporter 2 (SGLT-2). However, treatment response between patients can be variable, and 

Attia and co-workers have hypothesized that a correlation between patient response and drug 

biodistribution may be used to understand this observation. Preliminary studies investigated 

this by developing an automated radiosynthesis of analog [18F]canagliflozin 102. 

Biodistribution was investigated in an ARG study on a human kidney section and selective 

avidity to SGLT-2 was observed, which could be blocked with excess canagliflozin (Scheme 

24). These results warrant further clinical studies in order to ascertain the relationship 

between patient response and drug biodistribution.[116]

1.3.7 Other Imaging Agents

The production of fluorine-18 containing imaging agents such as 104 (nNOS-inhibitor),

[117] protected [18F]-Boc-CM198 106 (potential 5-HT2A receptor agonist),[118] 

radiolabeled amino acids including [18F]FMT 43b,[119] [18F]MDL100907 109 (5‑HT2a 

receptor ligand),[120] BMS-986205 111 (IDO1 inhibitor),[121] 5-[18F]fluoro-L-tryptophan 

62 (vide supra),[122] 6-[18F]fluoro-L-tryptophan 114 (vide supra),[123] [18F]2-({2-

[(dimethylamino)methyl]phenyl}thio)-5-[18F]fluoroaniline 116 ([18F]ADAM, imaging agent 

for serotonin transporter),[124] [18F]atorvastatin 118 (dyslipidemia and cardiovascular 

disease therapeutic),[125] protected 6-[18F]fluoro-L-DOPA 120 (vide supra),[126] 

4(4-[18F]fluorophenyl)piracetam 122 (potential PD imaging agent),[127, 128] 

2-[18F]fluoro-4-boronophenylalanine 124 ([18F]FBPA, vide supra),[129] azaindole 126 
(Sigma 2 receptor radioligand),[130] and α-amino tetrazole 128[131] have been studied in 

the context of synthesis/purification optimization, methodology investigation, and purity 

quantification. A detailed discussion on the findings of these studies is beyond the scope of 

this review, although their syntheses are illustrated in Schemes 25, 26, and 27.

1.4 Copper-Mediated Radiofluorination of Organostannanes

Organostannanes are attractive precursors for the formation of aromatic C-[18F]F bonds 

owing to their good reactivity in CMRF and bench-top stability. Typically, aromatic carbon-

tin bonds are conveniently accessed from their corresponding haloarene precursors using a 
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representative (e.g. organolithium) or transition metal (e.g. Pd) organometallic reagent,[132, 

133] and are often intermediates in the synthesis of iodonium salts. Therefore, in some cases 

the use of organostannanes can offer a more direct alternative for CMRF than the use of 

iodonium salts. To address challenges such as the low Am of imaging agents obtained with 

electrophilic fluorodestannyalation,[134–138] we developed the first Cu-mediated 

nucleophilic radiofluorination of (hetero)aryl organostannanes using [18F]KF and Cu(OTf)2/

pyridine in DMA or DMF.[35] Notably, in several cases 18F fluorodestannylation gives 

superior performance compared to fluorodeboronation of the analogous boronate precursor. 

A concurrent report by Murphy described a non-radioactive [19F]fluorination of stannanes 

under a related condition set. The authors proposed a mechanism for this process that is 

similar to the fluorination of organoborons described in Section 1.3, with the aryl stannane 

instead undergoing transmetalation with a putative [Cu(II)(OTf)(F)] intermediate.[27]

The labeling of clinically relevant organostannane precursors, including protected 

[18F]fluorophenylalanines 129b-c, protected 6-[18F]fluoro-L-DOPA 130b, [18F]FPEB 26, 

and serotonin radioligand 2′-methoxyphenyl-(N-2′-pyridinyl)-p-18F-

fluorobenzamidoethylpiperazine ([18F]MPPF) 132b was conducted using this approach 

(Scheme 28). Noteworthy is that an automated variant of this method for the synthesis of 

132b outperformed an automated commercial SNAr strategy (Scheme 29a,b).[139] Later, 

Maurer and co-workers developed a statistical design-of-experiments approach in order to 

guide optimizations of the methodology, and applied it to the synthesis of [18F]4-

fluorobenzylalcohol 132 (4-[18F]BnOH), a precursor to alkyltransferase radioligand 

[18F]O6-[(4-fluoro)benzyl]guanine (Scheme 29c).[140, 141]

The reaction parameters of the CMRF of organostannanes have been investigated by 

Neumaier and co-workers, who conducted a systematic investigation of radioactivity 

recovery and fluorine-18 incorporation under various temperatures, solvents, and in the 

presence of different salts. Among the salts screened, Et4NHCO3, Et4NOTf, KOTf/K222, and 

Bu4POMs in nBuOH, all improved RCCs. It was also found that CMRF of organostannanes 

does not receive the same rate enhancement as the CMRF of organoborons in the presence 

of aliphatic alcohol additives (see also Section 1.3.2). Their approach was used to synthesize 

6-[18F]fluoro-L-DOPA 42b, 6-[18F]FMT 43b, and 3-O-methyl-6-[18F]FDOPA 135b, 

([18F]F-OMFD), in moderate to excellent RCCs (Scheme 30). Furthermore, pyrazole analog 

[18F]anle186b 136b, which binds to pathological protein aggregates in α-synucleinopathies 

found in prion disease, was synthesized for the first time using this method.[142]

Kirjavainen and co-workers utilized CMRF or organostannanes for the synthesis of 

exo‑3‑[(6‑[18F]fluoro‑2‑pyridyl)oxy]8‑azabicyclo[3.2.1]octane 138, ([18F]NS12137) a 

highly selective norepinephrine transporter (NET) imaging agent (Scheme 31a). NETs 

maintain reuptake of the neurotransmitters norepinephrine and dopamine, which are 

associated with many neurogenerative disorders. Notably, the previous methods to access 

this imaging agent resulted in lower RCYs. Furthermore, tin and copper levels of 0.25 μg 

were measured in ICP-MS analyses of 138, permitting the translation of this radiosynthesis 

to a clinical production method compliant with cGMP.[143]
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The same group also developed an alternative CMRF of precursors including 

organostannanes using Cu(OTf)2 and LiOTf as [18F]fluoride elutants, and obviating the need 

for azeotropic drying. With this modified protocol, monoamine transporter imaging agent 

[18F]CFT 140 could be synthesized in an RCY of 6.5% (Scheme 31b).[144] [18F]F-DPA 

46b (see Section 1.3) has been synthesized via CMRF of the corresponding tributyl stannane 

138, and this method offered superior Am to an analogous synthesis using [18F]selectfluor 

bis(triflate), an electrophilic radiofluorination reagent (Scheme 31c). A 1.5-fold higher 

uptake of radioactivity in the brains of APP/PS1–21 animals using the high Am imaging 

agent was recorded. This was attributed to reduced TSPO blocking due to lower levels of 

competing nonradioactive F-DPA,[107] and clearly demonstrates the benefits of using high 

Am nucleophilic [18F]fluoride over electrophilic methods.

As previously discussed, the synthesis of [18F]SDM-8 85 has been conducted for the 

imaging and quantification of SV2A in NHPs and humans (see Section 1.3.4). SV2A is a 

synaptic protein found in the brain which regulates the release of neurotransmitters, and a 

reduction of SV2A has recently been correlated with schizophrenia.[145] The 

radiofluorination of boronates (Scheme 19), iodoniums, and trialkyl tin (Scheme 32a) 

precursors has been investigated under various conditions, with tin precursor 142 exhibiting 

the highest reactivity. PET images displayed high uptake in the gray matter of NHP brain, 

and blocking studies with levetiracetam indicated high specific binding.[109] Recently, the 

same group conducted a human brain imaging study with 85 and recorded high specific 

binding, rapid and high uptake, and appropriate tissue kinetics relative to the prototypical 

SV2A agent [11C]UCB-J (Scheme 32a).[146] Compound 85 (also known as 

[18F]MNI-1126) has also been synthesized from the stannane using related conditions and 

imaged in NHP brains.[147]

Lastly, an improved synthesis of 4-(4-[18F]fluorophenyl)piracetam 122 has been described 

by Osborne and co-workers by replacing organoboron precursor 121 (see Section 1.3.7) with 

stannane precursor 143 (Scheme 33). This is a fluorine-18 analog of phenylpiracetam, an 

experimental nootropic stimulant.[148]

1.6 Copper-Mediated Radiofluorination of sp2 C-H Bonds

Relatively few examples for the direct CMRF of aromatic C-H bonds exist. Non-radioactive 

fluorobenzene may be produced from the reaction of benzene with CuF2, which occurs in 

>95% selectivity. However, the requirement for a large excess of fluoride salt and harsh 

reaction conditions (450–550 °C) has so far restricted the translation of this method to C-H 

radiofluorination. Milder fluorination conditions have since been developed by using pre-

functionalized (hetero)arenes installed with appropriate directing groups (DG) which can 

coordinate to Cu, facilitating C-H activation.

For example, azacalix[1]arene[3]pyridines are amenable to regiospecific C-H fluorination 

through Cu(ClO4)2-mediated aryl C-H cleavage.[149] Gouverneur has shown that one of 

these structurally well-defined Cu(III) complexes [150, 151] reacts with carrier added 

[18F]KF/K2.2.2 to reductively eliminate the corresponding 18F-labeled arene.[85] Dauglulis 

described the oxidative copper-catalyzed auxiliary-assisted C-H [19F]fluorination of arenes 
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in the presence of AgF.[152] We successfully developed a related method for C-H 

radiofluorination, and found that [18F]KF outperformed [18F]AgF.[19] A series of analogs 

144–147a of the carboxylic acid containing drug molecules probenecid, ataluren, 

tamibarotene, and AC261066 containing 8-aminoquinoline (quin) benzamide auxiliaries, 

were radiolabeled using this method (Scheme 34). Removal of the directing group can be 

achieved via amide hydrolysis, which was demonstrated in the radiosynthesis of the RARβ2 

agonist 147b.

Finally, CMRF of electron-rich (hetero)aryl C-H bonds has been demonstrated by stepwise 

C-H functionalization and radiofluorination of activated intermediates. We optimized 

electrophilic aromatic substitution reaction conditions for the site selective oxidative C-H 

iodination of aromatics using the electrophilic iodination reagent MesI(OH)OTs 152 in the 

presence of TMSOTf as an activator. The intermediary (mesityl)(aryl)iodonium salts formed 

can be used directly without purification as precursors for CMRF under conditions also 

reported by our laboratories.[32] The addition of iPr2NEt and quinaldic acid to the post C-H 

activation Cu-mediated radiolabeling step further improved compatibility with the (mesityl)

(aryl)iodonium salt solutions. This two-step strategy was applied to radiolabel benzyl-

protected propofol 148b, a tianeptine fragment 149b, a N,N-dimethyluracil 150b derivative 

and N-Bn-protected nimesulide 151b from the corresponding C-H precursors (Scheme 35). 

As a proof-of-concept, the radiosynthesis of 151b was automated on a TRACERLab FXFN 

radiosynthesis module.

Conclusions and Future Perspectives

CMRF permits the late-stage installation of aromatic C-[18F] bonds using iodonium, 

organoboron, organostannane, C-H, and haloarene precursors. The simplicity and efficiency 

of these methods has facilitated access to both new and established PET imaging agents that 

have historically been difficult to synthesize using traditional fluorine-18 radiochemistry. 

CMRF has been rapidly adopted by the PET radiochemistry community and, as the diverse 

spectrum of radiotracers showcased in this article demonstrate, the methods are continually 

being adapted, customized, and optimized in order to synthesize new PET imaging agents. 

We expect CMRF to continue to expedite access to new fluorine-18 imaging agents, and 

ultimately accelerate their evaluation and translation for use in clinical care and to support 

drug discovery. Lastly, the growing use of CMRF to label more diverse chemical space with 

fluorine-18 will also continue to improve our understanding of functional group tolerance 

and substrate scope compatibility. These lessons will provide input on what other 

radiofluorination methods are required to label scaffolds currently incompatible with CMRF, 

and spur development of such reactions in the future. Reflecting the developments and 

progresses made in the last five years, such as the recently disclosed protocols for describing 

the radiosynthesis of [18F]olaparib[100] and 6-[18F]fluoro-L-DOPA [126, 153] for clinical 

use, CMRF has altered the way that fluorine-18 imaging agents are designed and 

synthesized for proof-of-concept, pre-clinical, and in-human research studies, and we expect 

this to continue in the future.
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Figure 1: 
[18F]Fluorodeoxyglucose.
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Scheme 1: 
Synthesis of [a] Protected 4-[18F]L-PhA and [b] Protected 6-[18F]Fluoro-L-DOPA.
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Scheme 2: 
[a]: Synthesis of 4-[18F]L-Phe [b]: Synthesis of 6-[18F]DP [c]:Synthesis and preclinical 

evaluation of [18F]DAA1106. Images were obtained six days after anterior cerebral artery 

occlusion, with the ischemic lesion in the anterior cingulate cortex visible as hyperintensity 

(white arrowheads). The peri-infarct zone is highlighted by red circles. PET-MR images 

republished from reference 70 with permission from John Wiley & Sons.
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Scheme 3: 
Radiosynthesis of fluorine-18 labeled phenylalanine derivatives. [b] PET images of 2- and 4-

[18F]Phe in healthy rat brains. Significant skull accumulation in the latter can be observed. 

PET images republished from reference 72 with permission from Thieme.

Wright et al. Page 29

Clin Transl Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4: 
Radiosynthesis of [a]: [18F]FIBG and [b]: indazole 22.
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Scheme 5: 
ortho-Directed radiofluorination of aryl halides.
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Scheme 6: 
Seminal reports on the CMRF of organoborons.
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Scheme 7: 
Ni-catalyzed fluorodeborylation and Cu-mediated radiofluorination sequence.
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Scheme 8: 
Derisked CMRF of organoborons. Multi-step labeling strategies (not shown) were used for 

the radiosynthesis of 34–38b.
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Scheme 9: 
Enhanced CMRF of organoborons for the synthesis of imaging agents.

a RCY Reported From Protected Precursor Over Two (Radiofluorination and Deprotection) 

Steps. Product Obtained Following Deprotection with HI.
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Scheme 10: 
Synthesis of radiotracers via alcohol-promoted CMRF. [b] Pre-clinical evaluation of 

7-[18F]Trp and corresponding radioisomers, displaying regional-time activity curves for 

uptake of 7-[18F]Trp in the skull (blue), pineal gland (red), and dorsal raphe (green) of rats 

(below). Metabolic stability data republished from Reference 88 with Permission from the 

ACS.
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Scheme 11: 
Effects of eluting with pyridine derivatives on CMRF.
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Scheme 12: 
Radiochemical syntheses with preclinical and in-human evaluations of [18F]TRACK. [a] In 
vivo imaging is displayed at high and low effective specific activity in NHP brain [b] 
Summed PET/MR SUV images at 0–10 min in a healthy human brain. PET images 

republished from references 93 and 94 with permission from the ACS.
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Scheme 13: 
Radiosyntheses of [18F]Tryptphan derivatives. [a]: Synthesis of 5-[18F]AMT and Decay-

corrected rodent PET-CT images of B16F10 melanoma after a 30 min injection of 

5-[18F]AMT. PET-CT images republished from reference 95 with permission from 

Ivyspring; [b]: Synthesis of 5-[18F]Trp.
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Scheme 14: 
Radiosynthesis and preclinical evaluation of 64 and 66. [a]: Biodistribution of 64 in the low 

activity organs of mice. [b]: PET-CT images of mice bearing LNCaP prostate cancer 

xenografts. Blocking was performed using non-radioactive CJ-042794. Biodistribution data 

and PET-CT images republished from references 96 and 97 with permission from Taylor & 

Francis (open access) and Elsevier, respectively.
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Scheme 15: 
Synthesis of [18F]Triacoxib. Statistical analysis displaying uptake in a control and with 

celecoxib as a blocking agent. SUV data republished from reference 98 with permission 

from the ACS.
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Scheme 16: 
[a] Radiosynthesis and preclinical evaluation of 71. Western blot study displaying PARP-1 

and β-actin levels with/without irradiation in PSN-1 xenografts. [b] Radiosynthesis an 

preclinical evaluation of 73. PET imaging in PC3 cell lines of immune-deficient mouse. 

Western blot study and PET image republished from references 99 and 101 with permission 

from SNMMI and John Wiley & Sons, respectively.
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Scheme 17: 
[a]: Synthesis and preclinical evaluation of 75. Whole brain accumulation levels with 

varying quantities of GluN2B antagonist C-P101,606 [b] Synthesis and preclinical 

evaluation of 77. Brain-time activity curves from PET study in σ1R-KO and wild-type mice. 

Eliprodil was used for the blockade study. Uptake data republished from references 102 and 

103 with permission from SNMMI and the ACS, respectively.
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Scheme 18: 
Synthesis and preclinical evaluation of [18F]FTPQ and [18F]DPA-713. [a]: MicroPET-CT 

images obtained following injection of ca. 18.5 MBq for 30 min. [b]: TSPO expression 3 

and 5 days after intracerebral injection of AdTNF, and 24 h following PBS and IL-4 

injection. PET-CT images and TSPO expression data republished from references 104 and 

105 with permission from Springer Nature and John Wiley & Sons, respectively.
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Scheme 19: 
[a] Synthesis and preclinical evaluation of [18F]DMFC, [ 18F]FMC. In vitro ARG of AD 

brain sections labeled with [18F]DMFC (left) and [18F]FMC (right), depicting accumulation 

along the gray matter of the frontal lobe. [b]: Synthesis of [18F]SDM-8. ARG image 

republished from reference 108 with permission from Elsevier.
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Scheme 20: 
Synthesis and preclinical evaluation of 87a and 87b. PET images of a mice brain depicts (a) 

Total binding (b) Self-blocking (c) Blocking with ZM241385. PET images republished from 

reference 110 with permission from John Wiley & Sons.
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Scheme 21: 
[a] Synthesis and preclinical evaluation of [18F]AZ10419096 in NHP brain. A: MRI images. 

B: PET SUV baseline experiment. C: PET SUV blocking experiment using AR-A000002 

(2.0 mg/kg) [b] Prosthetic group radiosynthesis of 92. MRI and PET images republished 

from reference 111 with permission from Elsevier.
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Scheme 22: 
Synthesis and preclinical evaluation of [18F]darapladib and [18F]FBnTP. [a]: Ex vivo tracer 

accumulations. 1: Macroscopic view. 2: 3D PET imaging view. 3: Corresponding orthoslice 

of planes a and b. [b]: Dynamic PET images of [18F]FBnTP in a female mouse, depicting 

myocardial uptake 1 min post-injection. Images republished from references 113 and 114 

with permission from the ACS and John Wiley & Sons, respectively.
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Scheme 23: 
Radiosyntheses and preclinical evaluation of glycomimetic tracers 98 and 100. PET images 

of the coronal plane at frames between 0 and 120 min. A: Heart, B: Liver, C: Intestine, D: 

Bladder. Images republished from reference 115 with permission from the ACS.
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Scheme 24: 
Radiosynthesis and ARG of [18F]canagliflozin in a human liver. ARG images republished 

from reference 116 with permission from John Wiley & Sons.
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Scheme 25: 
Radiosyntheses of other clinically relevant fluorine-18 labelled molecules via CMRF of 

organoborons.
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Scheme 26: 
Radiosyntheses of other clinically relevant fluorine-18 labelled molecules via CMRF of 

organoborons.
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Scheme 27: 
Radiosyntheses of other clinically relevant fluorine-18 labelled molecules via CMRF of 

organoborons.
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Scheme 28: 
CMRF of arylstannanes for the synthesis of clinically relevant imaging agents.
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Scheme 29: 
[a] [b] Radiosyntheses of [18F]MPPF and [c] 4-[18F]Fluorobenzylalcohol.
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Scheme 30: 
Modified radiofluorodestannylation protocol.

a From protected precursor, RCY reported over two (radiofluorination and HBr 

deprotection) steps
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Scheme 31: 
[b] Radiosynthesis of 18F]NS12137 [a], [18F]-CFT [b] and [18F]F-DPA [c].
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Scheme 32: 
Radiosyntheses and preclinical evaluations of [18F]-SDM-8. Summed PET SUV images in 

NHP brain depicting baseline and LEV displacement (30 mg/kg) scans (Above) MRI and 

PET images in a human brain depicting uptake of 85 and [11C]UCB-J (Below) Images 

republished from references 109 and 146, with permission from the ACS and SNMMI, 

respectively.
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Scheme 33: 
Improved radiosynthesis of 4(4-[18F]fluorophenyl)piracetam.
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Scheme 34: 
CMRF of aromatic C-H bonds.
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Scheme 35: 
C-H radiofluorination using a hypervalent iodine reagent.
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